1
|
Wright P, McCall E, Collier S, Johnson F, Iyer L, Koretsky AP, Petrus E. Behavioral adaptations after unilateral whisker denervation. Behav Brain Res 2025; 482:115435. [PMID: 39842643 DOI: 10.1016/j.bbr.2025.115435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
The rodent whisker system provides an excellent model to study experience dependent plasticity in neural morphology, circuitry, and behavior. Rodents use bilateral whisker sensation to gather information about their environment. Unilateral whisker denervation disrupts whisker circuitry but its impact on task specific behavior is largely unknown. Adult mice with unilateral whisker denervation display a preference to using the intact whisker set to inspect objects, but do not have altered open field navigation. An object localization task requiring only the intact whisker set did not detect any change in performance, but gap crossing was impaired after unilateral whisker denervation. Finally, chronic whisker denervation led to increased anxiety-like behavior which was rescued by training on the gap cross task. These findings indicate that mice use behavioral strategies to adapt to life with only one set of intact whiskers.
Collapse
Affiliation(s)
- Patrick Wright
- National Institute of Neurological Disorders and Stroke (NINDS) Intramural Program, Bethesda, MD, USA
| | - Eleanor McCall
- Neuroscience Program, Emory University, Atlanta, GA, USA
| | - Sean Collier
- Neuroscience Program, Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Fred Johnson
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Laxmi Iyer
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Alan P Koretsky
- National Institute of Neurological Disorders and Stroke (NINDS) Intramural Program, Bethesda, MD, USA
| | - Emily Petrus
- Neuroscience Program, Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
2
|
Vaissiere T, Michaelson SD, Creson T, Goins J, Fürth D, Balazsfi D, Rojas C, Golovin R, Meletis K, Miller CA, O'Connor D, Fontolan L, Rumbaugh G. Syngap1 promotes cognitive function through regulation of cortical sensorimotor dynamics. Nat Commun 2025; 16:812. [PMID: 39827187 PMCID: PMC11743135 DOI: 10.1038/s41467-025-56125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Perception, a cognitive construct, emerges through sensorimotor integration (SMI). The genetic mechanisms that shape SMI required for perception are unknown. Here, we demonstrate in mice that expression of the autism/intellectual disability gene, Syngap1, in cortical excitatory neurons is required for the formation of somatomotor networks that promote SMI-mediated perception. Cortical Syngap1 expression was necessary and sufficient for setting tactile sensitivity, sustaining tactile object exploration, and promoting tactile learning. Mice with deficient Syngap1 expression exhibited impaired neural dynamics induced by exploratory touches within a cortical-thalamic network that promotes attention and perception. Disrupted neuronal dynamics were associated with circuit-specific long-range synaptic connectivity abnormalities. Our data support a model where autonomous Syngap1 expression in cortical excitatory neurons promotes cognitive abilities through the assembly of long-range circuits that integrate temporally-overlapping sensory and motor signals, a process that promotes perception and attention. These data provide systems-level insights into the robust association between Syngap1 expression and cognitive ability.
Collapse
Affiliation(s)
- Thomas Vaissiere
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Sheldon D Michaelson
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Thomas Creson
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Jessie Goins
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Daniel Fürth
- SciLifeLab, Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala, Sweden
| | - Diana Balazsfi
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Camilo Rojas
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Randall Golovin
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Courtney A Miller
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Daniel O'Connor
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorenzo Fontolan
- Aix-Marseille Université, INSERM, INMED, Turing Centre for Living Systems, Marseille, France
| | - Gavin Rumbaugh
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.
| |
Collapse
|
3
|
Liu Y, Bech P, Tamura K, Délez LT, Crochet S, Petersen CCH. Cell class-specific long-range axonal projections of neurons in mouse whisker-related somatosensory cortices. eLife 2024; 13:RP97602. [PMID: 39392390 PMCID: PMC11469677 DOI: 10.7554/elife.97602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Long-range axonal projections of diverse classes of neocortical excitatory neurons likely contribute to brain-wide interactions processing sensory, cognitive and motor signals. Here, we performed light-sheet imaging of fluorescently labeled axons from genetically defined neurons located in posterior primary somatosensory barrel cortex and supplemental somatosensory cortex. We used convolutional networks to segment axon-containing voxels and quantified their distribution within the Allen Mouse Brain Atlas Common Coordinate Framework. Axonal density was analyzed for different classes of glutamatergic neurons using transgenic mouse lines selectively expressing Cre recombinase in layer 2/3 intratelencephalic projection neurons (Rasgrf2-dCre), layer 4 intratelencephalic projection neurons (Scnn1a-Cre), layer 5 intratelencephalic projection neurons (Tlx3-Cre), layer 5 pyramidal tract projection neurons (Sim1-Cre), layer 5 projection neurons (Rbp4-Cre), and layer 6 corticothalamic neurons (Ntsr1-Cre). We found distinct axonal projections from the different neuronal classes to many downstream brain areas, which were largely similar for primary and supplementary somatosensory cortices. Functional connectivity maps obtained from optogenetic activation of sensory cortex and wide-field imaging revealed topographically organized evoked activity in frontal cortex with neurons located more laterally in somatosensory cortex signaling to more anteriorly located regions in motor cortex, consistent with the anatomical projections. The current methodology therefore appears to quantify brain-wide axonal innervation patterns supporting brain-wide signaling.
Collapse
Affiliation(s)
- Yanqi Liu
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Pol Bech
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Keita Tamura
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
- International Research Center for Medical Sciences, Kumamoto UniversityKumamotoJapan
| | - Lucas T Délez
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Carl CH Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
4
|
Huang J, Crochet S, Sandi C, Petersen CC. Dopamine dynamics in nucleus accumbens across reward-based learning of goal-directed whisker-to-lick sensorimotor transformations in mice. Heliyon 2024; 10:e37831. [PMID: 39323852 PMCID: PMC11422591 DOI: 10.1016/j.heliyon.2024.e37831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/12/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
The synaptic and neuronal circuit mechanisms underlying reward-based learning remain to be fully determined. In the mammalian brain, dopamine release in nucleus accumbens is thought to contribute importantly to reward signals for learning and promoting synaptic plasticity. Here, through longitudinal fiber photometry of a genetically-encoded fluorescent sensor, we investigated dopamine signals in the nucleus accumbens of thirsty head-restrained mice as they learned to lick a liquid reward spout in response to single deflections of the C2 whisker across varying reward contingencies. Reward delivery triggered by well-timed licking drove fast transient dopamine increases in nucleus accumbens. On the other hand, unrewarded licking was overall associated with reduced dopamine sensor fluorescence, especially in trials where reward was unexpectedly omitted. The dopamine reward signal upon liquid delivery decreased within individual sessions as mice became sated. As mice learned to lick the reward spout in response to whisker deflection, a fast transient sensory-evoked dopamine signal developed, correlating with the learning of the whisker detection task across consecutive training days, as well as within single learning sessions. The well-defined behavioral paradigm involving a unitary stimulus of a single whisker as a reward-predicting cue along with precisely quantified licking allows untangling of sensory, motor and reward-related dopamine signals and how they evolve across the learning of whisker-dependent goal-directed sensorimotor transformations. Our longitudinal measurements of dopamine dynamics across reward-based learning are overall consistent with the hypothesis that dopamine could play an important role as a reward signal for reinforcement learning.
Collapse
Affiliation(s)
- Jun Huang
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of Behavioral Genetics, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C.H. Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
5
|
Vaissiere T, Michaelson SD, Creson T, Goins J, Fürth D, Balazsfi D, Rojas C, Golovin R, Meletis K, Miller CA, O’Connor D, Fontolan L, Rumbaugh G. Syngap1 Promotes Cognitive Function through Regulation of Cortical Sensorimotor Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.27.559787. [PMID: 37808765 PMCID: PMC10557642 DOI: 10.1101/2023.09.27.559787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Perception, a cognitive construct, emerges through sensorimotor integration (SMI). The genetic mechanisms that shape SMI required for perception are unknown. Here, we demonstrate in mice that expression of the autism/intellectual disability gene, Syngap1, in cortical excitatory neurons is required for formation of somatomotor networks that promote SMI-mediated perception. Cortical Syngap1 expression was necessary and sufficient for setting tactile sensitivity, sustaining tactile object exploration, and promoting tactile learning. Mice with deficient Syngap1 expression exhibited impaired neural dynamics induced by exploratory touches within a cortical-thalamic network known to promote attention and perception. Disrupted neuronal dynamics were associated with circuit-specific long-range synaptic connectivity abnormalities. Our data support a model where autonomous Syngap1 expression in cortical excitatory neurons promotes cognitive abilities through assembly of circuits that integrate temporally-overlapping sensory and motor signals, a process that promotes perception and attention. These data provide systems-level insights into the robust association between Syngap1 expression and cognitive ability.
Collapse
Affiliation(s)
- Thomas Vaissiere
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Sheldon D. Michaelson
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Thomas Creson
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Jessie Goins
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Daniel Fürth
- SciLifeLab, Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala, Sweden
| | - Diana Balazsfi
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Camilo Rojas
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Randall Golovin
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Courtney A. Miller
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Daniel O’Connor
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorenzo Fontolan
- Aix-Marseille Université, INSERM, INMED, Turing Centre for Living Systems, Marseille, 13009, France
| | - Gavin Rumbaugh
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| |
Collapse
|
6
|
Rault N, Bergmans T, Delfstra N, Kleijnen BJ, Zeldenrust F, Celikel T. Where Top-Down Meets Bottom-Up: Cell-Type Specific Connectivity Map of the Whisker System. Neuroinformatics 2024; 22:251-268. [PMID: 38767789 PMCID: PMC11329691 DOI: 10.1007/s12021-024-09658-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 05/22/2024]
Abstract
Sensorimotor computation integrates bottom-up world state information with top-down knowledge and task goals to form action plans. In the rodent whisker system, a prime model of active sensing, evidence shows neuromodulatory neurotransmitters shape whisker control, affecting whisking frequency and amplitude. Since neuromodulatory neurotransmitters are mostly released from subcortical nuclei and have long-range projections that reach the rest of the central nervous system, mapping the circuits of top-down neuromodulatory control of sensorimotor nuclei will help to systematically address the mechanisms of active sensing. Therefore, we developed a neuroinformatic target discovery pipeline to mine the Allen Institute's Mouse Brain Connectivity Atlas. Using network connectivity analysis, we identified new putative connections along the whisker system and anatomically confirmed the existence of 42 previously unknown monosynaptic connections. Using this data, we updated the sensorimotor connectivity map of the mouse whisker system and developed the first cell-type-specific map of the network. The map includes 157 projections across 18 principal nuclei of the whisker system and neuromodulatory neurotransmitter-releasing. Performing a graph network analysis of this connectome, we identified cell-type specific hubs, sources, and sinks, provided anatomical evidence for monosynaptic inhibitory projections into all stages of the ascending pathway, and showed that neuromodulatory projections improve network-wide connectivity. These results argue that beyond the modulatory chemical contributions to information processing and transfer in the whisker system, the circuit connectivity features of the neuromodulatory networks position them as nodes of sensory and motor integration.
Collapse
Affiliation(s)
- Nicolas Rault
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Tido Bergmans
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Natasja Delfstra
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | | | - Fleur Zeldenrust
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|
7
|
Oryshchuk A, Sourmpis C, Weverbergh J, Asri R, Esmaeili V, Modirshanechi A, Gerstner W, Petersen CCH, Crochet S. Distributed and specific encoding of sensory, motor, and decision information in the mouse neocortex during goal-directed behavior. Cell Rep 2024; 43:113618. [PMID: 38150365 DOI: 10.1016/j.celrep.2023.113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/27/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023] Open
Abstract
Goal-directed behaviors involve coordinated activity in many cortical areas, but whether the encoding of task variables is distributed across areas or is more specifically represented in distinct areas remains unclear. Here, we compared representations of sensory, motor, and decision information in the whisker primary somatosensory cortex, medial prefrontal cortex, and tongue-jaw primary motor cortex in mice trained to lick in response to a whisker stimulus with mice that were not taught this association. Irrespective of learning, properties of the sensory stimulus were best encoded in the sensory cortex, whereas fine movement kinematics were best represented in the motor cortex. However, movement initiation and the decision to lick in response to the whisker stimulus were represented in all three areas, with decision neurons in the medial prefrontal cortex being more selective, showing minimal sensory responses in miss trials and motor responses during spontaneous licks. Our results reconcile previous studies indicating highly specific vs. highly distributed sensorimotor processing.
Collapse
Affiliation(s)
- Anastasiia Oryshchuk
- Laboratory of Sensory Processing, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Christos Sourmpis
- Laboratory of Sensory Processing, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; School of Life Sciences and School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Julie Weverbergh
- Laboratory of Sensory Processing, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Reza Asri
- Laboratory of Sensory Processing, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Vahid Esmaeili
- Laboratory of Sensory Processing, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alireza Modirshanechi
- School of Life Sciences and School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Wulfram Gerstner
- School of Life Sciences and School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Institut National de la Santé et de la Recherche Médicale (INSERM), 6900 Lyon, France.
| |
Collapse
|
8
|
Matteucci G, Guyoton M, Mayrhofer JM, Auffret M, Foustoukos G, Petersen CCH, El-Boustani S. Cortical sensory processing across motivational states during goal-directed behavior. Neuron 2022; 110:4176-4193.e10. [PMID: 36240769 DOI: 10.1016/j.neuron.2022.09.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/25/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022]
Abstract
Behavioral states can influence performance of goal-directed sensorimotor tasks. Yet, it is unclear how altered neuronal sensory representations in these states relate to task performance and learning. We trained water-restricted mice in a two-whisker discrimination task to study cortical circuits underlying perceptual decision-making under different levels of thirst. We identified somatosensory cortices as well as the premotor cortex as part of the circuit necessary for task execution. Two-photon calcium imaging in these areas identified populations selective to sensory or motor events. Analysis of task performance during individual sessions revealed distinct behavioral states induced by decreasing levels of thirst-related motivation. Learning was better explained by improvements in motivational state control rather than sensorimotor association. Whisker sensory representations in the cortex were altered across behavioral states. In particular, whisker stimuli could be better decoded from neuronal activity during high task performance states, suggesting that state-dependent changes of sensory processing influence decision-making.
Collapse
Affiliation(s)
- Giulio Matteucci
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Maëlle Guyoton
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Johannes M Mayrhofer
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland
| | - Matthieu Auffret
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland
| | - Georgios Foustoukos
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland.
| | - Sami El-Boustani
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland; Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
9
|
Inagaki HK, Chen S, Daie K, Finkelstein A, Fontolan L, Romani S, Svoboda K. Neural Algorithms and Circuits for Motor Planning. Annu Rev Neurosci 2022; 45:249-271. [PMID: 35316610 DOI: 10.1146/annurev-neuro-092021-121730] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The brain plans and executes volitional movements. The underlying patterns of neural population activity have been explored in the context of movements of the eyes, limbs, tongue, and head in nonhuman primates and rodents. How do networks of neurons produce the slow neural dynamics that prepare specific movements and the fast dynamics that ultimately initiate these movements? Recent work exploits rapid and calibrated perturbations of neural activity to test specific dynamical systems models that are capable of producing the observed neural activity. These joint experimental and computational studies show that cortical dynamics during motor planning reflect fixed points of neural activity (attractors). Subcortical control signals reshape and move attractors over multiple timescales, causing commitment to specific actions and rapid transitions to movement execution. Experiments in rodents are beginning to reveal how these algorithms are implemented at the level of brain-wide neural circuits.
Collapse
Affiliation(s)
| | - Susu Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Kayvon Daie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.,Allen Institute for Neural Dynamics, Seattle, Washington, USA;
| | - Arseny Finkelstein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Lorenzo Fontolan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Sandro Romani
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.,Allen Institute for Neural Dynamics, Seattle, Washington, USA;
| |
Collapse
|
10
|
Learning-related congruent and incongruent changes of excitation and inhibition in distinct cortical areas. PLoS Biol 2022; 20:e3001667. [PMID: 35639787 PMCID: PMC9187120 DOI: 10.1371/journal.pbio.3001667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 06/10/2022] [Accepted: 05/10/2022] [Indexed: 12/20/2022] Open
Abstract
Excitatory and inhibitory neurons in diverse cortical regions are likely to contribute differentially to the transformation of sensory information into goal-directed motor plans. Here, we investigate the relative changes across mouse sensorimotor cortex in the activity of putative excitatory and inhibitory neurons—categorized as regular spiking (RS) or fast spiking (FS) according to their action potential (AP) waveform—comparing before and after learning of a whisker detection task with delayed licking as perceptual report. Surprisingly, we found that the whisker-evoked activity of RS versus FS neurons changed in opposite directions after learning in primary and secondary whisker motor cortices, while it changed similarly in primary and secondary orofacial motor cortices. Our results suggest that changes in the balance of excitation and inhibition in local circuits concurrent with changes in the long-range synaptic inputs in distinct cortical regions might contribute to performance of delayed sensory-to-motor transformation. A study of mouse sensorimotor cortex during a whisker detection task shows that learning of a goal-directed sensorimotor transformation is accompanied by differential changes in excitation and inhibition in distinct neocortical regions, helping to link sensory cortex and motor cortex for correct task performance.
Collapse
|
11
|
Zhang Q, Turner KL, Gheres KW, Hossain MS, Drew PJ. Behavioral and physiological monitoring for awake neurovascular coupling experiments: a how-to guide. NEUROPHOTONICS 2022; 9:021905. [PMID: 35639834 PMCID: PMC8802326 DOI: 10.1117/1.nph.9.2.021905] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/28/2021] [Indexed: 06/15/2023]
Abstract
Significance: Functional brain imaging in awake animal models is a popular and powerful technique that allows the investigation of neurovascular coupling (NVC) under physiological conditions. However, ubiquitous facial and body motions (fidgeting) are prime drivers of spontaneous fluctuations in neural and hemodynamic signals. During periods without movement, animals can rapidly transition into sleep, and the hemodynamic signals tied to arousal state changes can be several times larger than sensory-evoked responses. Given the outsized influence of facial and body motions and arousal signals in neural and hemodynamic signals, it is imperative to detect and monitor these events in experiments with un-anesthetized animals. Aim: To cover the importance of monitoring behavioral state in imaging experiments using un-anesthetized rodents, and describe how to incorporate detailed behavioral and physiological measurements in imaging experiments. Approach: We review the effects of movements and sleep-related signals (heart rate, respiration rate, electromyography, intracranial pressure, whisking, and other body movements) on brain hemodynamics and electrophysiological signals, with a focus on head-fixed experimental setup. We summarize the measurement methods currently used in animal models for detection of those behaviors and arousal changes. We then provide a guide on how to incorporate this measurements with functional brain imaging and electrophysiology measurements. Results: We provide a how-to guide on monitoring and interpreting a variety of physiological signals and their applications to NVC experiments in awake behaving mice. Conclusion: This guide facilitates the application of neuroimaging in awake animal models and provides neuroscientists with a standard approach for monitoring behavior and other associated physiological parameters in head-fixed animals.
Collapse
Affiliation(s)
- Qingguang Zhang
- The Pennsylvania State University, Center for Neural Engineering, Department of Engineering Science and Mechanics, University Park, Pennsylvania, United States
| | - Kevin L. Turner
- The Pennsylvania State University, Department of Biomedical Engineering, University Park, Pennsylvania, United States
| | - Kyle W. Gheres
- The Pennsylvania State University, Graduate Program in Molecular Cellular and Integrative Biosciences, University Park, Pennsylvania, United States
| | - Md Shakhawat Hossain
- The Pennsylvania State University, Department of Biomedical Engineering, University Park, Pennsylvania, United States
| | - Patrick J. Drew
- The Pennsylvania State University, Center for Neural Engineering, Department of Engineering Science and Mechanics, University Park, Pennsylvania, United States
- The Pennsylvania State University, Department of Biomedical Engineering, University Park, Pennsylvania, United States
- The Pennsylvania State University, Department of Neurosurgery, University Park, Pennsylvania, United States
| |
Collapse
|
12
|
Esmaeili V, Tamura K, Muscinelli SP, Modirshanechi A, Boscaglia M, Lee AB, Oryshchuk A, Foustoukos G, Liu Y, Crochet S, Gerstner W, Petersen CCH. Rapid suppression and sustained activation of distinct cortical regions for a delayed sensory-triggered motor response. Neuron 2021; 109:2183-2201.e9. [PMID: 34077741 PMCID: PMC8285666 DOI: 10.1016/j.neuron.2021.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/24/2021] [Accepted: 05/06/2021] [Indexed: 01/16/2023]
Abstract
The neuronal mechanisms generating a delayed motor response initiated by a sensory cue remain elusive. Here, we tracked the precise sequence of cortical activity in mice transforming a brief whisker stimulus into delayed licking using wide-field calcium imaging, multiregion high-density electrophysiology, and time-resolved optogenetic manipulation. Rapid activity evoked by whisker deflection acquired two prominent features for task performance: (1) an enhanced excitation of secondary whisker motor cortex, suggesting its important role connecting whisker sensory processing to lick motor planning; and (2) a transient reduction of activity in orofacial sensorimotor cortex, which contributed to suppressing premature licking. Subsequent widespread cortical activity during the delay period largely correlated with anticipatory movements, but when these were accounted for, a focal sustained activity remained in frontal cortex, which was causally essential for licking in the response period. Our results demonstrate key cortical nodes for motor plan generation and timely execution in delayed goal-directed licking.
Collapse
Affiliation(s)
- Vahid Esmaeili
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Keita Tamura
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Samuel P Muscinelli
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alireza Modirshanechi
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marta Boscaglia
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ashley B Lee
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anastasiia Oryshchuk
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Georgios Foustoukos
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yanqi Liu
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvain Crochet
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Wulfram Gerstner
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|