1
|
Palese F, Rakotobe M, Zurzolo C. Transforming the concept of connectivity: unveiling tunneling nanotube biology and their roles in brain development and neurodegeneration. Physiol Rev 2025; 105:1823-1865. [PMID: 40067081 DOI: 10.1152/physrev.00023.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 02/03/2025] [Indexed: 05/08/2025] Open
Abstract
Tunneling nanotubes (TNTs) are thin tubular membrane protrusions that connect distant cells, generating a complex cellular network. Over the past few decades, research on TNTs has provided important insights into their biology, including structural composition, formation mechanisms, modulators, and functionality. It has been discovered that TNTs allow cytoplasmic continuity between connected cells, facilitating fast intercellular communication via both passive and active exchange of materials. These features are pivotal in the nervous system, where rapid processing of inputs is physiologically required. TNTs have been implicated in the progression of neurodegenerative diseases and cancer in various in vitro models, and TNT-like structures have also been observed in the developing brain and in vivo. This highlights their significant role in pathophysiological processes. In this comprehensive review we aim to provide an extensive overview of TNTs, starting from key structural features and mechanisms of formation and describing the main experimental techniques used to detect these structures both in vitro and in vivo. We focus primarily on the nervous system, where the discovery of TNTs could prompt a reconsideration of the brain functioning as individual units (the neuronal theory of Cajal) versus neurons being physically connected, as Golgi believed. We illustrate the involvement of TNTs in brain development and neurodegenerative states and highlight the limitations and future research needs in this field.
Collapse
Affiliation(s)
- Francesca Palese
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris, France
| | - Malalaniaina Rakotobe
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris, France
| | - Chiara Zurzolo
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris, France
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Anding A, Ren B, Padmashri R, Burkovetskaya M, Dunaevsky A. Activity of human-specific Interlaminar Astrocytes in a Chimeric Mouse Model of Fragile X Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640426. [PMID: 40060700 PMCID: PMC11888414 DOI: 10.1101/2025.02.26.640426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Astrocytes, a subtype of glial cells, have multiple roles in regulating neuronal development and homeostasis. In addition to the typical mammalian astrocytes, in the primate cortex interlaminar astrocytes are located in the superficial layer and project long processes traversing multiple layers of the cerebral cortex. Previously, we described a human stem cell based chimeric mouse model where interlaminar astrocytes develop. Here, we utilized this model to study the calcium signaling properties of interlaminar astrocytes. To determine how interlaminar astrocytes could contribute to neurodevelopmental disorders, we generated a chimeric mouse model for Fragile X syndrome. We report that FXS interlaminar astrocytes exhibit hyperexcitable calcium signaling and are associated with dendritic spines with increased turnover rate.
Collapse
|
3
|
Wang S, Baumert R, Séjourné G, Sivadasan Bindu D, Dimond K, Sakers K, Vazquez L, Moore JL, Tan CX, Takano T, Rodriguez MP, Brose N, Bradley L, Lessing R, Soderling SH, La Spada AR, Eroglu C. PD-linked LRRK2 G2019S mutation impairs astrocyte morphology and synapse maintenance via ERM hyperphosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.04.09.536178. [PMID: 39253496 PMCID: PMC11383028 DOI: 10.1101/2023.04.09.536178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Astrocytes are highly complex cells that mediate critical roles in synapse formation and maintenance by establishing thousands of direct contacts with synapses through their perisynaptic processes. Here, we found that the most common Parkinsonism gene mutation, LRRK2 G2019S, enhances the phosphorylation of the ERM proteins (Ezrin, Radixin, and Moesin), components of the perisynaptic astrocyte processes in a subset of cortical astrocytes. The ERM hyperphosphorylation was accompanied by decreased astrocyte morphological complexity and reduced excitatory synapse density and function. Dampening ERM phosphorylation levels in LRRK2 G2019S mouse astrocytes restored both their morphology and the excitatory synapse density in the anterior cingulate cortex. To determine how LRRK2 mutation impacts Ezrin interactome, we used an in vivo BioID proteomic approach, and we found that astrocytic Ezrin interacts with Atg7, a master regulator of autophagy. The Ezrin/Atg7 interaction is inhibited by Ezrin phosphorylation, thus diminished in LRRK2 G2019S astrocytes. Importantly, the Atg7 function is required to maintain proper astrocyte morphology. Our data provide a molecular pathway through which the LRRK2 G2019S mutation alters astrocyte morphology and synaptic density in a brain-region-specific manner.
Collapse
|
4
|
Wang L, Liu R, Wang Y. The roles of extracellular vesicles in mental disorders: information carriers, biomarkers, therapeutic agents. Front Pharmacol 2025; 16:1591469. [PMID: 40271072 PMCID: PMC12014780 DOI: 10.3389/fphar.2025.1591469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
Mental disorders are complex conditions that encompass various symptoms and types, affecting approximately 1 in 8 people globally. They place a significant burden on both families and society as a whole. So far, the etiology of mental disorders remains poorly understood, making diagnosis and treatment particularly challenging. Extracellular vesicles (EVs) are nanoscale particles produced by cells and released into the extracellular space. They contain bioactive molecules including nucleotides, proteins, lipids, and metabolites, which can mediate intercellular communication and are involved in various physiological and pathological processes. Recent studies have shown that EVs are closely linked to mental disorders like schizophrenia, major depressive disorder, and bipolar disorder, playing a key role in their development, diagnosis, prognosis, and treatment. Therefore, based on recent research findings, this paper aims to describe the roles of EVs in mental disorders and summarize their potential applications in diagnosis and treatment, providing new ideas for the future clinical transformation and application of EVs.
Collapse
Affiliation(s)
| | | | - Ying Wang
- Department of Pharmacy, Tianjin Anding Hospital, Tianjin, China
| |
Collapse
|
5
|
Hashimoto JG, Margolies N, Zhang X, Karpf J, Song Y, Gorham N, Davis BA, Zhang F, Linhardt RJ, Carbone L, Guizzetti M. Astrocyte Extracellular Matrix Modulates Neuronal Dendritic Development. Glia 2025. [PMID: 40192069 DOI: 10.1002/glia.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025]
Abstract
Major developmental events occurring in the hippocampus during the third trimester of human gestation and neonatally in altricial rodents include rapid and synchronized dendritic arborization and astrocyte proliferation and maturation. We tested the hypothesis that signals sent by developing astrocytes to developing neurons modulate dendritic development in vivo. First, we altered neuronal development by exposing neonatal (third trimester-equivalent) mice to ethanol, which increased dendritic arborization in hippocampal pyramidal neurons. We next assessed concurrent changes in the mouse astrocyte translatome by translating ribosomal affinity purification (TRAP)-seq. We followed up on ethanol-inhibition of astrocyte Chpf2 and Chsy1 gene translation because these genes encode biosynthetic enzymes of chondroitin sulfate glycosaminoglycan (CS-GAG) chains (extracellular matrix components that inhibit neuronal development and plasticity) and have not been explored before for their roles in dendritic arborization. We report that Chpf2 and Chsy1 are enriched in astrocytes, and their translation is inhibited by ethanol, which also reduces the levels of CS-GAGs measured by Liquid Chromatography/Mass Spectrometry. Finally, astrocyte-conditioned medium derived from Chfp2-silenced astrocytes increased neurite length and branching of hippocampal neurons in vitro, mechanistically linking changes in CS-GAG biosynthetic enzymes in astrocytes to altered neuronal development. These results demonstrate that CS-GAG biosynthetic enzymes in astrocytes regulate dendritic arborization in developing neurons and are involved in ethanol-induced altered neuronal development.
Collapse
Affiliation(s)
- Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
- VA Portland Health Care System, Portland, Oregon, USA
| | - Nicholas Margolies
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
- VA Portland Health Care System, Portland, Oregon, USA
| | - Xiaolu Zhang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
- VA Portland Health Care System, Portland, Oregon, USA
| | - Joshua Karpf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Yuefan Song
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Natalie Gorham
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
- VA Portland Health Care System, Portland, Oregon, USA
| | - Brett A Davis
- Department of Medicine & Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Fuming Zhang
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Robert J Linhardt
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Lucia Carbone
- Department of Medicine & Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular and Genetics, Oregon Health & Science University, Portland, Oregon, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
- VA Portland Health Care System, Portland, Oregon, USA
| |
Collapse
|
6
|
de la Cruz-Gambra A, Baleriola J. Astrocyte-secreted factors modulate synaptic protein synthesis as revealed by puromycin labeling of isolated synaptosomes. Front Mol Neurosci 2025; 18:1427036. [PMID: 40051914 PMCID: PMC11882599 DOI: 10.3389/fnmol.2025.1427036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 01/24/2025] [Indexed: 03/09/2025] Open
Abstract
The synaptic proteome can be shaped by proteins transported from the neuronal soma and/or by mRNAs that are delivered to synapses where proteins are locally synthesized. This last mechanism is known as local translation. Local translation has been extensively studied in neurons in physiological conditions and, more recently, in neurological disorders, in which local transcriptomes and translatomes become dysregulated. It is widely believed that in neurons, the main source of localized transcripts is the neuronal soma and that localized translation is primarily regulated by the neuron itself. However, we wondered whether glial cells, especially astrocytes, could contribute to the modulation of synaptic local protein synthesis. To address this question, we compared levels of proteins produced in synaptic compartments in neuronal and neuron-astrocyte co-cultures using modified Boyden chambers or astrocyte-conditioned medium. We developed a methodology to measure local protein synthesis by puromycin labeling of isolated synaptosomes devoid of somatic input. Our results show that synaptic local translation is enhanced or retained when neurons are cultured in the presence of astrocytes and in response to astrocyte-conditioned medium. Puromycin labeling coupled with proximity ligation identified Rpl26 as one of the proteins whose local synthesis is regulated by astrocyte-secreted factors. Our results thus unravel the contribution of glia to synaptic protein synthesis and point to a previously unexplored extra layer of complexity in the regulation of local translation in neurons.
Collapse
Affiliation(s)
- Aida de la Cruz-Gambra
- Laboratory of Local Translation in Neurons and Glia, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Neuroscience Department, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jimena Baleriola
- Laboratory of Local Translation in Neurons and Glia, Achucarro Basque Center for Neuroscience, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
7
|
Yuan Y, Liu H, Dai Z, He C, Qin S, Su Z. From Physiology to Pathology of Astrocytes: Highlighting Their Potential as Therapeutic Targets for CNS Injury. Neurosci Bull 2025; 41:131-154. [PMID: 39080102 PMCID: PMC11748647 DOI: 10.1007/s12264-024-01258-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/15/2024] [Indexed: 01/19/2025] Open
Abstract
In the mammalian central nervous system (CNS), astrocytes are the ubiquitous glial cells that have complex morphological and molecular characteristics. These fascinating cells play essential neurosupportive and homeostatic roles in the healthy CNS and undergo morphological, molecular, and functional changes to adopt so-called 'reactive' states in response to CNS injury or disease. In recent years, interest in astrocyte research has increased dramatically and some new biological features and roles of astrocytes in physiological and pathological conditions have been discovered thanks to technological advances. Here, we will review and discuss the well-established and emerging astroglial biology and functions, with emphasis on their potential as therapeutic targets for CNS injury, including traumatic and ischemic injury. This review article will highlight the importance of astrocytes in the neuropathological process and repair of CNS injury.
Collapse
Affiliation(s)
- Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
- Department of Pain Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Ziwei Dai
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China.
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
8
|
Ngoc KH, Jeon Y, Ko J, Um JW. Multifarious astrocyte-neuron dialog in shaping neural circuit architecture. Trends Cell Biol 2025; 35:74-87. [PMID: 38853082 DOI: 10.1016/j.tcb.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024]
Abstract
Astrocytes are multifaceted glial cell types that perform structural, functional, metabolic, and homeostatic roles in the brain. Recent studies have revealed mechanisms underlying the diversity of bidirectional communication modes between astrocytes and neurons - the fundamental organizing principle shaping synaptic properties at tripartite synapses. These astrocyte-neuron interactions are critical for the proper functioning of synapses and neural circuits. This review focuses on molecular mechanisms that direct these interactions, highlighting the versatile roles of multiple adhesion-based paths that likely modulate them, often in a context-dependent manner. It also describes how astrocyte-mediated processes go awry in certain brain disorders and provides a timely insight on the pivotal roles of astrocyte-neuron interactions in synaptic integrity and their relevance to understanding and treating neurological disorders.
Collapse
Affiliation(s)
- Khai H Ngoc
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Younghyeon Jeon
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, Republic of Korea.
| | - Ji Won Um
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, Republic of Korea.
| |
Collapse
|
9
|
Uguagliati B, Grilli M. Astrocytic Alterations and Dysfunction in Down Syndrome: Focus on Neurogenesis, Synaptogenesis, and Neural Circuits Formation. Cells 2024; 13:2037. [PMID: 39768129 PMCID: PMC11674571 DOI: 10.3390/cells13242037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Down syndrome (DS) is characterized by severe neurodevelopmental alterations that ultimately lead to the typical hallmark of DS: intellectual disability. In the DS brain, since the prenatal life stages, the number of astrocytes is disproportional compared to the healthy brain. This increase is due to a shift from neuron to astrocyte differentiation during brain development. Astrocytes are involved in numerous functions during brain development, including balancing pro-neurogenic and pro-gliogenic stimuli, sustaining synapse formation, regulating excitatory/inhibitory signal equilibrium, and supporting the maintenance and integration of functional neural circuits. The enhanced number of astrocytes in the brain of DS individuals leads to detrimental consequences for brain development. This review summarizes the mechanisms underlying astrocytic dysfunction in DS, and particularly the dysregulation of key signaling pathways, which promote astrogliogenesis at the expense of neurogenesis. It further examines the implications of astrocytic alterations on dendritic branching, spinogenesis and synaptogenesis, and the impact of the abnormal astrocytic number in neural excitability and in the maintenance of the inhibitory/excitatory balance. Identifying deregulated pathways and the consequences of astrocytic alterations in early DS brain development may help in identifying new therapeutic targets, with the ultimate aim of ameliorating the cognitive disability that affects individuals with DS.
Collapse
Affiliation(s)
- Beatrice Uguagliati
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
10
|
Sharif A, Prevot V. Astrogenesis in the hypothalamus: A life-long process contributing to the development and plasticity of neuroendocrine networks. Front Neuroendocrinol 2024; 75:101154. [PMID: 39226950 DOI: 10.1016/j.yfrne.2024.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Astrocytes are now recognized as integral components of neural circuits, regulating their maturation, activity and plasticity. Neuroendocrinology has provided fertile ground for revealing the diverse strategies used by astrocytes to regulate the physiological and behavioural outcomes of neural circuit activity in response to internal and environmental inputs. However, the development of astrocytes in the hypothalamus has received much less attention than in other brain regions such as the cerebral cortex and spinal cord. In this review, we synthesize our current knowledge of astrogenesis in the hypothalamus across various life stages. A distinctive feature of hypothalamic astrogenesis is that it persists all throughout lifespan, and involves multiple cellular sources corresponding to radial glial cells during early development, followed by tanycytes, parenchymal progenitors and locally dividing astrocytes. Astrogenesis in the hypothalamus is closely coordinated with the maturation of hypothalamic neurons. This coordination is exemplified by recent findings in neurons producing gonadotropin-releasing hormone, which actively shape their astroglial environment during infancy to integrate functionally into their neural network and facilitate sexual maturation, a process vulnerable to endocrine disruption. While hypothalamic astrogenesis shares common principles with other brain regions, it also exhibits specific features in its dynamics and regulation, both at the inter- and intra-regional levels. These unique properties emphasize the importance of further exploration. Additionally, we discuss the experimental strategies used to assess astrogenesis in the hypothalamus and their potential bias and limitations. Understanding the mechanisms of hypothalamic astrogenesis throughout life will be crucial for comprehending the development and function of the hypothalamus under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Ariane Sharif
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, FHU 1000 Days for Health, Lille, France.
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, FHU 1000 Days for Health, Lille, France.
| |
Collapse
|
11
|
Li M, Liu X, Zhou Y, Guan R, Zhu X, Zou Y, Zheng M, Luo W, Zhang J. Retarded astrogliogenesis in response to hypoxia is facilitated by downregulation of CIRBP. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116710. [PMID: 39024953 DOI: 10.1016/j.ecoenv.2024.116710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
The adverse impacts of chronic hypoxia on maternal and infant health at high altitudes warrant significant attention. However, effective protective measures against the resultant growth restrictions and neurodevelopmental disorders in infants and young children are still lacking. This study investigated the neurodevelopment of mice offspring under hypoxic conditions by exposing pregnant mice to a hypobaric oxygen chamber that simulated the hypobaric hypoxia at an altitude of 4000 m until 28 days after delivery. Our findings suggested that prolonged exposure to hypoxia might result in emotional abnormalities and social disorders in offspring. The significant reduction in astrogliogenesis was a characteristic feature associated with neurodevelopmental disorders induced by hypoxia. Further studies demonstrated that cold-induced RNA-binding protein (CIRBP) was a key transcriptional regulator in astrogliogenesis, which downregulated astrocytic differentiation under hypoxia through its crosstalk with the NFIA. Our study emphasized the crucial role of CIRBP in regulating astrogliogenesis and highlighted its potential as a promising target for therapeutic interventions in neurodevelopmental disorders associated with hypoxia.
Collapse
Affiliation(s)
- Ming Li
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Xinqin Liu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Yang Zhou
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Ruili Guan
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Xiaozheng Zhu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yuankang Zou
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Mingze Zheng
- School of Basic Medical Sciences, Fourth Military Medical University, China
| | - Wenjing Luo
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Jianbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China.
| |
Collapse
|
12
|
Hashimoto JG, Margolies N, Zhang X, Karpf J, Song Y, Davis BA, Zhang F, Linhardt RJ, Carbone L, Guizzetti M. Astrocyte extracellular matrix modulates neuronal dendritic development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606424. [PMID: 39211148 PMCID: PMC11361265 DOI: 10.1101/2024.08.06.606424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Major developmental events occurring in the hippocampus during the third trimester of human gestation and neonatally in altricial rodents include rapid and synchronized dendritic arborization and astrocyte proliferation and maturation. We tested the hypothesis that signals sent by developing astrocytes to developing neurons modulate dendritic development in vivo. We altered neuronal development by neonatal (third trimester-equivalent) ethanol exposure in mice; this treatment increased dendritic arborization in hippocampal pyramidal neurons. We next assessed concurrent changes in the mouse astrocyte translatome by translating ribosomal affinity purification (TRAP)-seq. We followed up on ethanol-inhibition of astrocyte Chpf2 and Chsy1 gene translation because these genes encode for biosynthetic enzymes of chondroitin sulfate glycosaminoglycan (CS-GAG) chains (extracellular matrix components that inhibit neuronal development and plasticity) and have not been explored before for their roles in dendritic arborization. We report that Chpf2 and Chsy1 are enriched in astrocytes and their translation is inhibited by ethanol, which also reduces the levels of CS-GAGs measured by Liquid Chromatography/Mass Spectrometry. Finally, astrocyte-conditioned medium derived from Chfp2-silenced astrocytes increased neurite branching of hippocampal neurons in vitro. These results demonstrate that CS-GAG biosynthetic enzymes in astrocytes regulates dendritic arborization in developing neurons.
Collapse
Affiliation(s)
- Joel G. Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
- VA Portland Health Care System, Portland, OR
| | - Nicholas Margolies
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
- VA Portland Health Care System, Portland, OR
| | - Xiaolu Zhang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
- VA Portland Health Care System, Portland, OR
| | - Joshua Karpf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | - Yuefan Song
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Brett A. Davis
- Department of Medicine & Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - Fuming Zhang
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Robert J. Linhardt
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Lucia Carbone
- Department of Medicine & Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
- Department of Molecular and Genetics, Oregon Health & Science University, Portland, OR
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
- VA Portland Health Care System, Portland, OR
| |
Collapse
|
13
|
Wang M, Fan J, Shao Z. Cellular and Molecular Mechanisms Underlying Synaptic Subcellular Specificity. Brain Sci 2024; 14:155. [PMID: 38391729 PMCID: PMC10886843 DOI: 10.3390/brainsci14020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/24/2024] Open
Abstract
Chemical synapses are essential for neuronal information storage and relay. The synaptic signal received or sent from spatially distinct subcellular compartments often generates different outcomes due to the distance or physical property difference. Therefore, the final output of postsynaptic neurons is determined not only by the type and intensity of synaptic inputs but also by the synaptic subcellular location. How synaptic subcellular specificity is determined has long been the focus of study in the neurodevelopment field. Genetic studies from invertebrates such as Caenorhabditis elegans (C. elegans) have uncovered important molecular and cellular mechanisms required for subcellular specificity. Interestingly, similar molecular mechanisms were found in the mammalian cerebellum, hippocampus, and cerebral cortex. This review summarizes the comprehensive advances in the cellular and molecular mechanisms underlying synaptic subcellular specificity, focusing on studies from C. elegans and rodents.
Collapse
Affiliation(s)
- Mengqing Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| | - Jiale Fan
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| | - Zhiyong Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| |
Collapse
|
14
|
Pio T, Hill EJ, Kebede N, Andersen J, Sloan SA. Neuron-Astrocyte Interactions: A Human Perspective. ADVANCES IN NEUROBIOLOGY 2024; 39:69-93. [PMID: 39190072 DOI: 10.1007/978-3-031-64839-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
This chapter explores the intricate interactions between neurons and astrocytes within the nervous system with a particular emphasis on studies conducted in human tissue or with human cells. We specifically explore how neuron-astrocyte interactions relate to processes of cellular development, morphology, migration, synapse formation, and metabolism. These findings enrich our understanding of basic neurobiology and how disruptions in these processes are relevant to human diseases.The study of human neuron-astrocyte interactions is made possible because of transformative in vitro advancements that have facilitated the generation and sustained culture of human neural cells. In addition, the rise of techniques like sequencing at single-cell resolution has enabled the exploration of numerous human cell atlases and their comparisons to other animal model systems. Thus, the innovations outlined in this chapter illuminate the convergence and divergence of neuron-astrocyte interactions across species. As technologies progress, continually more sophisticated in vitro systems will increasingly reflect in vivo environments and deepen our command of neuron-glial interactions in human biology.
Collapse
Affiliation(s)
- Taylor Pio
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Emily J Hill
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Nardos Kebede
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jimena Andersen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
15
|
Yu H, Ding Y, Wei Y, Dyrba M, Wang D, Kang X, Xu W, Zhao K, Liu Y. Morphological connectivity differences in Alzheimer's disease correlate with gene transcription and cell-type. Hum Brain Mapp 2023; 44:6364-6374. [PMID: 37846762 PMCID: PMC10681645 DOI: 10.1002/hbm.26512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent forms of dementia in older individuals. Convergent evidence suggests structural connectome abnormalities in specific brain regions are linked to AD progression. The biological basis underpinnings of these connectome changes, however, have remained elusive. We utilized an individual regional mean connectivity strength (RMCS) derived from a regional radiomics similarity network to capture altered morphological connectivity in 1654 participants (605 normal controls, 766 mild cognitive impairment [MCI], and 283 AD). Then, we also explored the biological basis behind these morphological changes through gene enrichment analysis and cell-specific analysis. We found that RMCS probes of the hippocampus and medial temporal lobe were significantly altered in AD and MCI, with these differences being spatially related to the expression of AD-risk genes. In addition, gene enrichment analysis revealed that the modulation of chemical synaptic transmission is the most relevant biological process associated with the altered RMCS in AD. Notably, neuronal cells were found to be the most pertinent cells in the altered RMCS. Our findings shed light on understanding the biological basis of structural connectome changes in AD, which may ultimately lead to more effective diagnostic and therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Huiying Yu
- School of Information Science and EngineeringShandong Normal UniversityJinanChina
| | - Yanhui Ding
- School of Information Science and EngineeringShandong Normal UniversityJinanChina
| | - Yongbin Wei
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE)RostockGermany
| | - Dong Wang
- School of Information Science and EngineeringShandong Normal UniversityJinanChina
| | - Xiaopeng Kang
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
| | - Weizhi Xu
- School of Information Science and EngineeringShandong Normal UniversityJinanChina
| | - Kun Zhao
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Yong Liu
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
| | | |
Collapse
|
16
|
Lavekar SS, Patel MD, Montalvo-Parra MD, Krencik R. Asteroid impact: the potential of astrocytes to modulate human neural networks within organoids. Front Neurosci 2023; 17:1305921. [PMID: 38075269 PMCID: PMC10702564 DOI: 10.3389/fnins.2023.1305921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/08/2023] [Indexed: 02/12/2024] Open
Abstract
Astrocytes are a vital cellular component of the central nervous system that impact neuronal function in both healthy and pathological states. This includes intercellular signals to neurons and non-neuronal cells during development, maturation, and aging that can modulate neural network formation, plasticity, and maintenance. Recently, human pluripotent stem cell-derived neural aggregate cultures, known as neurospheres or organoids, have emerged as improved experimental platforms for basic and pre-clinical neuroscience compared to traditional approaches. Here, we summarize the potential capability of using organoids to further understand the mechanistic role of astrocytes upon neural networks, including the production of extracellular matrix components and reactive signaling cues. Additionally, we discuss the application of organoid models to investigate the astrocyte-dependent aspects of neuropathological diseases and to test astrocyte-inspired technologies. We examine the shortcomings of organoid-based experimental platforms and plausible improvements made possible by cutting-edge neuroengineering technologies. These advancements are expected to enable the development of improved diagnostic strategies and high-throughput translational applications regarding neuroregeneration.
Collapse
Affiliation(s)
| | | | | | - R. Krencik
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
17
|
Yuan WQ, Huang WP, Jiang YC, Xu H, Duan CS, Chen NH, Liu YJ, Fu XM. The function of astrocytes and their role in neurological diseases. Eur J Neurosci 2023; 58:3932-3961. [PMID: 37831013 DOI: 10.1111/ejn.16160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
Astrocytes have countless links with neurons. Previously, astrocytes were only considered a scaffold of neurons; in fact, astrocytes perform a variety of functions, including providing support for neuronal structures and energy metabolism, offering isolation and protection and influencing the formation, function and elimination of synapses. Because of these functions, astrocytes play an critical role in central nervous system (CNS) diseases. The regulation of the secretiory factors, receptors, channels and pathways of astrocytes can effectively inhibit the occurrence and development of CNS diseases, such as neuromyelitis optica (NMO), multiple sclerosis, Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease. The expression of aquaporin 4 in AS is directly related to NMO and indirectly involved in the clearance of Aβ and tau proteins in AD. Connexin 43 has a bidirectional effect on glutamate diffusion at different stages of stroke. Interestingly, astrocytes reduce the occurrence of PD through multiple effects such as secretion of related factors, mitochondrial autophagy and aquaporin 4. Therefore, this review is focused on the structure and function of astrocytes and the correlation between astrocytes and CNS diseases and drug treatment to explore the new functions of astrocytes with the astrocytes as the target. This, in turn, would provide a reference for the development of new drugs to protect neurons and promote the recovery of nerve function.
Collapse
Affiliation(s)
- Wen-Qin Yuan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wei-Peng Huang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Pharmacy, Minzu University of China, Beijing, China
| | - Yang-Chao Jiang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hao Xu
- College of Economics and Management, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Chong-Shen Duan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying-Jiao Liu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiao-Mei Fu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
18
|
Wang M, Ho MS. Profiling neurotransmitter-evoked glial responses by RNA-sequencing analysis. Front Neural Circuits 2023; 17:1252759. [PMID: 37645568 PMCID: PMC10461064 DOI: 10.3389/fncir.2023.1252759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023] Open
Abstract
Fundamental properties of neurons and glia are distinctively different. Neurons are excitable cells that transmit information, whereas glia have long been considered as passive bystanders. Recently, the concept of tripartite synapse is proposed that glia are structurally and functionally incorporated into the synapse, the basic unit of information processing in the brains. It has then become intriguing how glia actively communicate with the presynaptic and postsynaptic compartments to influence the signal transmission. Here we present a thorough analysis at the transcriptional level on how glia respond to different types of neurotransmitters. Adult fly glia were purified from brains incubated with different types of neurotransmitters ex vivo. Subsequent RNA-sequencing analyses reveal distinct and overlapping patterns for these transcriptomes. Whereas Acetylcholine (ACh) and Glutamate (Glu) more vigorously activate glial gene expression, GABA retains its inhibitory effect. All neurotransmitters fail to trigger a significant change in the expression of their synthesis enzymes, yet Glu triggers increased expression of neurotransmitter receptors including its own and nAChRs. Expressions of transporters for GABA and Glutamate are under diverse controls from DA, GABA, and Glu, suggesting that the evoked intracellular pathways by these neurotransmitters are interconnected. Furthermore, changes in the expression of genes involved in calcium signaling also functionally predict the change in the glial activity. Finally, neurotransmitters also trigger a general metabolic suppression in glia except the DA, which upregulates a number of genes involved in transporting nutrients and amino acids. Our findings fundamentally dissect the transcriptional change in glia facing neuronal challenges; these results provide insights on how glia and neurons crosstalk in a synaptic context and underlie the mechanism of brain function and behavior.
Collapse
Affiliation(s)
| | - Margaret S. Ho
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
19
|
Paul BD, Pieper AA. Protective Roles of Hydrogen Sulfide in Alzheimer's Disease and Traumatic Brain Injury. Antioxidants (Basel) 2023; 12:1095. [PMID: 37237961 PMCID: PMC10215281 DOI: 10.3390/antiox12051095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The gaseous signaling molecule hydrogen sulfide (H2S) critically modulates a plethora of physiological processes across evolutionary boundaries. These include responses to stress and other neuromodulatory effects that are typically dysregulated in aging, disease, and injury. H2S has a particularly prominent role in modulating neuronal health and survival under both normal and pathologic conditions. Although toxic and even fatal at very high concentrations, emerging evidence has also revealed a pronounced neuroprotective role for lower doses of endogenously generated or exogenously administered H2S. Unlike traditional neurotransmitters, H2S is a gas and, therefore, is unable to be stored in vesicles for targeted delivery. Instead, it exerts its physiologic effects through the persulfidation/sulfhydration of target proteins on reactive cysteine residues. Here, we review the latest discoveries on the neuroprotective roles of H2S in Alzheimer's disease (AD) and traumatic brain injury, which is one the greatest risk factors for AD.
Collapse
Affiliation(s)
- Bindu D. Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Andrew A. Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- Translational Therapeutics Core, Cleveland Alzheimer’s Disease Research Center, Cleveland, OH 44106, USA
| |
Collapse
|