1
|
Wang Z, Yang C, Wang X, Lyu W, Liao H, Liu X, Liu H, Zhang J, Shen H, Zhang L, Wang H. Decoding stress granules dynamics: Implications for neurodegenerative disease. Prog Neurobiol 2025; 248:102758. [PMID: 40132681 DOI: 10.1016/j.pneurobio.2025.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/01/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Stress granules (SGs) are membrane-less cytoplasmic structures formed by cells in response to external stress, primarily composed of mRNA and proteins. The dynamic properties of their assembly, maintenance, and disassembly play crucial roles in cellular homeostasis. Recent studies have increasingly revealed that aberrations in SGs dynamics are closely related to the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. This review summarizes the latest research progress on SGs dynamics in neurodegenerative diseases. It begins with an overview of the basic biological characteristics of SGs and their functions in neurons, followed by an in-depth exploration of the mechanisms and regulatory pathways of SGs dynamics. The review then summarizes potential therapeutic strategies targeting SGs dynamics abnormalities, particularly through small molecule drugs to modulate SGs formation and disassembly, aiming to delay or halt the progression of neurodegenerative diseases. The review also highlights the application prospects of these interventions in treating neurodegenerative diseases. Finally, the review introduces current techniques used to study SGs dynamics, discussing their advantages, limitations, and future development possibilities. This review aims to provide researchers with a comprehensive perspective to advance the understanding and clinical application of SGs dynamics in the field of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zixuan Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Chenyi Yang
- Nankai University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Nankai University Affinity the Third Central Hospital, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Xinyi Wang
- Nankai University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Nankai University Affinity the Third Central Hospital, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Wenyuan Lyu
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Qilu Hospital of Shandong University (Qingdao), Qingdao 266000, China
| | - Huihui Liao
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Xing Liu
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Huan Liu
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Jingwei Zhang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Huai Shen
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Lin Zhang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Haiyun Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Nankai University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Nankai University Affinity the Third Central Hospital, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China.
| |
Collapse
|
2
|
Pan M, Liu PW, Ozawa Y, Arima-Yoshida F, Dong G, Sawahata M, Mori D, Nagase M, Fujii H, Ueda S, Yabuuchi Y, Liu X, Narita H, Konno A, Hirai H, Ozaki N, Yamada K, Kidokoro H, Bito H, Mizoguchi H, M Watabe A, Horigane SI, Takemoto-Kimura S. A hyper-activatable CAMK2A variant associated with intellectual disability causes exaggerated long-term potentiation and learning impairments. Transl Psychiatry 2025; 15:95. [PMID: 40140673 PMCID: PMC11947108 DOI: 10.1038/s41398-025-03316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/21/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Intellectual disability (ID) is a neurodevelopmental disorder (NDD) characterized by impairments in intellectual and adaptive functioning, and is highly co-morbid with other NDDs. Recently, de novo missense variants in the gene, CAMK2A, which encodes calcium/calmodulin-dependent protein kinase IIα (CaMKIIα), an abundant neuronal protein crucial for synaptic plasticity, learning and memory, have been implicated in ID. However, the causative impact of these mutations remains underexplored. In this study, we developed a heterozygous knock-in mouse model carrying the most prevalent ID-associated CAMK2A de novo missense variant, P212L, as a gain-of-function allele. The knock-in mice exhibited increased autophosphorylation of CaMKIIα, indicative of exuberant kinase activity, and consistently showed dendritic spine abnormalities and exaggerated hippocampal long-term potentiation induced by a subthreshold low-frequency stimulation. Furthermore, a comprehensive behavioral evaluation, including learning and memory tasks, revealed prominent phenotypes recapitulating the complex clinical phenotypes of humans with ID/NDDs harboring the same variant. Taken together, we propose that aberrant enhancement of CaMKIIα signaling by the heterozygous P212L mutation underlies a subset of ID/NDD features. These findings provide new insights into the pathogenesis of ID/NDDs, specifically through the genetic up-shifting of the critical memory regulator, CaMKII. Additionally, the established mouse model, with both construct and face validity, is expected to significantly contribute to the understanding and future therapeutic development of ID/NDDs.
Collapse
Affiliation(s)
- Miao Pan
- Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Molecular/Cellular Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Pin-Wu Liu
- Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Yukihiro Ozawa
- Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Fumiko Arima-Yoshida
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, 163-1 Kashiwashita, Kashiwa, Chiba, Japan
| | - Geyao Dong
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Masahito Sawahata
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Daisuke Mori
- Department of Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
- Brain and Mind Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Masashi Nagase
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, 163-1 Kashiwashita, Kashiwa, Chiba, Japan
| | - Hajime Fujii
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shuhei Ueda
- Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Molecular/Cellular Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Yurie Yabuuchi
- Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Xinzi Liu
- Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Molecular/Cellular Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Hajime Narita
- Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Molecular/Cellular Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Ayumu Konno
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, 3-39-33 Showa-machi, Maebashi, Gunma, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, 3-39-33 Showa-machi, Maebashi, Gunma, Japan
| | - Norio Ozaki
- Department of Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Hiroyuki Kidokoro
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Mizoguchi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Ayako M Watabe
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, 163-1 Kashiwashita, Kashiwa, Chiba, Japan
| | - Shin-Ichiro Horigane
- Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Molecular/Cellular Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Sayaka Takemoto-Kimura
- Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan.
- Molecular/Cellular Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan.
| |
Collapse
|
3
|
Berchtold MW, Villalobo A. Ca 2+/calmodulin signaling in organismal aging and cellular senescence: Impact on human diseases. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167583. [PMID: 39579800 DOI: 10.1016/j.bbadis.2024.167583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Molecular mechanisms of aging processes at the level of organisms and cells are in the focus of a large number of research laboratories. This research culminated in recent breakthroughs, which contributed to the better understanding of the natural aging process and aging associated malfunctions leading to age-related diseases. Ca2+ in connection with its master intracellular sensor protein calmodulin (CaM) regulates a plethora of crucial cellular processes orchestrating a wide range of signaling processes. This review focuses on the involvement of Ca2+/CaM in cellular mechanisms, which are associated with normal aging, as well as playing a role in the development of diseases connected with signaling processes during aging. We specifically highlight processes that involve inactivation of proteins, which take part in Ca2+/CaM regulatory systems by oxygen or nitrogen free radical species, during organismal aging and cellular senescence. As examples of organs where aging processes have recently been investigated, we chose to review the literature on molecular aging processes with involvement of Ca2+/CaM in heart and neuronal diseases, as well as in cancer and metabolic diseases, all deeply affected by aging. In addition, this article focuses on cellular senescence, a mechanism that may contribute to aging processes and therefore has been proposed as a target to interfere with the progression of age-associated diseases.
Collapse
Affiliation(s)
- Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen Ø, Denmark.
| | - Antonio Villalobo
- Cancer and Human Molecular Genetics Area, Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain.
| |
Collapse
|
4
|
Shouval HZ, Flores-Obando RE, Sacktor TC. Maintenance of synaptic plasticity by negative-feedback of synaptic protein elimination: Dynamic modeling of KIBRA- PKM ζ interactions in LTP and memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614943. [PMID: 39386672 PMCID: PMC11463625 DOI: 10.1101/2024.09.25.614943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Activity-dependent modifications of synaptic efficacies are a cellular substrate of learning and memory. Current theories propose that the long-term maintenance of synaptic efficacies and memory is accomplished via a positive-feedback loop at the level of production of a protein species or a protein state. Here we propose a qualitatively different theoretical framework based on negative-feedback at the level of protein elimination. This theory is motivated by recent experimental findings regarding the binding of P K M ζ and KIBRA, two synaptic proteins involved in maintenance of memory, and on how this binding affects the proteins' degradation. We demonstrate this theoretical framework with two different models, a simple abstract model to explore generic features of such a process, and an experimentally motivated phenomenological model. The results of these models are qualitatively consistent with existing data, and generate novel predictions that could be experimentally tested to further validate or reject the negative-feedback theory.
Collapse
Affiliation(s)
- Harel Z. Shouval
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, TX 77030, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Rafael E. Flores-Obando
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY. 11203. USA
| | - Todd C. Sacktor
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY. 11203. USA
- Department of Physiology, Pharmacology, Anesthesiology, and Neurology, SUNY Downstate Health Sciences University, Brooklyn, NY. 11203. USA
| |
Collapse
|
5
|
Metzbower SR, Levy AD, Dharmasri PA, Anderson MC, Blanpied TA. Distinct SAP102 and PSD-95 Nano-organization Defines Multiple Types of Synaptic Scaffold Protein Domains at Single Synapses. J Neurosci 2024; 44:e1715232024. [PMID: 38777601 PMCID: PMC11211720 DOI: 10.1523/jneurosci.1715-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
MAGUK scaffold proteins play a central role in maintaining and modulating synaptic signaling, providing a framework to retain and position receptors, signaling molecules, and other synaptic components. In particular, the MAGUKs SAP102 and PSD-95 are essential for synaptic function at distinct developmental timepoints and perform both overlapping and unique roles. While their similar structures allow for common binding partners, SAP102 is expressed earlier in synapse development and is required for synaptogenesis, whereas PSD-95 expression peaks later and is associated with synapse maturation. PSD-95 and other key synaptic proteins organize into subsynaptic nanodomains that have a significant impact on synaptic transmission, but the nanoscale organization of SAP102 is unknown. How SAP102 is organized within the synapse, and how it relates spatially to PSD-95 on a nanometer scale, could underlie its unique functions and impact how SAP102 scaffolds synaptic proteins. Here we used DNA-PAINT super-resolution microscopy to measure SAP102 nano-organization and its spatial relationship to PSD-95 at individual synapses in mixed-sex rat cultured neurons. We found that like PSD-95, SAP102 accumulates in high-density subsynaptic nanoclusters (NCs). However, SAP102 NCs were smaller and denser than PSD-95 NCs across development. Additionally, only a subset of SAP102 NCs co-organized with PSD-95, revealing MAGUK nanodomains within individual synapses containing either one or both proteins. These MAGUK nanodomain types had distinct NC properties and were differentially enriched with the presynaptic release protein Munc13-1. This organization into both shared and distinct subsynaptic nanodomains may underlie the ability of SAP102 and PSD-95 to perform both common and unique synaptic functions.
Collapse
Affiliation(s)
- Sarah R Metzbower
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Aaron D Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Poorna A Dharmasri
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Michael C Anderson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
- University of Maryland Medicine Institute for Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
6
|
Kaizuka T, Hirouchi T, Saneyoshi T, Shirafuji T, Collins MO, Grant SGN, Hayashi Y, Takumi T. FAM81A is a postsynaptic protein that regulates the condensation of postsynaptic proteins via liquid-liquid phase separation. PLoS Biol 2024; 22:e3002006. [PMID: 38452102 PMCID: PMC10919877 DOI: 10.1371/journal.pbio.3002006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/17/2024] [Indexed: 03/09/2024] Open
Abstract
Proteome analyses of the postsynaptic density (PSD), a proteinaceous specialization beneath the postsynaptic membrane of excitatory synapses, have identified several thousands of proteins. While proteins with predictable functions have been well studied, functionally uncharacterized proteins are mostly overlooked. In this study, we conducted a comprehensive meta-analysis of 35 PSD proteome datasets, encompassing a total of 5,869 proteins. Employing a ranking methodology, we identified 97 proteins that remain inadequately characterized. From this selection, we focused our detailed analysis on the highest-ranked protein, FAM81A. FAM81A interacts with PSD proteins, including PSD-95, SynGAP, and NMDA receptors, and promotes liquid-liquid phase separation of those proteins in cultured cells or in vitro. Down-regulation of FAM81A in cultured neurons causes a decrease in the size of PSD-95 puncta and the frequency of neuronal firing. Our findings suggest that FAM81A plays a crucial role in facilitating the interaction and assembly of proteins within the PSD, and its presence is important for maintaining normal synaptic function. Additionally, our methodology underscores the necessity for further characterization of numerous synaptic proteins that still lack comprehensive understanding.
Collapse
Affiliation(s)
- Takeshi Kaizuka
- RIKEN Brain Science Institute, Wako, Saitama, Japan
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Chuo, Kobe, Japan
- Centre for Clinical Brain Sciences, Chancellor’s Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, United Kingdom
| | - Taisei Hirouchi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeo Saneyoshi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshihiko Shirafuji
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Chuo, Kobe, Japan
| | - Mark O. Collins
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- biOMICS Facility, Mass Spectrometry Centre, University of Sheffield, Sheffield, United Kingdom
| | - Seth G. N. Grant
- Centre for Clinical Brain Sciences, Chancellor’s Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama, Japan
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Chuo, Kobe, Japan
- RIKEN Center for Biosystems Dynamics Research, Chuo, Kobe, Japan
| |
Collapse
|
7
|
Yu B, Chao DY, Zhao Y. How plants sense and respond to osmotic stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:394-423. [PMID: 38329193 DOI: 10.1111/jipb.13622] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Drought is one of the most serious abiotic stresses to land plants. Plants sense and respond to drought stress to survive under water deficiency. Scientists have studied how plants sense drought stress, or osmotic stress caused by drought, ever since Charles Darwin, and gradually obtained clues about osmotic stress sensing and signaling in plants. Osmotic stress is a physical stimulus that triggers many physiological changes at the cellular level, including changes in turgor, cell wall stiffness and integrity, membrane tension, and cell fluid volume, and plants may sense some of these stimuli and trigger downstream responses. In this review, we emphasized water potential and movements in organisms, compared putative signal inputs in cell wall-containing and cell wall-free organisms, prospected how plants sense changes in turgor, membrane tension, and cell fluid volume under osmotic stress according to advances in plants, animals, yeasts, and bacteria, summarized multilevel biochemical and physiological signal outputs, such as plasma membrane nanodomain formation, membrane water permeability, root hydrotropism, root halotropism, Casparian strip and suberin lamellae, and finally proposed a hypothesis that osmotic stress responses are likely to be a cocktail of signaling mediated by multiple osmosensors. We also discussed the core scientific questions, provided perspective about the future directions in this field, and highlighted the importance of robust and smart root systems and efficient source-sink allocations for generating future high-yield stress-resistant crops and plants.
Collapse
Affiliation(s)
- Bo Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Sciences, Shanghai, 200032, China
- Key Laboratory of Plant Carbon Capture, The Chinese Academy of Sciences, Shanghai, 200032, China
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, The Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Sciences, Shanghai, 200032, China
- Key Laboratory of Plant Carbon Capture, The Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Metzbower SR, Dharmasri PA, Levy AD, Anderson MC, Blanpied TA. Distinct SAP102 and PSD-95 nano-organization defines multiple types of synaptic scaffold protein domains at single synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557372. [PMID: 37745494 PMCID: PMC10515860 DOI: 10.1101/2023.09.12.557372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The MAGUK family of scaffold proteins plays a central role in maintaining and modulating synaptic signaling, providing a framework to retain and position receptors, signaling molecules, and other synaptic components. Of these scaffold proteins, SAP102 and PSD-95 are essential for synaptic function at distinct developmental timepoints and perform overlapping as well as unique roles. While their similar structures allow for common binding partners, SAP102 is expressed earlier in synapse development and is required for synaptogenesis, whereas PSD-95 expression peaks later in development and is associated with synapse maturation. PSD-95 and other key synaptic proteins organize into subsynaptic nanodomains that have a significant impact on synaptic transmission, but the nanoscale organization of SAP102 is unknown. How SAP102 is organized within the synapse, and how it relates spatially to PSD-95 on a nanometer scale, could impact how SAP102 clusters synaptic proteins and underlie its ability to perform its unique functions. Here we used DNA-PAINT super-resolution microscopy to measure SAP102 nano-organization and its spatial relationship to PSD-95 at individual synapses. We found that like PSD-95, SAP102 accumulates in high-density subsynaptic nanoclusters. However, SAP102 nanoclusters were smaller and denser than PSD-95 nanoclusters across development. Additionally, only a subset of SAP102 nanoclusters co-organized with PSD-95, revealing that within individual synapses there are nanodomains that contain either one or both proteins. This organization into both shared and distinct subsynaptic nanodomains may underlie the ability of SAP102 and PSD-95 to perform both common and unique synaptic functions.
Collapse
Affiliation(s)
- Sarah R. Metzbower
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Poorna A. Dharmasri
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Aaron D. Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Michael C. Anderson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Thomas A. Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201
- University of Maryland Medicine Institute for Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
9
|
Yamada R, Takada S. Postsynaptic protein assembly in three and two dimensions studied by mesoscopic simulations. Biophys J 2023; 122:3395-3410. [PMID: 37496268 PMCID: PMC10465727 DOI: 10.1016/j.bpj.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/25/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023] Open
Abstract
Recently, cellular biomolecular condensates formed via phase separation have received considerable attention. While they can be formed either in cytosol (denoted as 3D) or beneath the membrane (2D), the underlying difference between the two has not been well clarified. To compare the phase behaviors in 3D and 2D, postsynaptic density (PSD) serves as a model system. PSD is a protein condensate located under the postsynaptic membrane that influences the localization of glutamate receptors and thus contributes to synaptic plasticity. Recent in vitro studies have revealed the formation of droplets of various soluble PSD proteins via liquid-liquid phase separation. However, it is unclear how these protein condensates are formed beneath the membrane and how they specifically affect the localization of glutamate receptors in the membrane. In this study, focusing on the mixture of a glutamate receptor complex, AMPAR-TARP, and a ubiquitous scaffolding protein, PSD-95, we constructed a mesoscopic model of protein-domain interactions in PSD and performed comparative molecular simulations. The results showed a sharp contrast in the phase behaviors of protein assemblies in 3D and those under the membrane (2D). A mixture of a soluble variant of the AMPAR-TARP complex and PSD-95 in the 3D system resulted in a phase-separated condensate, which was consistent with the experimental results. However, with identical domain interactions, AMPAR-TARP embedded in the membrane formed clusters with PSD-95, but did not form a stable separated phase. Thus, the cluster formation behaviors of PSD proteins in the 3D and 2D systems were distinct. The current study suggests that, more generally, stable phase separation can be more difficult to achieve in and beneath the membrane than in 3D systems.
Collapse
Affiliation(s)
- Risa Yamada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
10
|
Zhu WH, Yang XX, Gou XZ, Fu SM, Chen JH, Gao F, Shen Y, Bi DL, Tang AH. Nanoscale reorganisation of synaptic proteins in Alzheimer's disease. Neuropathol Appl Neurobiol 2023; 49:e12924. [PMID: 37461203 DOI: 10.1111/nan.12924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/30/2023] [Accepted: 06/24/2023] [Indexed: 08/31/2023]
Abstract
AIMS Synaptic strength depends strongly on the subsynaptic organisation of presynaptic transmitter release and postsynaptic receptor densities, and their alterations are expected to underlie pathologies. Although synaptic dysfunctions are common pathogenic traits of Alzheimer's disease (AD), it remains unknown whether synaptic protein nano-organisation is altered in AD. Here, we systematically characterised the alterations in the subsynaptic organisation in cellular and mouse models of AD. METHODS We used immunostaining and super-resolution stochastic optical reconstruction microscopy imaging to quantitatively examine the synaptic protein nano-organisation in both Aβ1-42-treated neuronal cultures and cortical sections from a mouse model of AD, APP23 mice. RESULTS We found that Aβ1-42-treatment of cultured hippocampal neurons decreased the synaptic retention of postsynaptic scaffolds and receptors and disrupted their nanoscale alignment to presynaptic transmitter release sites. In cortical sections, we found that while GluA1 receptors in wild-type mice were organised in subsynaptic nanoclusters with high local densities, receptors in APP23 mice distributed more homogeneously within synapses. This reorganisation, together with the reduced overall receptor density, led to reduced glutamatergic synaptic transmission. Meanwhile, the transsynaptic alignment between presynaptic release-guiding RIM1/2 and postsynaptic scaffolding protein PSD-95 was reduced in APP23 mice. Importantly, these reorganisations were progressive with age and were more pronounced in synapses in close vicinity of Aβ plaques with dense cores. CONCLUSIONS Our study revealed a spatiotemporal-specific reorganisation of synaptic nanostructures in AD and identifies dense-core amyloid plaques as the major local inductor in APP23 mice.
Collapse
Affiliation(s)
- Wang-Hui Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Xiao-Xu Yang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Sciences and Technology of China, Hefei, China
- Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Xu-Zhuo Gou
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Shu-Mei Fu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Sciences and Technology of China, Hefei, China
- Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Jia-Hui Chen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Feng Gao
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Sciences and Technology of China, Hefei, China
| | - Yong Shen
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Sciences and Technology of China, Hefei, China
- Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, China
| | - Dan-Lei Bi
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Sciences and Technology of China, Hefei, China
- Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, China
| | - Ai-Hui Tang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Sciences and Technology of China, Hefei, China
- Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| |
Collapse
|
11
|
Zhang X, Li H, Ma Y, Zhong D, Hou S. Study liquid-liquid phase separation with optical microscopy: A methodology review. APL Bioeng 2023; 7:021502. [PMID: 37180732 PMCID: PMC10171890 DOI: 10.1063/5.0137008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/28/2023] [Indexed: 05/16/2023] Open
Abstract
Intracellular liquid-liquid phase separation (LLPS) is a critical process involving the dynamic association of biomolecules and the formation of non-membrane compartments, playing a vital role in regulating biomolecular interactions and organelle functions. A comprehensive understanding of cellular LLPS mechanisms at the molecular level is crucial, as many diseases are linked to LLPS, and insights gained can inform drug/gene delivery processes and aid in the diagnosis and treatment of associated diseases. Over the past few decades, numerous techniques have been employed to investigate the LLPS process. In this review, we concentrate on optical imaging methods applied to LLPS studies. We begin by introducing LLPS and its molecular mechanism, followed by a review of the optical imaging methods and fluorescent probes employed in LLPS research. Furthermore, we discuss potential future imaging tools applicable to the LLPS studies. This review aims to provide a reference for selecting appropriate optical imaging methods for LLPS investigations.
Collapse
Affiliation(s)
| | | | - Yue Ma
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | | | - Shangguo Hou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
12
|
Fyn nanoclustering requires switching to an open conformation and is enhanced by FTLD-Tau biomolecular condensates. Mol Psychiatry 2023; 28:946-962. [PMID: 36258016 PMCID: PMC9908554 DOI: 10.1038/s41380-022-01825-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022]
Abstract
Fyn is a Src kinase that controls critical signalling cascades and has been implicated in learning and memory. Postsynaptic enrichment of Fyn underpins synaptotoxicity in dementias such as Alzheimer's disease and frontotemporal lobar degeneration with Tau pathology (FTLD-Tau). The FLTD P301L mutant Tau is associated with a higher propensity to undergo liquid-liquid phase separation (LLPS) and form biomolecular condensates. Expression of P301L mutant Tau promotes aberrant trapping of Fyn in nanoclusters within hippocampal dendrites by an unknown mechanism. Here, we used single-particle tracking photoactivated localisation microscopy to demonstrate that the opening of Fyn into its primed conformation promotes its nanoclustering in dendrites leading to increased Fyn/ERK/S6 downstream signalling. Preventing the auto-inhibitory closed conformation of Fyn through phospho-inhibition or through perturbation of its SH3 domain increased Fyn's nanoscale trapping, whereas inhibition of the catalytic domain had no impact. By combining pharmacological and genetic approaches, we demonstrate that P301L Tau enhanced both Fyn nanoclustering and Fyn/ERK/S6 signalling via its ability to form biomolecular condensates. Together, our findings demonstrate that Fyn alternates between a closed and an open conformation, the latter being enzymatically active and clustered. Furthermore, pathogenic immobilisation of Fyn relies on the ability of P301L Tau to form biomolecular condensates, thus highlighting the critical importance of LLPS in controlling nanoclustering and downstream intracellular signalling events.
Collapse
|
13
|
Zhou Q. Calcium Sensors of Neurotransmitter Release. ADVANCES IN NEUROBIOLOGY 2023; 33:119-138. [PMID: 37615865 DOI: 10.1007/978-3-031-34229-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Calcium (Ca2+) plays a critical role in triggering all three primary modes of neurotransmitter release (synchronous, asynchronous, and spontaneous). Synaptotagmin1, a protein with two C2 domains, is the first isoform of the synaptotagmin family that was identified and demonstrated as the primary Ca2+ sensor for synchronous neurotransmitter release. Other isoforms of the synaptotagmin family as well as other C2 proteins such as the double C2 domain protein family were found to act as Ca2+ sensors for different modes of neurotransmitter release. Major recent advances and previous data suggest a new model, release-of-inhibition, for the initiation of Ca2+-triggered synchronous neurotransmitter release. Synaptotagmin1 binds Ca2+ via its two C2 domains and relieves a primed pre-fusion machinery. Before Ca2+ triggering, synaptotagmin1 interacts Ca2+ independently with partially zippered SNARE complexes, the plasma membrane, phospholipids, and other components to form a primed pre-fusion state that is ready for fast release. However, membrane fusion is inhibited until the arrival of Ca2+ reorients the Ca2+-binding loops of the C2 domain to perturb the lipid bilayers, help bridge the membranes, and/or induce membrane curvatures, which serves as a power stroke to activate fusion. This chapter reviews the evidence supporting these models and discusses the molecular interactions that may underlie these abilities.
Collapse
Affiliation(s)
- Qiangjun Zhou
- Department of Cell and Developmental Biology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
14
|
Re-examination of the determinants of synaptic strength from the perspective of superresolution imaging. Curr Opin Neurobiol 2022; 74:102540. [DOI: 10.1016/j.conb.2022.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022]
|
15
|
Role of NMDAR plasticity in a computational model of synaptic memory. Sci Rep 2021; 11:21182. [PMID: 34707139 PMCID: PMC8551337 DOI: 10.1038/s41598-021-00516-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 10/12/2021] [Indexed: 11/08/2022] Open
Abstract
A largely unexplored question in neuronal plasticity is whether synapses are capable of encoding and learning the timing of synaptic inputs. We address this question in a computational model of synaptic input time difference learning (SITDL), where N-methyl-d-aspartate receptor (NMDAR) isoform expression in silent synapses is affected by time differences between glutamate and voltage signals. We suggest that differences between NMDARs' glutamate and voltage gate conductances induce modifications of the synapse's NMDAR isoform population, consequently changing the timing of synaptic response. NMDAR expression at individual synapses can encode the precise time difference between signals. Thus, SITDL enables the learning and reconstruction of signals across multiple synapses of a single neuron. In addition to plausibly predicting the roles of NMDARs in synaptic plasticity, SITDL can be usefully applied in artificial neural network models.
Collapse
|
16
|
Hayashi Y. Molecular mechanism of hippocampal long-term potentiation - Towards multiscale understanding of learning and memory. Neurosci Res 2021; 175:3-15. [PMID: 34375719 DOI: 10.1016/j.neures.2021.08.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
Long-term potentiation (LTP) of synaptic transmission is considered to be a cellular counterpart of learning and memory. Activation of postsynaptic NMDA type glutamate receptor (NMDA-R) induces trafficking of AMPA type glutamate receptors (AMPA-R) and other proteins to the synapse in sequential fashion. At the same time, the dendritic spine expands for long-term and modulation of actin underlies this (structural LTP or sLTP). How these changes persist despite constant diffusion and turnover of the component proteins have been the central focus of the current LTP research. Signaling triggered by Ca2+-influx via NMDA-R triggers kinase including Ca2+/calmodulin-dependent protein kinase II (CaMKII). CaMKII can sustain longer-term biochemical signaling by forming a reciprocally-activating kinase-effector complex with its substrate proteins including Tiam1, thereby regulating persistence of the downstream signaling. Furthermore, activated CaMKII can condense at the synapse through the mechanism of liquid-liquid phase separation (LLPS). This increases the binding capacity at the synapse, thereby contributing to the maintenance of enlarged protein complexes. It may also serve as the synapse tag, which captures newly synthesized proteins.
Collapse
Affiliation(s)
- Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| |
Collapse
|
17
|
Abstract
This study presents evidence that the MAGUK family of synaptic scaffolding proteins plays an essential, but redundant, role in long-term potentiation (LTP). The action of PSD-95, but not that of SAP102, requires the binding to the transsynaptic adhesion protein ADAM22, which is required for nanocolumn stabilization. Based on these and previous results, we propose a two-step process in the recruitment of AMPARs during LTP. First, AMPARs, via TARPs, bind to exposed PSD-95 in the PSD. This alone is not adequate to enhance synaptic transmission. Second, the AMPAR/TARP/PSD-95 complex is stabilized in the nanocolumn by binding to ADAM22. A second, ADAM22-independent pathway is proposed for SAP102.
Collapse
|