1
|
Young EJ, Radnai L, Prikhodko V, Miller CA. Novel therapeutics in development for the treatment of stimulant-use disorder. Curr Opin Neurobiol 2024; 87:102898. [PMID: 39096558 DOI: 10.1016/j.conb.2024.102898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 08/05/2024]
Abstract
Misuse and accidental overdoses attributed to stimulants are escalating rapidly. These stimulants include methamphetamine, cocaine, amphetamine, ecstasy-type drugs, and prescription stimulants such as methylphenidate. Unlike opioids and alcohol, there are no therapies approved by the US Food and Drug Administration (FDA) to treat stimulant-use disorder. The high rate of relapse among this population highlights the insufficiency of current treatment options, which are limited to abstinence support programs and behavioral modification therapies. Here, we briefly outline recent regulatory actions taken by FDA to help support the development of new stimulant use disorder treatments and highlight several new therapeutics in the clinical development pipeline.
Collapse
Affiliation(s)
- Erica J Young
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA; Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA; Myosin Therapeutics, Jupiter, FL, USA
| | - Laszlo Radnai
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA; Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Courtney A Miller
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA; Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.
| |
Collapse
|
2
|
Florez-Perdomo WA, Reyes Bello JS, García-Ballestas E, Moscote-Salazar LR, Barthélemy EJ, Janjua T, Maurya VP, Agrawal A. "Aneurysmal Subarachnoid Hemorrhage and Cocaine Consumption: A Systematic Review and Metanalysis". World Neurosurg 2024; 184:241-252.e2. [PMID: 38072159 DOI: 10.1016/j.wneu.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND The use of cocaine can lead to a variety of neurologic complications, including cerebral vasoconstriction, ischemia, aneurysm formation, and aneurysm rupture. A previous study has shown that cocaine use is associated with an increased risk of subarachnoid hemorrhage (SAH). This study conducted a systematic review and meta-analysis of observational studies to assess the association between cocaine use and the risk of poor neurological outcomes and mortality in patients with SAH. METHODS A systematic review and meta-analysis were performed following the meta-analysis of observational studies in epidemiology (MOOSE) declaration for systematic reviews and the Cochrane Manual of Systematic Reviews and Meta-Analyses guidelines. Randomized controlled trials (RCTs), nonrandomized clinical trials, and prospective and retrospective cohort studies that reported data about adults who suffered Aneurysmal Subarachnoid Hemorrhage (aSAH) after having consumed cocaine recreationally were included. Variables such as mortality, vasospasm, seizures, re-bleeding, and complications were analyzed. RESULTS After a thorough selection process, 14 studies involving 116,141 patients, of which 2227 had a history of cocaine consumption, were included in the analysis. There was a significant increase in overall unfavorable outcomes in aSAH patients with a history of cocaine use (OR 5.51 CI 95% [4.26-7.13] P = <0.0001; I2 = 78%), with higher mortality and poor neurologic outcomes. There were no significant differences in the risk of hydrocephalus, seizures, or re-bleeding. Cocaine use was found to increase the risk of vasospasm and overall complications. CONCLUSIONS This study insinuates that cocaine use is associated with worse clinical outcomes in aSAH patients. Despite the cocaine users did not exhibit a higher risk of certain complications such as hydrocephalus and seizures, they had an increased risk of vasospasm and overall complications. These findings highlight the importance of addressing the issue of cocaine consumption as a primary preventive measure to decrease the incidence of aSAH and improve patient outcomes.
Collapse
Affiliation(s)
- William Andres Florez-Perdomo
- Department of Neurocritical Care, Colombian Clinical Research Group in Neurocritical Care, Bogota, Colombia; Department of Research, European Stroke Organization (ESO), Basel, Switzerland.
| | - Juan Sebastian Reyes Bello
- Department of Neurocritical Care, Colombian Clinical Research Group in Neurocritical Care, Bogota, Colombia
| | - Ezequiel García-Ballestas
- Department of Neurocritical Care, Colombian Clinical Research Group in Neurocritical Care, Bogota, Colombia
| | | | - Ernest J Barthélemy
- Department of Neurosurgery, SUNY Downstate Health sciences University, Brooklin, New York, USA
| | - Tariq Janjua
- Department of Critical Care, Neurocritical Care Unit, Regions Hospital Saint Paul, Saint Paul, Minnessota, USA
| | - Ved Prakash Maurya
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Amit Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, Bhopal, India
| |
Collapse
|
3
|
Angoa-Pérez M, Zagorac B, Francescutti DM, Shaffer ZD, Theis KR, Kuhn DM. Cocaine hydrochloride, cocaine methiodide and methylenedioxypyrovalerone (MDPV) cause distinct alterations in the structure and composition of the gut microbiota. Sci Rep 2023; 13:13754. [PMID: 37612353 PMCID: PMC10447462 DOI: 10.1038/s41598-023-40892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
Cocaine is a highly addictive psychostimulant drug of abuse that constitutes an ongoing public health threat. Emerging research is revealing that numerous peripheral effects of this drug may serve as conditioned stimuli for its central reinforcing properties. The gut microbiota is emerging as one of these peripheral sources of input to cocaine reward. The primary objective of the present study was to determine how cocaine HCl and methylenedioxypyrovalerone, both of which powerfully activate central reward pathways, alter the gut microbiota. Cocaine methiodide, a quaternary derivative of cocaine that does not enter the brain, was included to assess peripheral influences on the gut microbiota. Both cocaine congeners caused significant and similar alterations of the gut microbiota after a 10-day course of treatment. Contrary to expectations, the effects of cocaine HCl and MDPV on the gut microbiota were most dissimilar. Functional predictions of metabolic alterations caused by the treatment drugs reaffirmed that the cocaine congeners were similar whereas MDPV was most dissimilar from the other two drugs and controls. It appears that the monoamine transporters in the gut mediate the effects of the treatment drugs. The effects of the cocaine congeners and MDPV on the gut microbiome may form the basis of interoceptive cues that can influence their abuse properties.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA.
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Branislava Zagorac
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dina M Francescutti
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zachary D Shaffer
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kevin R Theis
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
4
|
Lai N, Cheng H, Li Z, Wang X, Ruan Y, Qi Y, Yang L, Fei F, Dai S, Chen L, Zheng Y, Xu C, Fang J, Wang S, Chen Z, Wang Y. Interictal-period-activated neuronal ensemble in piriform cortex retards further seizure development. Cell Rep 2022; 41:111798. [PMID: 36516780 DOI: 10.1016/j.celrep.2022.111798] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/23/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Epileptic networks are characterized as having two states, seizures or more prolonged interictal periods. However, cellular mechanisms underlying the contribution of interictal periods to ictal events remain unclear. Here, we use an activity-dependent labeling technique combined with genetically encoded effectors to characterize and manipulate neuronal ensembles recruited by focal seizures (FS-Ens) and interictal periods (IP-Ens) in piriform cortex, a region that plays a key role in seizure generation. Ca2+ activities and histological evidence reveal a disjointed correlation between the two ensembles during FS dynamics. Optogenetic activation of FS-Ens promotes further seizure development, while IP-Ens protects against it. Interestingly, both ensembles are functionally involved in generalized seizures (GS) due to circuit rearrangement. IP-Ens bidirectionally modulates FS but not GS by controlling coherence with hippocampus. This study indicates that the interictal state may represent a seizure-preventing environment, and the interictal-activated ensemble may serve as a potential therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Nanxi Lai
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Heming Cheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhisheng Li
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xia Wang
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yeping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yingbei Qi
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fan Fei
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Sijie Dai
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liying Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiajia Fang
- Department of Neurology, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| | - Yi Wang
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
5
|
Zinsmaier AK, Dong Y, Huang YH. Cocaine-induced projection-specific and cell type-specific adaptations in the nucleus accumbens. Mol Psychiatry 2022; 27:669-686. [PMID: 33963288 PMCID: PMC8691189 DOI: 10.1038/s41380-021-01112-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 02/03/2023]
Abstract
Cocaine craving, seeking, and relapse are mediated, in part, by cocaine-induced adaptive changes in the brain reward circuits. The nucleus accumbens (NAc) integrates and prioritizes different emotional and motivational inputs to the reward system by processing convergent glutamatergic projections from the medial prefrontal cortex, basolateral amygdala, ventral hippocampus, and other limbic and paralimbic brain regions. Medium spiny neurons (MSNs) are the principal projection neurons in the NAc, which can be divided into two major subpopulations, namely dopamine receptor D1- versus D2-expressing MSNs, with complementing roles in reward-associated behaviors. After cocaine experience, NAc MSNs exhibit complex and differential adaptations dependent on cocaine regimen, withdrawal time, cell type, location (NAc core versus shell), and related input and output projections, or any combination of these factors. Detailed characterization of these cellular adaptations has been greatly facilitated by the recent development of optogenetic/chemogenetic techniques combined with transgenic tools. In this review, we discuss such cell type- and projection-specific adaptations induced by cocaine experience. Specifically, (1) D1 and D2 NAc MSNs frequently exhibit differential adaptations in spinogenesis, glutamatergic receptor trafficking, and intrinsic membrane excitability, (2) cocaine experience differentially changes the synaptic transmission at different afferent projections onto NAc MSNs, (3) cocaine-induced NAc adaptations exhibit output specificity, e.g., being different at NAc-ventral pallidum versus NAc-ventral tegmental area synapses, and (4) the input, output, subregion, and D1/D2 cell type may together determine cocaine-induced circuit plasticity in the NAc. In light of the projection- and cell-type specificity, we also briefly discuss ensemble and circuit mechanisms contributing to cocaine craving and relapse after drug withdrawal.
Collapse
Affiliation(s)
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15219,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219
| | - Yanhua H. Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219
| |
Collapse
|
6
|
Macpherson T, Matsumoto M, Gomi H, Morimoto J, Uchibe E, Hikida T. Parallel and hierarchical neural mechanisms for adaptive and predictive behavioral control. Neural Netw 2021; 144:507-521. [PMID: 34601363 DOI: 10.1016/j.neunet.2021.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/21/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022]
Abstract
Our brain can be recognized as a network of largely hierarchically organized neural circuits that operate to control specific functions, but when acting in parallel, enable the performance of complex and simultaneous behaviors. Indeed, many of our daily actions require concurrent information processing in sensorimotor, associative, and limbic circuits that are dynamically and hierarchically modulated by sensory information and previous learning. This organization of information processing in biological organisms has served as a major inspiration for artificial intelligence and has helped to create in silico systems capable of matching or even outperforming humans in several specific tasks, including visual recognition and strategy-based games. However, the development of human-like robots that are able to move as quickly as humans and respond flexibly in various situations remains a major challenge and indicates an area where further use of parallel and hierarchical architectures may hold promise. In this article we review several important neural and behavioral mechanisms organizing hierarchical and predictive processing for the acquisition and realization of flexible behavioral control. Then, inspired by the organizational features of brain circuits, we introduce a multi-timescale parallel and hierarchical learning framework for the realization of versatile and agile movement in humanoid robots.
Collapse
Affiliation(s)
- Tom Macpherson
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Masayuki Matsumoto
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroaki Gomi
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Co., Kanagawa, Japan
| | - Jun Morimoto
- Department of Brain Robot Interface, ATR Computational Neuroscience Laboratories, Kyoto, Japan; Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Eiji Uchibe
- Department of Brain Robot Interface, ATR Computational Neuroscience Laboratories, Kyoto, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan.
| |
Collapse
|
7
|
Little HJ. L-Type Calcium Channel Blockers: A Potential Novel Therapeutic Approach to Drug Dependence. Pharmacol Rev 2021; 73:127-154. [PMID: 34663686 DOI: 10.1124/pharmrev.120.000245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review describes interactions between compounds, primarily dihydropyridines, that block L-type calcium channels and drugs that cause dependence, and the potential importance of these interactions. The main dependence-inducing drugs covered are alcohol, psychostimulants, opioids, and nicotine. In preclinical studies, L-type calcium channel blockers prevent or reduce important components of dependence on these drugs, particularly their reinforcing actions and the withdrawal syndromes. The channel blockers also reduce the development of tolerance and/or sensitization, and they have no intrinsic dependence liability. In some instances, their effects include reversal of brain changes established during drug dependence. Prolonged treatment with alcohol, opioids, psychostimulant drugs, or nicotine causes upregulation of dihydropyridine binding sites. Few clinical studies have been carried out so far, and reports are conflicting, although there is some evidence of effectiveness of L-channel blockers in opioid withdrawal. However, the doses of L-type channel blockers used clinically so far have necessarily been limited by potential cardiovascular problems and may not have provided sufficient central levels of the drugs to affect neuronal dihydropyridine binding sites. New L-type calcium channel blocking compounds are being developed with more selective actions on subtypes of L-channel. The preclinical evidence suggests that L-type calcium channels may play a crucial role in the development of dependence to different types of drugs. Mechanisms for this are proposed, including changes in the activity of mesolimbic dopamine neurons, genomic effects, and alterations in synaptic plasticity. Newly developed, more selective L-type calcium channel blockers could be of considerable value in the treatment of drug dependence. SIGNIFICANCE STATEMENT: Dependence on drugs is a very serious health problem with little effective treatment. Preclinical evidence shows drugs that block particular calcium channels, the L-type, reduce dependence-related effects of alcohol, opioids, psychostimulants, and nicotine. Clinical studies have been restricted by potential cardiovascular side effects, but new, more selective L-channel blockers are becoming available. L-channel blockers have no intrinsic dependence liability, and laboratory evidence suggests they reverse previously developed effects of dependence-inducing drugs. They could provide a novel approach to addiction treatment.
Collapse
Affiliation(s)
- Hilary J Little
- Section of Alcohol Research, National Addiction Centre, Institute of Psychiatry, King's College, London, United Kingdom
| |
Collapse
|
8
|
Bjorness TE, Greene RW. Interaction between cocaine use and sleep behavior: A comprehensive review of cocaine's disrupting influence on sleep behavior and sleep disruptions influence on reward seeking. Pharmacol Biochem Behav 2021; 206:173194. [PMID: 33940055 DOI: 10.1016/j.pbb.2021.173194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022]
Abstract
Dopamine, orexin (hypocretin), and adenosine systems have dual roles in reward and sleep/arousal suggesting possible mechanisms whereby drugs of abuse may influence both reward and sleep/arousal. While considerable variability exists across studies, drugs of abuse such as cocaine induce an acute sleep loss followed by an immediate recovery pattern that is consistent with a normal response to loss of sleep. Under more chronic cocaine exposure conditions, an abnormal recovery pattern is expressed that includes a retention of sleep disturbance under withdrawal and into abstinence conditions. Conversely, experimentally induced sleep disturbance can increase cocaine seeking. Thus, complementary, sleep-related therapeutic approaches may deserve further consideration along with development of non-human models to better characterize sleep disturbance-reward seeking interactions across drug experience.
Collapse
Affiliation(s)
- Theresa E Bjorness
- Research Service, VA North Texas Health Care System, Dallas, TX 75126, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Robert W Greene
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, 305-8577, Japan
| |
Collapse
|
9
|
Wang X, Jin Y, Hao K. Synergies between synaptic and intrinsic plasticity in echo state networks. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Jones S. De-mobilisation of NMDA receptors in midbrain dopamine neurons: a quantum of reward? J Physiol 2021; 599:2777-2778. [PMID: 33769567 DOI: 10.1113/jp281559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Susan Jones
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Differential Impact of Inhibitory G-Protein Signaling Pathways in Ventral Tegmental Area Dopamine Neurons on Behavioral Sensitivity to Cocaine and Morphine. eNeuro 2021; 8:ENEURO.0081-21.2021. [PMID: 33707203 PMCID: PMC8114902 DOI: 10.1523/eneuro.0081-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Drugs of abuse engage overlapping but distinct molecular and cellular mechanisms to enhance dopamine (DA) signaling in the mesocorticolimbic circuitry. DA neurons of the ventral tegmental area (VTA) are key substrates of drugs of abuse and have been implicated in addiction-related behaviors. Enhanced VTA DA neurotransmission evoked by drugs of abuse can engage inhibitory G-protein-dependent feedback pathways, mediated by GABAB receptors (GABABRs) and D2 DA receptors (D2Rs). Chemogenetic inhibition of VTA DA neurons potently suppressed baseline motor activity, as well as the motor-stimulatory effect of cocaine and morphine, confirming the critical influence of VTA DA neurons and inhibitory G-protein signaling in these neurons on this addiction-related behavior. To resolve the relative influence of GABABR-dependent and D2R-dependent signaling pathways in VTA DA neurons on behavioral sensitivity to drugs of abuse, we developed a neuron-specific viral CRISPR/Cas9 approach to ablate D2R and GABABR in VTA DA neurons. Ablation of GABABR or D2R did not impact baseline physiological properties or excitability of VTA DA neurons, but it did preclude the direct somatodendritic inhibitory influence of GABABR or D2R activation. D2R ablation potentiated the motor-stimulatory effect of cocaine in male and female mice, whereas GABABR ablation selectively potentiated cocaine-induced activity in male subjects only. Neither D2R nor GABABR ablation impacted morphine-induced motor activity. Collectively, our data show that cocaine and morphine differ in the extent to which they engage inhibitory G-protein-dependent feedback pathways in VTA DA neurons and highlight key sex differences that may impact susceptibility to various facets of addiction.
Collapse
|
12
|
Therapeutic potential of targeting G protein-gated inwardly rectifying potassium (GIRK) channels in the central nervous system. Pharmacol Ther 2021; 223:107808. [PMID: 33476640 DOI: 10.1016/j.pharmthera.2021.107808] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
G protein-gated inwardly rectifying potassium channels (Kir3/GirK) are important for maintaining resting membrane potential, cell excitability and inhibitory neurotransmission. Coupled to numerous G protein-coupled receptors (GPCRs), they mediate the effects of many neurotransmitters, neuromodulators and hormones contributing to the general homeostasis and particular synaptic plasticity processes, learning, memory and pain signaling. A growing number of behavioral and genetic studies suggest a critical role for the appropriate functioning of the central nervous system, as well as their involvement in many neurologic and psychiatric conditions, such as neurodegenerative diseases, mood disorders, attention deficit hyperactivity disorder, schizophrenia, epilepsy, alcoholism and drug addiction. Hence, GirK channels emerge as a very promising tool to be targeted in the current scenario where these conditions already are or will become a global public health problem. This review examines recent findings on the physiology, function, dysfunction, and pharmacology of GirK channels in the central nervous system and highlights the relevance of GirK channels as a worthful potential target to improve therapies for related diseases.
Collapse
|
13
|
Ruan H, Yao WD. Loss of mGluR1-LTD following cocaine exposure accumulates Ca 2+-permeable AMPA receptors and facilitates synaptic potentiation in the prefrontal cortex. J Neurogenet 2021; 35:358-369. [PMID: 34092163 PMCID: PMC9255266 DOI: 10.1080/01677063.2021.1931180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Addiction results from drug-elicited alterations of synaptic plasticity mechanisms in dopaminergic reward circuits. Impaired metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD) and accumulation of synaptic Ca2+-permeable AMPA receptors (CP-AMPARs) following drug exposure have emerged as important mechanisms underlying drug craving and relapse. Here we show that repeated cocaine exposure in vivo causes transient but complete loss of mGluR1- and mTOR (mammalian target of rapamycin)-dependent LTD in layer 5 pyramidal neurons of mouse prefrontal cortex (PFC), a major dopaminergic target in the reward circuitry. This mGluR1-LTD impairment was prevented by in vivo administration of an mGluR1 positive allosteric modulator (PAM) and rescued by inhibition of dopamine D1 receptors, suggesting that impaired mGluR1 tone and excessive D1 signaling underlie this LTD deficit. Concurrently, CP-AMPARs were generated, indicated by increased sensitivity to the CP-AMPAR inhibitor Naspm and rectification of synaptic AMPAR currents, which were reversed by PAM in cocaine-exposed mice. Finally, these CP-AMPARs mediate an abnormal spike-timing-dependent long-term potentiation enabled by cocaine exposure. Our findings reveal a mechanism by which cocaine impairs LTD and remodels synaptic AMPARs to influence Hebbian plasticity in the PFC. Failure to undergo LTD may prevent the reversal of drug-potentiated brain circuits to their baseline states, perpetuating addictive behaviors.HIGHLIGHTSA mGluR1- and mTOR-dependent LTD is present in the mouse medial prefrontal cortex.Repeated cocaine exposure in vivo temporally but completely abolishes prefrontal mGluR1-LTD.Impaired mGluR1 function and excessive D1 DA signaling likely underlie cocaine impairment of mGluR1-LTD.Ca2+-permeable AMPA receptors are generated by cocaine exposure, likely resulting from mGluR1-LTD impairment, and contribute to a cocaine-induced extended spike timing LTP.
Collapse
|
14
|
Pytka K, Dawson N, Tossell K, Ungless MA, Plevin R, Brett RR, Bushell TJ. Mitogen-activated protein kinase phosphatase-2 deletion modifies ventral tegmental area function and connectivity and alters reward processing. Eur J Neurosci 2020; 52:2838-2852. [PMID: 31989721 DOI: 10.1111/ejn.14688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/06/2020] [Accepted: 01/17/2020] [Indexed: 11/30/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) regulate normal brain functioning, and their dysfunction is implicated in a number of brain disorders. Thus, there is great interest in understanding the signalling systems that control MAPK functioning. One family of proteins that contribute to this process, the mitogen-activated protein kinase phosphatases (MKPs), directly inactivate MAPKs through dephosphorylation. Recent studies have identified novel functions of MKPs in foetal development, the immune system, cancer and synaptic plasticity and memory. In the present study, we performed an unbiased investigation using MKP-2-/- mice to assess whether MKP-2 plays a global role in modulating brain function. Local cerebral glucose utilization is significantly increased in the ventral tegmental area (VTA) of MKP-2-/- mice, with connectivity analysis revealing alterations in VTA functional connectivity, including a significant reduction in connectivity to the nucleus accumbens and hippocampus. In addition, spontaneous excitatory postsynaptic current frequency, but not amplitude, onto putative dopamine neurons in the VTA is increased in MKP-2-/- mice, which indicates that increased excitatory drive may account for the increased VTA glucose utilization. Consistent with modified VTA function and connectivity, in behavioural tests MKP-2-/- mice exhibited increased sucrose preference and impaired amphetamine-induced hyperlocomotion. Overall, these data reveal that MKP-2 plays a role in modulating VTA function and that its dysfunction may contribute to brain disorders in which altered reward processing is present.
Collapse
Affiliation(s)
- Karolina Pytka
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK.,Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Neil Dawson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK.,Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Kyoko Tossell
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Mark A Ungless
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Robin Plevin
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Ros R Brett
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Trevor J Bushell
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
15
|
Li X, Slesinger PA. GABA B Receptors and Drug Addiction: Psychostimulants and Other Drugs of Abuse. Curr Top Behav Neurosci 2020; 52:119-155. [PMID: 33442842 DOI: 10.1007/7854_2020_187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabotropic GABAB receptors (GABABRs) mediate slow inhibition and modulate synaptic plasticity throughout the brain. Dysfunction of GABABRs has been associated with psychiatric illnesses and addiction. Drugs of abuse alter GABAB receptor (GABABR) signaling in multiple brain regions, which partly contributes to the development of drug addiction. Recently, GABABR ligands and positive allosteric modulators (PAMs) have been shown to attenuate the initial rewarding effect of addictive substances, inhibit seeking and taking of these drugs, and in some cases, ameliorate drug withdrawal symptoms. The majority of the anti-addiction effects seen with GABABR modulation can be localized to ventral tegmental area (VTA) dopamine neurons, which receive complex inhibitory and excitatory inputs that are modified by drugs of abuse. Preclinical research suggests that GABABR PAMs are emerging as promising candidates for the treatment of drug addiction. Clinical studies on drug dependence have shown positive results with GABABR ligands but more are needed, and compounds with better pharmacokinetics and fewer side effects are critically needed.
Collapse
Affiliation(s)
- Xiaofan Li
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Paul A Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
16
|
Lipton DM, Gonzales BJ, Citri A. Dorsal Striatal Circuits for Habits, Compulsions and Addictions. Front Syst Neurosci 2019; 13:28. [PMID: 31379523 PMCID: PMC6657020 DOI: 10.3389/fnsys.2019.00028] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022] Open
Abstract
Here, we review the neural circuit bases of habits, compulsions, and addictions, behaviors which are all characterized by relatively automatic action performance. We discuss relevant studies, primarily from the rodent literature, and describe how major headway has been made in identifying the brain regions and neural cell types whose activity is modulated during the acquisition and performance of these automated behaviors. The dorsal striatum and cortical inputs to this structure have emerged as key players in the wider basal ganglia circuitry encoding behavioral automaticity, and changes in the activity of different neuronal cell-types in these brain regions have been shown to co-occur with the formation of automatic behaviors. We highlight how disordered functioning of these neural circuits can result in neuropsychiatric disorders, such as obsessive-compulsive disorder (OCD) and drug addiction. Finally, we discuss how the next phase of research in the field may benefit from integration of approaches for access to cells based on their genetic makeup, activity, connectivity and precise anatomical location.
Collapse
Affiliation(s)
- David M Lipton
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.,Zuckerman Postdoctoral Scholar, Jerusalem, Israel
| | - Ben J Gonzales
- Institute of Life Sciences, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ami Citri
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.,Institute of Life Sciences, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem, Israel.,Program in Child and Brain Development, MaRS Centre, Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
17
|
Nunes EJ, Bitner L, Hughley SM, Small KM, Walton SN, Rupprecht LE, Addy NA. Cholinergic Receptor Blockade in the VTA Attenuates Cue-Induced Cocaine-Seeking and Reverses the Anxiogenic Effects of Forced Abstinence. Neuroscience 2019; 413:252-263. [PMID: 31271832 DOI: 10.1016/j.neuroscience.2019.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/31/2019] [Accepted: 06/19/2019] [Indexed: 02/08/2023]
Abstract
Drug relapse after periods of abstinence is a common feature of substance abuse. Moreover, anxiety and other mood disorders are often co-morbid with substance abuse. Cholinergic receptors in the ventral tegmental area (VTA) are known to mediate drug-seeking and anxiety-related behavior in rodent models. However, it is unclear if overlapping VTA cholinergic mechanisms mediate drug relapse and anxiety-related behaviors associated with drug abstinence. We examined the effects of VTA cholinergic receptor blockade on cue-induced cocaine seeking and anxiety during cocaine abstinence. Male Sprague-Dawley rats were trained to self-administer intravenous cocaine (~0.5 mg/kg/infusion, FR1 schedule) for 10 days, followed by 14 days of forced abstinence. VTA infusion of the non-selective nicotinic acetylcholine receptor antagonist mecamylamine (0, 10, and 30 μg/side) or the non-selective muscarinic receptor antagonist scopolamine (0, 2.4 and 24 μg /side) significantly decreased cue-induced cocaine seeking. In cocaine naïve rats, VTA mecamylamine or scopolamine also led to dose-dependent increases in open arm time in the elevated plus maze (EPM). In contrast, rats that received I.V. cocaine, compared to received I.V. saline rats, displayed an anxiogenic response on day 14 of abstinence as reflected by decreased open arm time in the EPM. Furthermore, low doses of VTA mecamylamine (10 μg /side) or scopolamine (2.4 μg /side), that did not alter EPM behavior in cocaine naive rats, were sufficient to reverse the anxiogenic effects of cocaine abstinence. Together, these data point to an overlapping role of VTA cholinergic mechanisms to regulate relapse and mood disorder-related responses during cocaine abstinence.
Collapse
Affiliation(s)
- Eric J Nunes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Lillian Bitner
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Shannon M Hughley
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Keri M Small
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Sofia N Walton
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Laura E Rupprecht
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Nii A Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
18
|
Waddell S, Sjöström PJ. Editorial overview: Neurobiology of learning and plasticity. Curr Opin Neurobiol 2019; 54:iii-vi. [PMID: 30712705 DOI: 10.1016/j.conb.2019.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Scott Waddell
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford, OX1 3TA, United Kingdom.
| | - Per Jesper Sjöström
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|