1
|
Tort ABL, Laplagne DA, Draguhn A, Gonzalez J. Global coordination of brain activity by the breathing cycle. Nat Rev Neurosci 2025; 26:333-353. [PMID: 40204908 DOI: 10.1038/s41583-025-00920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2025] [Indexed: 04/11/2025]
Abstract
Neuronal activities that synchronize with the breathing rhythm have been found in humans and a host of mammalian species, not only in brain areas closely related to respiratory control or olfactory coding but also in areas linked to emotional and higher cognitive functions. In parallel, evidence is mounting for modulations of perception and action by the breathing cycle. In this Review, we discuss the extent to which brain activity locks to breathing across areas, levels of organization and brain states, and the physiological origins of this global synchrony. We describe how waves of sensory activity evoked by nasal airflow spread through brain circuits, synchronizing neuronal populations to the breathing cycle and modulating faster oscillations, cell assembly formation and cross-area communication, thereby providing a mechanistic link from breathing to neural coding, emotion and cognition. We argue that, through evolution, the breathing rhythm has come to shape network functions across species.
Collapse
Affiliation(s)
- Adriano B L Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.
| | - Diego A Laplagne
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Joaquin Gonzalez
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Neuroscience Institute and Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
2
|
Yao WD, Wu X, Kobeissi A, Phillips H, Dai H. A Prefrontal Cortex-Nucleus Accumbens Circuit Attenuates Cocaine-conditioned Place Preference Memories. RESEARCH SQUARE 2025:rs.3.rs-6355343. [PMID: 40386386 PMCID: PMC12083646 DOI: 10.21203/rs.3.rs-6355343/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
The infralimbic (IL) subregion of the prefrontal cortex (PFC), via its descending projection to the nucleus accumbens (NAc), inhibits cue-induced drug seeking and reinstatement, but the underlying mechanisms are not fully understood. Here we show that the activity of IL layer 5 pyramidal neurons projecting to the NAc shell (IL-NAcSh neurons) suppresses cocaine-associated memories. Following repeated cocaine exposures in a conditioned place preference paradigm, IL-NAcSh neurons anatomically traced by fluorescent Retrobeads undergo prolonged decrease of membrane excitability, lasting for at least 15 days after cocaine withdrawal. This persistent IL-NAcSh neuron hypoexcitability is accompanied by an increase in the rheobase, an increase in the afterhyperpolarization potential, and a decrease in the membrane input resistance. This cocaine induced neuroadapation in intrinsic excitability is not observed in prelimibic cortex neurons projecting to the NAc core (PL-NAcCo neurons), a separate descending circuit thought to promote cue-triggered drug seeking. Chemogenetic restoration of IL-NAcSh neuron activity extinguishes both the acquisition and retention of cocaine conditioned place preference memories. Our results provide direct support for the notion that the IL-NAcSh circuit serves to extinct drug associated memories and restoring the drug impaired excitability of IL-NAcSh neurons has the potential to mitigate drug-cue association memories and drug seeking.
Collapse
|
3
|
Wu X, Kobeissi AM, Phillips HL, Dai H, Yao WD. A Prefrontal Cortex-Nucleus Accumbens Circuit Attenuates Cocaine-conditioned Place Preference Memories. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644656. [PMID: 40196555 PMCID: PMC11974754 DOI: 10.1101/2025.03.21.644656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The infralimbic (IL) subregion of the prefrontal cortex (PFC), via its descending projection to the nucleus accumbens (NAc), inhibits cue-induced drug seeking and reinstatement, but the underlying mechanisms are not fully understood. Here we show that the intrinsic membrane excitability of IL layer 5 pyramidal neurons projecting to the NAc shell (IL-NAcSh neurons) suppresses cocaine-associated memories. Following repeated cocaine exposures in a conditioned place preference paradigm, IL-NAcSh neurons anatomically traced by fluorescent retrobeads undergo prolonged decrease of membrane excitability, lasting for at least 15 days after cocaine withdrawal. This persistent IL-NAcSh neuron hypoexcitability was accompanied by an increase in the rheobase, an increase in the afterhyperpolarization potential, and a decrease in the membrane input resistance. This cocaine induced neuroadapation in intrinsic excitability was not observed in prelimibic cortex neurons projecting to the NAc core (PL-NAcCo neurons), a separate descending circuit thought to promote cue-triggered drug seeking. Chemogenetic restoration of IL-NAcSh neuron activity extinguishes both the acquisition and retention of cocaine conditioned place preference memories. Our results provide direct support for the notion that the IL-NAcSh circuit serves to extinct drug associated memories and restoring the drug impaired excitability of IL-NAcSh neurons has the potential to mitigate drug-cue association memories and drug seeking.
Collapse
Affiliation(s)
- Xiaobo Wu
- Departments of Psychiatry & Behavioral Sciences and of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY 13210
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China, 226019
| | - Aya M. Kobeissi
- Departments of Psychiatry & Behavioral Sciences and of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY 13210
| | - Hannah L. Phillips
- Departments of Psychiatry & Behavioral Sciences and of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY 13210
| | - Huihui Dai
- Departments of Psychiatry & Behavioral Sciences and of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY 13210
| | - Wei-Dong Yao
- Departments of Psychiatry & Behavioral Sciences and of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
4
|
Ontiveros-Araiza LF. The Neurobehavioral State hypothesis. Biosystems 2025; 247:105361. [PMID: 39521269 DOI: 10.1016/j.biosystems.2024.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/02/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Since the early attempts to understand the brain made by Greek philosophers more than 2000 years ago, one of the main questions in neuroscience has been how the brain perceives all the stimuli in the environment and uses this information to implement a response. Recent hypotheses of the neural code rely on the existence of an ideal observer, whether on specific areas of the cerebral cortex or distributed network composed of cortical and subcortical elements. The Neurobehavioral State hypothesis stipulates that neurons are in a quasi-stable state due to the dynamic interaction of their molecular components. This increases their computational capabilities and electrophysiological behavior further than a binary active/inactive state. Together, neuronal populations across the brain learn to identify and associate internal and external stimuli with actions and emotions. Furthermore, such associations can be stored through the regulation of neuronal components as new quasi-stable states. Using this framework, behavior arises as the result of the dynamic interaction between internal and external stimuli together with previously established quasi-stable states that delineate the behavioral response. Finally, the Neurobehavioral State hypothesis is firmly grounded on present evidence of the complex dynamics within the brain, from the molecular to the network level, and avoids the need for a central observer by proposing the brain configures itself through experience-driven associations.
Collapse
Affiliation(s)
- Luis Fernando Ontiveros-Araiza
- Department of Cognitive Neuroscience, Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
5
|
Heinemans M, Moita MA. Looming stimuli reliably drive innate defensive responses in male rats, but not learned defensive responses. Sci Rep 2024; 14:21578. [PMID: 39285228 PMCID: PMC11405667 DOI: 10.1038/s41598-024-70256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Survival relies on an organism's intrinsic ability to instinctively react to stimuli such as food, water, and threats, ensuring the fundamental ability to feed, drink, and avoid danger even in the absence of prior experience. These natural, unconditioned stimuli can also facilitate associative learning, where pairing them consistently with neutral cues will elicit responses to these cues. Threat conditioning, a well-explored form of associative learning, commonly employs painful electric shocks, mimicking injury, as unconditioned stimuli. It remains elusive whether actual injury or pain is necessary for effective learning, or whether the threat of harm is sufficient. Approaching predators create looming shadows and sounds, triggering strong innate defensive responses like escape and freezing. This study investigates whether visual looming stimuli can induce learned freezing or learned escape responses to a conditioned stimulus in male rats. Surprisingly, pairing a neutral tone with a looming stimulus only weakly evokes learned defensive responses, in contrast to the strong responses observed when the looming stimulus is replaced by a shock. This dissociation sheds light on the boundaries for learned defensive responses thereby impacting our comprehension of learning processes and defensive strategies.
Collapse
Affiliation(s)
- Mirjam Heinemans
- Champalimaud Research, Champalimaud Foundation, Champalimaud Centre for the Unknown, Avenida de Brasília, 1400-038, Lisbon, Portugal
| | - Marta A Moita
- Champalimaud Research, Champalimaud Foundation, Champalimaud Centre for the Unknown, Avenida de Brasília, 1400-038, Lisbon, Portugal.
| |
Collapse
|
6
|
Herry C, Jercog D. Stable coding of aversive associations in medial prefrontal populations. C R Biol 2023; 346:127-138. [PMID: 38116876 DOI: 10.5802/crbiol.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 12/21/2023]
Abstract
The medial prefrontal cortex (mPFC) is at the core of numerous psychiatric conditions, including fear and anxiety-related disorders. Whereas an abundance of evidence suggests a crucial role of the mPFC in regulating fear behaviour, the precise role of the mPFC in this process is not yet entirely clear. While studies at the single-cell level have demonstrated the involvement of this area in various aspects of fear processing, such as the encoding of threat-related cues and fear expression, an increasingly prevalent idea in the systems neuroscience field is that populations of neurons are, in fact, the essential unit of computation in many integrative brain regions such as prefrontal areas. What mPFC neuronal populations represent when we face threats? To address this question, we performed electrophysiological single-unit population recordings in the dorsal mPFC while mice faced threat-predicting cues eliciting defensive behaviours, and performed pharmacological and optogenetic inactivations of this area and the amygdala. Our data indicated that the presence of threat-predicting cues induces a stable coding dynamics of internally driven representations in the dorsal mPFC, necessary to drive learned defensive behaviours. Moreover, these neural population representations primary reflect learned associations rather than specific defensive behaviours, and the construct of such representations relies on the functional integrity of the amygdala.
Collapse
|
7
|
Stegemann A, Liu S, Retana Romero OA, Oswald MJ, Han Y, Beretta CA, Gan Z, Tan LL, Wisden W, Gräff J, Kuner R. Prefrontal engrams of long-term fear memory perpetuate pain perception. Nat Neurosci 2023; 26:820-829. [PMID: 37024573 PMCID: PMC10166861 DOI: 10.1038/s41593-023-01291-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 02/24/2023] [Indexed: 04/08/2023]
Abstract
A painful episode can lead to a life-long increase in an individual's experience of pain. Fearful anticipation of imminent pain could play a role in this phenomenon, but the neurobiological underpinnings are unclear because fear can both suppress and enhance pain. Here, we show in mice that long-term associative fear memory stored in neuronal engrams in the prefrontal cortex determines whether a painful episode shapes pain experience later in life. Furthermore, under conditions of inflammatory and neuropathic pain, prefrontal fear engrams expand to encompass neurons representing nociception and tactile sensation, leading to pronounced changes in prefrontal connectivity to fear-relevant brain areas. Conversely, silencing prefrontal fear engrams reverses chronically established hyperalgesia and allodynia. These results reveal that a discrete subset of prefrontal cortex neurons can account for the debilitating comorbidity of fear and chronic pain and show that attenuating the fear memory of pain can alleviate chronic pain itself.
Collapse
Affiliation(s)
- Alina Stegemann
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Sheng Liu
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | | | | | - Yechao Han
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | | | - Zheng Gan
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Linette Liqi Tan
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - William Wisden
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
8
|
Moorman DE, Aston-Jones G. Prelimbic and infralimbic medial prefrontal cortex neuron activity signals cocaine seeking variables across multiple timescales. Psychopharmacology (Berl) 2023; 240:575-594. [PMID: 36464693 PMCID: PMC10406502 DOI: 10.1007/s00213-022-06287-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
RATIONALE AND OBJECTIVES The prefrontal cortex is critical for execution and inhibition of reward seeking. Neural manipulation of rodent medial prefrontal cortex (mPFC) subregions differentially impacts execution and inhibition of cocaine seeking. Dorsal, or prelimbic (PL), and ventral, or infralimbic (IL) mPFC are implicated in cocaine seeking or extinction of cocaine seeking, respectively. This differentiation is not seen across all studies, indicating that further research is needed to understand specific mPFC contributions to drug seeking. METHODS We recorded neuronal activity in mPFC subregions during cocaine self-administration, extinction, and cue- and cocaine-induced reinstatement of cocaine seeking. RESULTS Both PL and IL neurons were phasically responsive around lever presses during cocaine self-administration, and activity in both areas was reduced during extinction. During both cue- and, to a greater extent, cocaine-induced reinstatement, PL neurons exhibited significantly elevated responses, in line with previous studies demonstrating a role for the region in relapse. The enhanced PL signaling in cocaine-induced reinstatement was driven by strong excitation and inhibition in different groups of neurons. Both of these response types were stronger in PL vs. IL neurons. Finally, we observed tonic changes in activity in all tasks phases, reflecting both session-long contextual modulation as well as minute-to-minute activity changes that were highly correlated with brain cocaine levels and motivation associated with cocaine seeking. CONCLUSIONS Although some differences were observed between PL and IL neuron activity across sessions, we found no evidence of a go/stop dichotomy in PL/IL function. Instead, our results demonstrate temporally heterogeneous prefrontal signaling during cocaine seeking and extinction in both PL and IL, revealing novel and complex functions for both regions during these behaviors. This combination of findings argues that mPFC neurons, in both PL and IL, provide multifaceted contributions to the regulation of drug seeking and addiction.
Collapse
Affiliation(s)
- David E Moorman
- Department of Psychological and Brain Sciences & Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, 08854, USA
| |
Collapse
|
9
|
Zafiri D, Duvarci S. Dopaminergic circuits underlying associative aversive learning. Front Behav Neurosci 2022; 16:1041929. [PMID: 36439963 PMCID: PMC9685162 DOI: 10.3389/fnbeh.2022.1041929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
Associative aversive learning enables animals to predict and avoid threats and thus is critical for survival and adaptive behavior. Anxiety disorders are characterized with deficits in normal aversive learning mechanisms and hence understanding the neural circuits underlying aversive learning and memory has high clinical relevance. Recent studies have revealed the dopamine system as one of the key modulators of aversive learning. In this review, we highlight recent advances that provide insights into how distinct dopaminergic circuits contribute to aversive learning and memory.
Collapse
|
10
|
Lee JQ, McHugh R, Morgan E, Sutherland RJ, McDonald RJ. Behaviour-driven Arc expression is greater in dorsal than ventral CA1 regardless of task or sex differences. Behav Brain Res 2022; 423:113790. [PMID: 35149121 DOI: 10.1016/j.bbr.2022.113790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 11/30/2022]
Abstract
Evidence from genetic, behavioural, anatomical, and physiological study suggests that the hippocampus functionally differs across its longitudinal (dorsoventral or septotemporal) axis. Although, how to best characterize functional and representational differences in the hippocampus across its long axis remains unclear. While some suggest that the hippocampus can be divided into dorsal and ventral subregions that support distinct cognitive functions, others posit that these regions vary in their granularity of representation, wherein spatial-temporal resolution decreases in the ventral (temporal) direction. Importantly, the cognitive and granular hypotheses also make distinct predictions on cellular recruitment dynamics under conditions when animals perform tasks with qualitatively different cognitive-behavioural demands. One interpretation of the cognitive function account implies that dorsal and ventral cellular recruitment differs depending on relevant behavioural demands, while the granularity account suggests similar recruitment dynamics regardless of the nature of the task performed. Here, we quantified cellular recruitment with the immediate early gene (IEG) Arc across the entire longitudinal CA1 axis in female and male rats performing spatial- and fear-guided memory tasks. Our results show that recruitment is greater in dorsal than ventral CA1 regardless of task or sex, and thus support a granular view of hippocampal function across the long axis. We further discuss how future experiments might determine the relative contributions of cognitive function and granularity of representation to neuronal activity dynamics in hippocampal circuits.
Collapse
Affiliation(s)
- J Quinn Lee
- Department of Neuroscience, Science Commons, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 6T5, Canada; Department of Psychiatry, Douglas Hospital Research Centre, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada.
| | - Rebecca McHugh
- Department of Neuroscience, Science Commons, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 6T5, Canada
| | - Erik Morgan
- Department of Neuroscience, Science Commons, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 6T5, Canada
| | - Robert J Sutherland
- Department of Neuroscience, Science Commons, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 6T5, Canada
| | - Robert J McDonald
- Department of Neuroscience, Science Commons, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 6T5, Canada
| |
Collapse
|
11
|
A non-canonical GABAergic pathway to the VTA promotes unconditioned freezing. Mol Psychiatry 2022; 27:4905-4917. [PMID: 36127430 PMCID: PMC9763111 DOI: 10.1038/s41380-022-01765-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 01/14/2023]
Abstract
Freezing is a conserved defensive behaviour that constitutes a major stress-coping mechanism. Decades of research have demonstrated a role of the amygdala, periaqueductal grey and hypothalamus as core actuators of the control of fear responses, including freezing. However, the role that other modulatory sites provide to this hardwired scaffold is not known. Here, we show that freezing elicited by exposure to electrical foot shocks activates laterodorsal tegmentum (LDTg) GABAergic neurons projecting to the VTA, without altering the excitability of cholinergic and glutamatergic LDTg neurons. Selective chemogenetic silencing of this inhibitory projection, but not other LDTg neuronal subtypes, dampens freezing responses but does not prevent the formation of conditioned fear memories. Conversely, optogenetic-activation of LDTg GABA terminals within the VTA drives freezing responses and elicits bradycardia, a common hallmark of freezing. Notably, this aversive information is subsequently conveyed from the VTA to the amygdala via a discrete GABAergic pathway. Hence, we unveiled a circuit mechanism linking LDTg-VTA-amygdala regions, which holds potential translational relevance for pathological freezing states such as post-traumatic stress disorders, panic attacks and social phobias.
Collapse
|
12
|
Genaro K, Prado WA. The role of the anterior pretectal nucleus in pain modulation: A comprehensive review. Eur J Neurosci 2021; 54:4358-4380. [PMID: 33909941 DOI: 10.1111/ejn.15255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 11/27/2022]
Abstract
Descending pain modulation involves multiple encephalic sites and pathways that range from the cerebral cortex to the spinal cord. Behavioral studies conducted in the 1980s revealed that electrical stimulation of the pretectal area causes antinociception dissociation from aversive responses. Anatomical and physiological studies identified the anterior pretectal nucleus and its descending projections to several midbrain, pontine, and medullary structures. The anterior pretectal nucleus is morphologically divided into a dorsal part that contains a dense neuron population (pars compacta) and a ventral part that contains a dense fiber band network (pars reticulata). Connections of the two anterior pretectal nucleus parts are broad and include prominent projections to and from major encephalic systems associated with somatosensory processes. Since the first observation that acute or chronic noxious stimuli activate the anterior pretectal nucleus, it has been established that numerous mediators participate in this response through distinct pathways. Recent studies have confirmed that at least two pain inhibitory pathways are activated from the anterior pretectal nucleus. This review focuses on rodent anatomical, behavioral, molecular, and neurochemical data that have helped to identify mediators of the anterior pretectal nucleus and pathways related to its role in pain modulation.
Collapse
Affiliation(s)
- Karina Genaro
- Department of Anesthesiology, University of California, Irvine, CA, USA
| | - Wiliam A Prado
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Rodriguez AR, Anderson ED, O'Neill KM, McEwan PP, Vigilante NF, Kwon M, Akum BF, Stawicki TM, Meaney DF, Firestein BL. Cytosolic PSD-95 interactor alters functional organization of neural circuits and AMPA receptor signaling independent of PSD-95 binding. Netw Neurosci 2021; 5:166-197. [PMID: 33688611 PMCID: PMC7935033 DOI: 10.1162/netn_a_00173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/26/2020] [Indexed: 11/04/2022] Open
Abstract
Cytosolic PSD-95 interactor (cypin) regulates many aspects of neuronal development and function, ranging from dendritogenesis to synaptic protein localization. While it is known that removal of postsynaptic density protein-95 (PSD-95) from the postsynaptic density decreases synaptic N-methyl-D-aspartate (NMDA) receptors and that cypin overexpression protects neurons from NMDA-induced toxicity, little is known about cypin's role in AMPA receptor clustering and function. Experimental work shows that cypin overexpression decreases PSD-95 levels in synaptosomes and the PSD, decreases PSD-95 clusters/μm2, and increases mEPSC frequency. Analysis of microelectrode array (MEA) data demonstrates that cypin or cypinΔPDZ overexpression increases sensitivity to CNQX (cyanquixaline) and AMPA receptor-mediated decreases in spike waveform properties. Network-level analysis of MEA data reveals that cypinΔPDZ overexpression causes networks to be resilient to CNQX-induced changes in local efficiency. Incorporating these findings into a computational model of a neural circuit demonstrates a role for AMPA receptors in cypin-promoted changes to networks and shows that cypin increases firing rate while changing network functional organization, suggesting cypin overexpression facilitates information relay but modifies how information is encoded among brain regions. Our data show that cypin promotes changes to AMPA receptor signaling independent of PSD-95 binding, shaping neural circuits and output to regions beyond the hippocampus.
Collapse
Affiliation(s)
- Ana R Rodriguez
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Erin D Anderson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kate M O'Neill
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Przemyslaw P McEwan
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | | - Munjin Kwon
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Barbara F Akum
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Tamara M Stawicki
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
14
|
Jung F, Carlén M. Neuronal oscillations and the mouse prefrontal cortex. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 158:337-372. [PMID: 33785151 DOI: 10.1016/bs.irn.2020.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The mouse prefrontal cortex (PFC) encompasses a collection of agranual brain regions in the rostral neocortex and is considered to be critically involved in the neuronal computations underlying intentional behaviors. Flexible behavioral responses demand coordinated integration of sensory inputs with state, goal and memory information in brain-wide neuronal networks. Neuronal oscillations are proposed to provide a temporal scaffold for coordination of neuronal network activity and routing of information. In the present book chapter, we review findings on the role neuronal oscillations in prefrontal functioning, with a specific focus on research in mice. We discuss discoveries pertaining to local prefrontal processing, as well to interactions with other brain regions. We also discuss how the recent discovery of brain-wide respiration-entrained rhythms (RR) warrant re-evaluation of certain findings on slow oscillations (<10Hz) in prefrontal functioning.
Collapse
Affiliation(s)
- Felix Jung
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Marie Carlén
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
15
|
Kaminska B, Caballero JP, Moorman DE. Integration of value and action in medial prefrontal neural systems. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 158:57-82. [PMID: 33785156 DOI: 10.1016/bs.irn.2020.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rodent medial prefrontal cortex (mPFC) plays a key role in regulating cognition, emotion, and behavior. mPFC neurons are activated in diverse experimental paradigms, raising the questions of whether there are specific task elements or dimensions encoded by mPFC neurons, and whether these encoded parameters are selective to neurons in particular mPFC subregions or networks. Here, we consider the role of mPFC neurons in processing appetitive and aversive cues, outcomes, and related behaviors. mPFC neurons are strongly activated in tasks probing value and outcome-associated actions, but these responses vary across experimental paradigms. Can we identify specific categories of responses (e.g., positive or negative value), or do mPFC neurons exhibit response properties that are too heterogeneous/complex to cluster into distinct conceptual groups? Based on a review of relevant studies, we consider what has been done and what needs to be further explored in order to address these questions.
Collapse
Affiliation(s)
- Beata Kaminska
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Jessica P Caballero
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - David E Moorman
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States; Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States.
| |
Collapse
|
16
|
Detection of Electrophysiological Activity of Amygdala during Anesthesia Using Stereo-EEG: A Preliminary Research in Anesthetized Epileptic Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6932035. [PMID: 33102588 PMCID: PMC7568817 DOI: 10.1155/2020/6932035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/13/2020] [Accepted: 09/19/2020] [Indexed: 11/18/2022]
Abstract
Recent studies of anesthesia mechanisms have focused on neuronal network and functional connectivity. The stereo-electroencephalography (SEEG) recordings provide appropriate temporal and spatial resolution to study whole-brain dynamics; however, the feasibility to detect subcortical signals during anesthesia still needs to be studied with clinical evidence. Here, we focus on the amygdala to investigate if SEEG can be used to detect cortical and subcortical electrophysiological activity in anesthetized epileptic patients. Therefore, we present direct evidence in humans that SEEG indeed can be used to record cortical and subcortical electrophysiological activity during anesthesia. The study was carried out in propofol-anesthetized five epileptic patients. The electrophysiology activity of the amygdala and other cortical areas from anesthesia to the recovery of consciousness was investigated using stereo-EEG (SEEG). Results indicated that with the decrease of propofol concentration, power spectral density (PSD) in the delta band of the amygdala significantly decreased. When it was close to recovery, the correlation between the amygdala and ipsilateral temporal lobe significantly decreased followed by a considerable increase when awake. The findings of the current study suggest SEEG as an effective tool for providing direct evidence of the anesthesia mechanism.
Collapse
|
17
|
Extinction learning alters the neural representation of conditioned fear. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 20:983-997. [PMID: 32720205 DOI: 10.3758/s13415-020-00814-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extinction learning is a primary means by which conditioned associations to threats are controlled and is a model system for emotion dysregulation in anxiety disorders. Recent work has called for new approaches to track extinction-related changes in conditioned stimulus (CS) representations. We applied a multivariate analysis to previously -collected functional magnetic resonance imaging data on extinction learning, in which healthy young adult participants (N = 43; 21 males, 22 females) encountered dynamic snake and spider CSs while passively navigating 3D virtual environments. We used representational similarity analysis to compare voxel-wise activation t-statistic maps for the shock-reinforced CS (CS+) from the late phase of fear acquisition to the early and late phases of extinction learning within subjects. These patterns became more dissimilar from early to late extinction in a priori regions of interest: subgenual and dorsal anterior cingulate gyrus, amygdala and hippocampus. A whole-brain searchlight analysis revealed similar findings in the insula, mid-cingulate cortex, ventrolateral prefrontal cortex, somatosensory cortex, cerebellum, and visual cortex. High state anxiety attenuated extinction-related changes to the CS+ patterning in the amygdala, which suggests an enduring threat representation. None of these effects generalized to an unreinforced control cue, nor were they evident in traditional univariate analyses. Our approach extends previous neuroimaging work by emphasizing how evoked neural patterns change from late acquisition through phases of extinction learning, including those in brain regions not traditionally implicated in animal models. Finally, the findings provide additional support for a role of the amygdala in anxiety-related persistence of conditioned fears.
Collapse
|
18
|
Sun XY, Zheng T, Yang X, Liu L, Gao SS, Xu HB, Song YT, Tong K, Yang L, Gao Y, Wu T, Hao JR, Lu C, Ma T, Gao C. HDAC2 hyperexpression alters hippocampal neuronal transcription and microglial activity in neuroinflammation-induced cognitive dysfunction. J Neuroinflammation 2019; 16:249. [PMID: 31796106 PMCID: PMC6889553 DOI: 10.1186/s12974-019-1640-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023] Open
Abstract
Background Inflammation can induce cognitive dysfunction in patients who undergo surgery. Previous studies have demonstrated that both acute peripheral inflammation and anaesthetic insults, especially isoflurane (ISO), are risk factors for memory impairment. Few studies are currently investigating the role of ISO under acute peri-inflammatory conditions, and it is difficult to predict whether ISO can aggravate inflammation-induced cognitive deficits. HDACs, which are essential for learning, participate in the deacetylation of lysine residues and the regulation of gene transcription. However, the cell-specific mechanism of HDACs in inflammation-induced cognitive impairment remains unknown. Methods Three-month-old C57BL/6 mice were treated with single versus combined exposure to LPS injected intraperitoneally (i.p.) to simulate acute abdominal inflammation and isoflurane to investigate the role of anaesthesia and acute peripheral inflammation in cognitive impairment. Behavioural tests, Western blotting, ELISA, immunofluorescence, qRT-PCR, and ChIP assays were performed to detect memory, the expressions of inflammatory cytokines, HDAC2, BDNF, c-Fos, acetyl-H3, microglial activity, Bdnf mRNA, c-fos mRNA, and Bdnf and c-fos transcription in the hippocampus. Results LPS, but not isoflurane, induced neuroinflammation-induced memory impairment and reduced histone acetylation by upregulating histone deacetylase 2 (HDAC2) in dorsal hippocampal CaMKII+ neurons. The hyperexpression of HDAC2 in neurons was mediated by the activation of microglia. The decreased level of histone acetylation suppressed the transcription of Bdnf and c-fos and the expressions of BDNF and c-Fos, which subsequently impaired memory. The adeno-associated virus ShHdac2, which suppresses Hdac2 after injection into the dorsal hippocampus, reversed microglial activation, hippocampal glutamatergic BDNF and c-Fos expressions, and memory deficits. Conclusions Reversing HDAC2 in hippocampal CaMKII+ neurons exert a neuroprotective effect against neuroinflammation-induced memory deficits.
Collapse
Affiliation(s)
- Xiao-Yu Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Teng Zheng
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xiu Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Le Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Shen-Shen Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Han-Bing Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yu-Tong Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kun Tong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ya Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Tong Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jing-Ru Hao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chen Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Tao Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Can Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China. .,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
19
|
Anxiety-like features and spatial memory problems as a consequence of hippocampal SV2A expression. PLoS One 2019; 14:e0217882. [PMID: 31166988 PMCID: PMC6550411 DOI: 10.1371/journal.pone.0217882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/20/2019] [Indexed: 02/08/2023] Open
Abstract
The Synaptic Vesicle Protein 2A (SV2A) is a transmembrane protein whose presence is reduced both in animal models and in patients with chronic epilepsy. Besides its implication in the epileptic process, the behavioural consequences of the changes in its expression remain unclear. The purpose of our research is to better understand the possible role(s) of this protein through the phenotype of cKO (Grik4 Cre+/-, SV2A lox/lox) mice, male and female, which present a specific decrease of SV2A expression levels in the hippocampal glutamatergic neurons but without any epileptic seizures. In this study, we compare the cKO mice with cHZ (Grik4 Cre+/-, SV2A lox/+) and WT (Grik4 Cre+/+, SV2A lox/lox) mice through a battery of tests, used to evaluate different features: the anxiety-related features (Elevated Plus Maze), the locomotor activity (Activity Chambers), the contextual fear-related memory (Contextual Fear Conditioning), and the spatial memory (Barnes Maze). Our results showed statistically significant differences in the habituation to a new environment, an increase in the anxiety levels and spatial memory deficit in the cHZ and cKO groups, compared to the WT group. No statistically significant differences due to the genotype appeared in the spontaneous locomotor activity or the fear-linked memory. However, sexual differences were observed in this last feature. These results highlight not only an important role of the SV2A protein in the cognitive and anxiety problems typically encountered in epileptic patients, but also a possible role in the symptomatology of other neurodegenerative diseases, such as the Alzheimer’s disease.
Collapse
|
20
|
George DT, Ameli R, Koob GF. Periaqueductal Gray Sheds Light on Dark Areas of Psychopathology. Trends Neurosci 2019; 42:349-360. [PMID: 30955857 DOI: 10.1016/j.tins.2019.03.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/29/2022]
Abstract
Neurons in the periaqueductal gray (PAG) integrate negative emotions with the autonomic, neuroendocrine, and immune systems to facilitate responses to threat. Modern functional track tracing in animals and optogenetic and chemogenetic techniques show that the PAG is a rich substrate for the integration of active and passive responses to threat. In humans, the same regions of the PAG that give rise to adaptive anger/fight, fear/panic, depression/shutdown, pain, and predatory behaviors in response to challenging situations or overwhelming threats can become activated pathologically, resulting in symptoms that resemble those of psychiatric disorders. This review coalesces human and animal studies to link PAG neuropathways to specific elements of psychiatric diagnoses. The insights gained from this overview may eventually lead to new therapeutic interventions.
Collapse
Affiliation(s)
- David T George
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Rezvan Ameli
- National Institute of Mental Health and NIH Clinical Center, Pain and Palliative Care Service, Bethesda, MD, USA
| | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute on Drug Abuse, Bethesda, MD, USA.
| |
Collapse
|
21
|
Modelling posttraumatic stress disorders in animals. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:117-133. [PMID: 30468906 DOI: 10.1016/j.pnpbp.2018.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 01/07/2023]
Abstract
Animal models of posttraumatic stress disorder are useful tools to reveal the neurobiological basis of the vulnerability to traumatic events, and to develop new treatment strategies, as well as predicting treatment response contributing to personalized medicine approach. Different models have different construct, face and predictive validity and they model different symptoms of the disease. The most prevalent models are the single prolonged stress, electric foot-shock and predator odor. Freezing as 're-experiencing' in cluster B and startle as 'arousal' in cluster E according to DSM-5 are the most frequently studied parameters; however, several other symptoms related to mood, cognitive and social skills are part of the examinations. Beside behavioral characteristics, symptoms of exaggerated sympathetic activity and hypothalamic-pituitary-adrenocortical axis as well as signs of sleep disturbances are also warranted. Test battery rather than a single test is required to describe a model properly and the results should be interpreted in a comprehensive way, e.g. creating a z-score. Research is shifting to study larger populations and identifying the features of the resilient and vulnerable individuals, which cannot be easily done in humans. Incorporation of the "three hit theory" in animal models may lead to a better animal model of vulnerability and resilience. As women are twice as vulnerable as men, more emphasize should be taken to include female animals. Moreover, hypothesis free testing and big data analysis may help to identify an array of biomarkers instead of a single variable for identification of vulnerability and for the purpose of personalized medicine.
Collapse
|
22
|
Weele CMV, Siciliano CA, Tye KM. Dopamine tunes prefrontal outputs to orchestrate aversive processing. Brain Res 2018; 1713:16-31. [PMID: 30513287 DOI: 10.1016/j.brainres.2018.11.044] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 01/06/2023]
Abstract
Decades of research suggest that the mesocortical dopamine system exerts powerful control over mPFC physiology and function. Indeed, dopamine signaling in the medial prefrontal cortex (mPFC) is implicated in a vast array of processes, including working memory, stimulus discrimination, stress responses, and emotional and behavioral control. Consequently, even slight perturbations within this delicate system result in profound disruptions of mPFC-mediated processes. Many neuropsychiatric disorders are associated with dysregulation of mesocortical dopamine, including schizophrenia, depression, attention deficit hyperactivity disorder, post-traumatic stress disorder, among others. Here, we review the anatomy and functions of the mesocortical dopamine system. In contrast to the canonical role of striatal dopamine in reward-related functions, recent work has revealed that mesocortical dopamine fine-tunes distinct efferent projection populations in a manner that biases subsequent behavior towards responding to stimuli associated with potentially aversive outcomes. We propose a framework wherein dopamine can serve as a signal for switching mPFC states by orchestrating how information is routed to the rest of the brain.
Collapse
Affiliation(s)
- Caitlin M Vander Weele
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cody A Siciliano
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|