1
|
Esparza J, Quintanilla JP, Cid E, Medeiros AC, Gallego JA, de la Prida LM. Cell-type-specific manifold analysis discloses independent geometric transformations in the hippocampal spatial code. Neuron 2025; 113:1098-1109.e6. [PMID: 40015277 DOI: 10.1016/j.neuron.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/26/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Integrating analyses of genetically defined cell types with population-level approaches remains poorly explored. We investigated this question by focusing on hippocampal spatial maps and the contribution of two genetically defined pyramidal cell types in the deep and superficial CA1 sublayers. Using single- and dual-color miniscope imaging in mice running along a linear track, we found that population activity from these cells exhibited three-dimensional ring manifolds that encoded the animal position and running direction. Despite shared topology, sublayer-specific manifolds displayed distinct geometric features. Manipulating track orientation revealed rotational and translational changes in manifolds from deep cells, contrasting with more stable representations by superficial cells. These transformations were not observed in manifolds derived from the entire CA1 population. Instead, cell-type-specific chemogenetic silencing of either sublayer revealed independent geometric codes. Our results show how genetically specified subpopulations may underpin parallel spatial maps that can be manipulated independently.
Collapse
Affiliation(s)
| | | | - Elena Cid
- Instituto Cajal CSIC, Madrid 28002, Spain
| | - Ana C Medeiros
- Instituto Cajal CSIC, Madrid 28002, Spain; Faculdade de Medicina de Riberâo Preto, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Juan A Gallego
- Department of Bioengineering, Imperial College London, London, UK
| | | |
Collapse
|
2
|
Kramer TS, Wan FK, Pugliese SM, Atanas AA, Hiser AW, Luo J, Bueno E, Flavell SW. Neural Sequences Underlying Directed Turning in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.11.607076. [PMID: 39149398 PMCID: PMC11326294 DOI: 10.1101/2024.08.11.607076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Complex behaviors like navigation rely on sequenced motor outputs that combine to generate effective movement. The brain-wide organization of the circuits that integrate sensory signals to select and execute appropriate motor sequences is not well understood. Here, we characterize the architecture of neural circuits that control C. elegans olfactory navigation. We identify error-correcting turns during navigation and use whole-brain calcium imaging and cell-specific perturbations to determine their neural underpinnings. These turns occur as motor sequences accompanied by neural sequences, in which defined neurons activate in a stereotyped order during each turn. Distinct neurons in this sequence respond to sensory cues, anticipate upcoming turn directions, and drive movement, linking key features of this sensorimotor behavior across time. The neuromodulator tyramine coordinates these sequential brain dynamics. Our results illustrate how neuromodulation can act on a defined neural architecture to generate sequential patterns of activity that link sensory cues to motor actions.
Collapse
Affiliation(s)
- Talya S. Kramer
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- MIT Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Flossie K. Wan
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah M. Pugliese
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam A. Atanas
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alex W. Hiser
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jinyue Luo
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric Bueno
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven W. Flavell
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
3
|
Jones EAA, Low IIC, Cho FS, Giocomo LM. Entorhinal cortex represents task-relevant remote locations independent of CA1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604815. [PMID: 39091781 PMCID: PMC11291150 DOI: 10.1101/2024.07.23.604815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Neurons can collectively represent the current sensory experience while an animal is exploring its environment or remote experiences while the animal is immobile. These remote representations can reflect learned associations1-3 and be required for learning4. Neurons in the medial entorhinal cortex (MEC) reflect the animal's current location during movement5, but little is known about what MEC neurons collectively represent during immobility. Here, we recorded thousands of neurons in superficial MEC and dorsal CA1 as mice learned to associate two pairs of rewarded locations. We found that during immobility, the MEC neural population frequently represented positions far from the animal's location, which we defined as 'non-local coding'. Cells with spatial firing fields at remote locations drove non-local coding, even as cells representing the current position remained active. While MEC non-local coding has been reported during sharp-wave ripples in downstream CA16, we observed non-local coding more often outside of ripples. In fact, CA1 activity was less coordinated with MEC during non-local coding. We further observed that non-local coding was pertinent to the task, as MEC preferentially represented remote task-relevant locations at appropriate times, while rarely representing task-irrelevant locations. Together, this work raises the possibility that MEC non-local coding could strengthen associations between locations independently from CA1.
Collapse
Affiliation(s)
- Emily A. Aery Jones
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Isabel I. C. Low
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Frances S. Cho
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Lisa M. Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
4
|
Yuste R, Cossart R, Yaksi E. Neuronal ensembles: Building blocks of neural circuits. Neuron 2024; 112:875-892. [PMID: 38262413 PMCID: PMC10957317 DOI: 10.1016/j.neuron.2023.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Neuronal ensembles, defined as groups of neurons displaying recurring patterns of coordinated activity, represent an intermediate functional level between individual neurons and brain areas. Novel methods to measure and optically manipulate the activity of neuronal populations have provided evidence of ensembles in the neocortex and hippocampus. Ensembles can be activated intrinsically or in response to sensory stimuli and play a causal role in perception and behavior. Here we review ensemble phenomenology, developmental origin, biophysical and synaptic mechanisms, and potential functional roles across different brain areas and species, including humans. As modular units of neural circuits, ensembles could provide a mechanistic underpinning of fundamental brain processes, including neural coding, motor planning, decision-making, learning, and adaptability.
Collapse
Affiliation(s)
- Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Rosa Cossart
- Inserm, INMED, Turing Center for Living Systems Aix-Marseille University, Marseille, France.
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway; Koç University Research Center for Translational Medicine, Koç University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
5
|
Ma M, Simoes de Souza F, Futia GL, Anderson SR, Riguero J, Tollin D, Gentile-Polese A, Platt JP, Steinke K, Hiratani N, Gibson EA, Restrepo D. Sequential activity of CA1 hippocampal cells constitutes a temporal memory map for associative learning in mice. Curr Biol 2024; 34:841-854.e4. [PMID: 38325376 PMCID: PMC11645751 DOI: 10.1016/j.cub.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Sequential neural dynamics encoded by time cells play a crucial role in hippocampal function. However, the role of hippocampal sequential neural dynamics in associative learning is an open question. We used two-photon Ca2+ imaging of dorsal CA1 (dCA1) neurons in the stratum pyramidale (SP) in head-fixed mice performing a go-no go associative learning task to investigate how odor valence is temporally encoded in this area of the brain. We found that SP cells responded differentially to the rewarded or unrewarded odor. The stimuli were decoded accurately from the activity of the neuronal ensemble, and accuracy increased substantially as the animal learned to differentiate the stimuli. Decoding the stimulus from individual SP cells responding differentially revealed that decision-making took place at discrete times after stimulus presentation. Lick prediction decoded from the ensemble activity of cells in dCA1 correlated linearly with lick behavior. Our findings indicate that sequential activity of SP cells in dCA1 constitutes a temporal memory map used for decision-making in associative learning. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Ming Ma
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Fabio Simoes de Souza
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Center for Mathematics, Computation and Cognition, Federal University of ABC, Sao Bernardo do Campo 09606-045, SP, Brazil
| | - Gregory L Futia
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sean R Anderson
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jose Riguero
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniel Tollin
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Arianna Gentile-Polese
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jonathan P Platt
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kira Steinke
- Integrated Physiology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Naoki Hiratani
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Emily A Gibson
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
6
|
Nakai S, Kitanishi T, Mizuseki K. Distinct manifold encoding of navigational information in the subiculum and hippocampus. SCIENCE ADVANCES 2024; 10:eadi4471. [PMID: 38295173 PMCID: PMC10830115 DOI: 10.1126/sciadv.adi4471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
The subiculum (SUB) plays a crucial role in spatial navigation and encodes navigational information differently from the hippocampal CA1 area. However, the representation of subicular population activity remains unknown. Here, we investigated the neuronal population activity recorded extracellularly from the CA1 and SUB of rats performing T-maze and open-field tasks. The trajectory of population activity in both areas was confined to low-dimensional neural manifolds homoeomorphic to external space. The manifolds conveyed position, speed, and future path information with higher decoding accuracy in the SUB than in the CA1. The manifolds exhibited common geometry across rats and regions for the CA1 and SUB and between tasks in the SUB. During post-task ripples in slow-wave sleep, population activity represented reward locations/events more frequently in the SUB than in CA1. Thus, the CA1 and SUB encode information distinctly into the neural manifolds that underlie navigational information processing during wakefulness and sleep.
Collapse
Affiliation(s)
- Shinya Nakai
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Takuma Kitanishi
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Kenji Mizuseki
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| |
Collapse
|
7
|
Case SL, Lin R, Thibault O. Age- and sex-dependent alterations in primary somatosensory cortex neuronal calcium network dynamics during locomotion. Aging Cell 2023; 22:e13898. [PMID: 37269157 PMCID: PMC10410056 DOI: 10.1111/acel.13898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Over the past 30 years, the calcium (Ca2+ ) hypothesis of brain aging has provided clear evidence that hippocampal neuronal Ca2+ dysregulation is a key biomarker of aging. Age-dependent Ca2+ -mediated changes in intrinsic excitability, synaptic plasticity, and activity have helped identify some of the mechanisms engaged in memory and cognitive decline based on work done mostly at the single-cell level and in the slice preparation. Recently, our lab identified age- and Ca2+ -related neuronal network dysregulation in the cortex of the anesthetized animal. Still, investigations in the awake animal are needed to test the generalizability of the Ca2+ hypothesis of brain aging. Here, we used in vigilo two-photon imaging in ambulating mice, to image GCaMP8f in the primary somatosensory cortex (S1), during ambulation and at rest. We investigated aging- and sex-related changes in neuronal networks in the C56BL/6J mouse. Following imaging, gait behavior was characterized to test for changes in locomotor stability. During ambulation, in both young adult and aged mice, an increase in network connectivity and synchronicity was noted. An age-dependent increase in synchronicity was seen in ambulating aged males only. Additionally, females displayed increases in the number of active neurons, Ca2+ transients, and neuronal activity compared to males, particularly during ambulation. These results suggest S1 Ca2+ dynamics and network synchronicity are likely contributors of locomotor stability. We believe this work raises awareness of age- and sex-dependent alterations in S1 neuronal networks, perhaps underlying the increase in falls with age.
Collapse
Affiliation(s)
- Sami L. Case
- Department of Pharmacology & Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Ruei‐Lung Lin
- Department of Pharmacology & Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Olivier Thibault
- Department of Pharmacology & Nutritional SciencesUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| |
Collapse
|
8
|
McHugh TJ, Poo MM. Editorial overview: Neurobiology of learning and plasticity. Curr Opin Neurobiol 2023; 81:102734. [PMID: 37279605 DOI: 10.1016/j.conb.2023.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN, Japan.
| | - Mu-Ming Poo
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Center for Brain Science, Wakoshi, Saitama, Japan.
| |
Collapse
|
9
|
Mattedi F, Lloyd-Morris E, Hirth F, Vagnoni A. Optogenetic cleavage of the Miro GTPase reveals the direct consequences of real-time loss of function in Drosophila. PLoS Biol 2023; 21:e3002273. [PMID: 37590319 PMCID: PMC10465005 DOI: 10.1371/journal.pbio.3002273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 08/29/2023] [Accepted: 07/22/2023] [Indexed: 08/19/2023] Open
Abstract
Miro GTPases control mitochondrial morphology, calcium homeostasis, and regulate mitochondrial distribution by mediating their attachment to the kinesin and dynein motor complex. It is not clear, however, how Miro proteins spatially and temporally integrate their function as acute disruption of protein function has not been performed. To address this issue, we have developed an optogenetic loss of function "Split-Miro" allele for precise control of Miro-dependent mitochondrial functions in Drosophila. Rapid optogenetic cleavage of Split-Miro leads to a striking rearrangement of the mitochondrial network, which is mediated by mitochondrial interaction with the microtubules. Unexpectedly, this treatment did not impact the ability of mitochondria to buffer calcium or their association with the endoplasmic reticulum. While Split-Miro overexpression is sufficient to augment mitochondrial motility, sustained photocleavage shows that Split-Miro is surprisingly dispensable to maintain elevated mitochondrial processivity. In adult fly neurons in vivo, Split-Miro photocleavage affects both mitochondrial trafficking and neuronal activity. Furthermore, functional replacement of endogenous Miro with Split-Miro identifies its essential role in the regulation of locomotor activity in adult flies, demonstrating the feasibility of tuning animal behaviour by real-time loss of protein function.
Collapse
Affiliation(s)
- Francesca Mattedi
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Ethlyn Lloyd-Morris
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Frank Hirth
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Alessio Vagnoni
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
10
|
LaBar KS. Neuroimaging of Fear Extinction. Curr Top Behav Neurosci 2023; 64:79-101. [PMID: 37455302 DOI: 10.1007/7854_2023_429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Extinguishing fear and defensive responses to environmental threats when they are no longer warranted is a critical learning ability that can promote healthy self-regulation and, ultimately, reduce susceptibility to or maintenance of affective-, trauma-, stressor-,and anxiety-related disorders. Neuroimaging tools provide an important means to uncover the neural mechanisms of effective extinction learning that, in turn, can abate the return of fear. Here I review the promises and pitfalls of functional neuroimaging as a method to investigate fear extinction circuitry in the healthy human brain. I discuss the extent to which neuroimaging has validated the core circuits implicated in rodent models and has expanded the scope of the brain regions implicated in extinction processes. Finally, I present new advances made possible by multivariate data analysis tools that yield more refined insights into the brain-behavior relationships involved.
Collapse
Affiliation(s)
- Kevin S LaBar
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA.
| |
Collapse
|