1
|
Schmitt O. Relationships and representations of brain structures, connectivity, dynamics and functions. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111332. [PMID: 40147809 DOI: 10.1016/j.pnpbp.2025.111332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
The review explores the complex interplay between brain structures and their associated functions, presenting a diversity of hierarchical models that enhances our understanding of these relationships. Central to this approach are structure-function flow diagrams, which offer a visual representation of how specific neuroanatomical structures are linked to their functional roles. These diagrams are instrumental in mapping the intricate connections between different brain regions, providing a clearer understanding of how functions emerge from the underlying neural architecture. The study details innovative attempts to develop new functional hierarchies that integrate structural and functional data. These efforts leverage recent advancements in neuroimaging techniques such as fMRI, EEG, MEG, and PET, as well as computational models that simulate neural dynamics. By combining these approaches, the study seeks to create a more refined and dynamic hierarchy that can accommodate the brain's complexity, including its capacity for plasticity and adaptation. A significant focus is placed on the overlap of structures and functions within the brain. The manuscript acknowledges that many brain regions are multifunctional, contributing to different cognitive and behavioral processes depending on the context. This overlap highlights the need for a flexible, non-linear hierarchy that can capture the brain's intricate functional landscape. Moreover, the study examines the interdependence of these functions, emphasizing how the loss or impairment of one function can impact others. Another crucial aspect discussed is the brain's ability to compensate for functional deficits following neurological diseases or injuries. The investigation explores how the brain reorganizes itself, often through the recruitment of alternative neural pathways or the enhancement of existing ones, to maintain functionality despite structural damage. This compensatory mechanism underscores the brain's remarkable plasticity, demonstrating its ability to adapt and reconfigure itself in response to injury, thereby ensuring the continuation of essential functions. In conclusion, the study presents a system of brain functions that integrates structural, functional, and dynamic perspectives. It offers a robust framework for understanding how the brain's complex network of structures supports a wide range of cognitive and behavioral functions, with significant implications for both basic neuroscience and clinical applications.
Collapse
Affiliation(s)
- Oliver Schmitt
- Medical School Hamburg - University of Applied Sciences and Medical University - Institute for Systems Medicine, Am Kaiserkai 1, Hamburg 20457, Germany; University of Rostock, Department of Anatomy, Gertrudenstr. 9, Rostock, 18055 Rostock, Germany.
| |
Collapse
|
2
|
Takahashi K, Pontes Quero S, Fiorilli J, Benedetti D, Yuste R, Friston KJ, Tononi G, Pennartz CMA, Olcese U. Testing the role of spontaneous activity in visuospatial perception with patterned optogenetics. PLoS One 2025; 20:e0318863. [PMID: 40014595 DOI: 10.1371/journal.pone.0318863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 03/01/2025] Open
Abstract
A major debate in the field of consciousness pertains to whether neuronal activity or rather the causal structure of neural circuits underlie the generation of conscious experience. The former position is held by theoretical accounts of consciousness based on the predictive processing framework (such as neurorepresentationalism and active inference), while the latter is posited by the integrated information theory. This protocol describes an experiment, part of a larger adversarial collaboration, that was designed to address this question through a combination of behavioral tests in mice, functional imaging, patterned optogenetics and electrophysiology. The experiment will directly test if optogenetic inactivation of a portion of the visual cortex not responding to behaviorally relevant stimuli will affect the perception of the spatial distribution of these stimuli, even when the neurons being inactivated display no or very low spiking activity, so low that it does not induce a significant effect on other cortical areas. The results of the experiment will be compared against theoretical predictions, and will provide a major contribution towards understanding what the neuronal substrate of consciousness is.
Collapse
Affiliation(s)
- Kengo Takahashi
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Samuel Pontes Quero
- Department of Biological Sciences, NeuroTechnology Center, Columbia University, New York City, New York, United States of America
| | - Julien Fiorilli
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Davide Benedetti
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Rafael Yuste
- Department of Biological Sciences, NeuroTechnology Center, Columbia University, New York City, New York, United States of America
| | - Karl J Friston
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Umberto Olcese
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Farisco M, Evers K, Changeux JP. Is artificial consciousness achievable? Lessons from the human brain. Neural Netw 2024; 180:106714. [PMID: 39270349 DOI: 10.1016/j.neunet.2024.106714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/29/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
We here analyse the question of developing artificial consciousness from an evolutionary perspective, taking the evolution of the human brain and its relation with consciousness as a reference model or as a benchmark. This kind of analysis reveals several structural and functional features of the human brain that appear to be key for reaching human-like complex conscious experience and that current research on Artificial Intelligence (AI) should take into account in its attempt to develop systems capable of human-like conscious processing. We argue that, even if AI is limited in its ability to emulate human consciousness for both intrinsic (i.e., structural and architectural) and extrinsic (i.e., related to the current stage of scientific and technological knowledge) reasons, taking inspiration from those characteristics of the brain that make human-like conscious processing possible and/or modulate it, is a potentially promising strategy towards developing conscious AI. Also, it cannot be theoretically excluded that AI research can develop partial or potentially alternative forms of consciousness that are qualitatively different from the human form, and that may be either more or less sophisticated depending on the perspectives. Therefore, we recommend neuroscience-inspired caution in talking about artificial consciousness: since the use of the same word "consciousness" for humans and AI becomes ambiguous and potentially misleading, we propose to clearly specify which level and/or type of consciousness AI research aims to develop, as well as what would be common versus differ in AI conscious processing compared to human conscious experience.
Collapse
Affiliation(s)
- Michele Farisco
- Centre for Research Ethics and Bioethics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden; Biogem, Biology and Molecular Genetics Institute, Ariano Irpino (AV), Italy.
| | - Kathinka Evers
- Centre for Research Ethics and Bioethics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
4
|
Storm JF, Klink PC, Aru J, Senn W, Goebel R, Pigorini A, Avanzini P, Vanduffel W, Roelfsema PR, Massimini M, Larkum ME, Pennartz CMA. An integrative, multiscale view on neural theories of consciousness. Neuron 2024; 112:1531-1552. [PMID: 38447578 DOI: 10.1016/j.neuron.2024.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
How is conscious experience related to material brain processes? A variety of theories aiming to answer this age-old question have emerged from the recent surge in consciousness research, and some are now hotly debated. Although most researchers have so far focused on the development and validation of their preferred theory in relative isolation, this article, written by a group of scientists representing different theories, takes an alternative approach. Noting that various theories often try to explain different aspects or mechanistic levels of consciousness, we argue that the theories do not necessarily contradict each other. Instead, several of them may converge on fundamental neuronal mechanisms and be partly compatible and complementary, so that multiple theories can simultaneously contribute to our understanding. Here, we consider unifying, integration-oriented approaches that have so far been largely neglected, seeking to combine valuable elements from various theories.
Collapse
Affiliation(s)
- Johan F Storm
- The Brain Signaling Group, Division of Physiology, IMB, Faculty of Medicine, University of Oslo, Domus Medica, Sognsvannsveien 9, Blindern, 0317 Oslo, Norway.
| | - P Christiaan Klink
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France
| | - Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Walter Senn
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands
| | - Andrea Pigorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan 20122, Italy
| | - Pietro Avanzini
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125 Parma, Italy
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France; Department of Integrative Neurophysiology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Department of Neurosurgery, Academisch Medisch Centrum, Postbus 22660, 1100 DD Amsterdam, the Netherlands
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Milan 20157, Italy; Istituto di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan 20122, Italy; Azrieli Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Matthew E Larkum
- Institute of Biology, Humboldt University Berlin, Berlin, Germany; Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, Sciencepark 904, Amsterdam 1098 XH, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Oude Lohuis MN, Marchesi P, Olcese U, Pennartz CMA. Triple dissociation of visual, auditory and motor processing in mouse primary visual cortex. Nat Neurosci 2024; 27:758-771. [PMID: 38307971 DOI: 10.1038/s41593-023-01564-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/19/2023] [Indexed: 02/04/2024]
Abstract
Primary sensory cortices respond to crossmodal stimuli-for example, auditory responses are found in primary visual cortex (V1). However, it remains unclear whether these responses reflect sensory inputs or behavioral modulation through sound-evoked body movement. We address this controversy by showing that sound-evoked activity in V1 of awake mice can be dissociated into auditory and behavioral components with distinct spatiotemporal profiles. The auditory component began at approximately 27 ms, was found in superficial and deep layers and originated from auditory cortex. Sound-evoked orofacial movements correlated with V1 neural activity starting at approximately 80-100 ms and explained auditory frequency tuning. Visual, auditory and motor activity were expressed by different laminar profiles and largely segregated subsets of neuronal populations. During simultaneous audiovisual stimulation, visual representations remained dissociable from auditory-related and motor-related activity. This three-fold dissociability of auditory, motor and visual processing is central to understanding how distinct inputs to visual cortex interact to support vision.
Collapse
Affiliation(s)
- Matthijs N Oude Lohuis
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Pietro Marchesi
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Cyriel M A Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands.
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
6
|
Evers K, Farisco M, Pennartz CMA. Assessing the commensurability of theories of consciousness: On the usefulness of common denominators in differentiating, integrating and testing hypotheses. Conscious Cogn 2024; 119:103668. [PMID: 38417198 DOI: 10.1016/j.concog.2024.103668] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Abstract
How deep is the current diversity in the panoply of theories to define consciousness, and to what extent do these theories share common denominators? Here we first examine to what extent different theories are commensurable (or comparable) along particular dimensions. We posit logical (and, when applicable, empirical) commensurability as a necessary condition for identifying common denominators among different theories. By consequence, dimensions for inclusion in a set of logically and empirically commensurable theories of consciousness can be proposed. Next, we compare a limited subset of neuroscience-based theories in terms of commensurability. This analysis does not yield a denominator that might serve to define a minimally unifying model of consciousness. Theories that seem to be akin by one denominator can be remote by another. We suggest a methodology of comparing different theories via multiple probing questions, allowing to discern overall (dis)similarities between theories. Despite very different background definitions of consciousness, we conclude that, if attention is paid to the search for a common methological approach to brain-consciousness relationships, it should be possible in principle to overcome the current Babylonian confusion of tongues and eventually integrate and merge different theories.
Collapse
Affiliation(s)
- K Evers
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden.
| | - M Farisco
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden; Bioethics Unit, Biogem, Molecular Biology and Molecular Genetics Research Institute, Ariano Irpino (AV), Italy
| | - C M A Pennartz
- Department of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherland; Research Priority Area, Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Pennartz CMA, Oude Lohuis MN, Olcese U. How 'visual' is the visual cortex? The interactions between the visual cortex and other sensory, motivational and motor systems as enabling factors for visual perception. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220336. [PMID: 37545313 PMCID: PMC10404929 DOI: 10.1098/rstb.2022.0336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/13/2023] [Indexed: 08/08/2023] Open
Abstract
The definition of the visual cortex is primarily based on the evidence that lesions of this area impair visual perception. However, this does not exclude that the visual cortex may process more information than of retinal origin alone, or that other brain structures contribute to vision. Indeed, research across the past decades has shown that non-visual information, such as neural activity related to reward expectation and value, locomotion, working memory and other sensory modalities, can modulate primary visual cortical responses to retinal inputs. Nevertheless, the function of this non-visual information is poorly understood. Here we review recent evidence, coming primarily from studies in rodents, arguing that non-visual and motor effects in visual cortex play a role in visual processing itself, for instance disentangling direct auditory effects on visual cortex from effects of sound-evoked orofacial movement. These findings are placed in a broader framework casting vision in terms of predictive processing under control of frontal, reward- and motor-related systems. In contrast to the prevalent notion that vision is exclusively constructed by the visual cortical system, we propose that visual percepts are generated by a larger network-the extended visual system-spanning other sensory cortices, supramodal areas and frontal systems. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
Collapse
Affiliation(s)
- Cyriel M. A. Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Matthijs N. Oude Lohuis
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
8
|
Pennartz CMA. What is neurorepresentationalism? From neural activity and predictive processing to multi-level representations and consciousness. Behav Brain Res 2022; 432:113969. [PMID: 35718232 DOI: 10.1016/j.bbr.2022.113969] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/02/2022]
Abstract
This review provides an update on Neurorepresentationalism, a theoretical framework that defines conscious experience as multimodal, situational survey and explains its neural basis from brain systems constructing best-guess representations of sensations originating in our environment and body [1]. It posits that conscious experience is characterized by five essential hallmarks: (i) multimodal richness, (ii) situatedness and immersion, (iii) unity and integration, (iv) dynamics and stability, and (v) intentionality. Consciousness is furthermore proposed to have a biological function, framed by the contrast between reflexes and habits (not requiring consciousness) versus goal-directed, planned behavior (requiring multimodal, situational survey). Conscious experience is therefore understood as a sensorily rich, spatially encompassing representation of body and environment, while we nevertheless have the impression of experiencing external reality directly. Contributions to understanding neural mechanisms underlying consciousness are derived from models for predictive processing, which are trained in an unsupervised manner, do not necessarily require overt action, and have been extended to deep neural networks. Even with predictive processing in place, however, the question remains why this type of neural network activity would give rise to phenomenal experience. Here, I propose to tackle the Hard Problem with the concept of multi-level representations which emergently give rise to multimodal, spatially wide superinferences corresponding to phenomenal experiences. Finally, Neurorepresentationalism is compared to other neural theories of consciousness, and its implications for defining indicators of consciousness in animals, artificial intelligence devices and immobile or unresponsive patients with disorders of consciousness are discussed.
Collapse
Affiliation(s)
- Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Oude Lohuis MN, Pie JL, Marchesi P, Montijn JS, de Kock CPJ, Pennartz CMA, Olcese U. Multisensory task demands temporally extend the causal requirement for visual cortex in perception. Nat Commun 2022; 13:2864. [PMID: 35606448 PMCID: PMC9126973 DOI: 10.1038/s41467-022-30600-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/09/2022] [Indexed: 01/02/2023] Open
Abstract
Primary sensory areas constitute crucial nodes during perceptual decision making. However, it remains unclear to what extent they mainly constitute a feedforward processing step, or rather are continuously involved in a recurrent network together with higher-order areas. We found that the temporal window in which primary visual cortex is required for the detection of identical visual stimuli was extended when task demands were increased via an additional sensory modality that had to be monitored. Late-onset optogenetic inactivation preserved bottom-up, early-onset responses which faithfully encoded stimulus features, and was effective in impairing detection only if it preceded a late, report-related phase of the cortical response. Increasing task demands were marked by longer reaction times and the effect of late optogenetic inactivation scaled with reaction time. Thus, independently of visual stimulus complexity, multisensory task demands determine the temporal requirement for ongoing sensory-related activity in V1, which overlaps with report-related activity. How primary sensory cortices contribute to decision making remains poorly understood. Here the authors report that increasing task demands extend the temporal window in which the primary visual cortex is required for detecting identical stimuli.
Collapse
|
10
|
Abstract
Merker et al.'s critique calls for a deeper analysis of panpsychism. In principle, the concept of integrated information can be applied to photodiodes and subatomic particles, but I suggest the main obstacle is the lack of any evidence to confirm the presence of consciousness. Also MRW's perspectivalist theory illustrates the difficulties in synthesizing a full-fledged theory of consciousness.
Collapse
|
11
|
Dora S, Bohte SM, Pennartz CMA. Deep Gated Hebbian Predictive Coding Accounts for Emergence of Complex Neural Response Properties Along the Visual Cortical Hierarchy. Front Comput Neurosci 2021; 15:666131. [PMID: 34393744 PMCID: PMC8355371 DOI: 10.3389/fncom.2021.666131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Predictive coding provides a computational paradigm for modeling perceptual processing as the construction of representations accounting for causes of sensory inputs. Here, we developed a scalable, deep network architecture for predictive coding that is trained using a gated Hebbian learning rule and mimics the feedforward and feedback connectivity of the cortex. After training on image datasets, the models formed latent representations in higher areas that allowed reconstruction of the original images. We analyzed low- and high-level properties such as orientation selectivity, object selectivity and sparseness of neuronal populations in the model. As reported experimentally, image selectivity increased systematically across ascending areas in the model hierarchy. Depending on the strength of regularization factors, sparseness also increased from lower to higher areas. The results suggest a rationale as to why experimental results on sparseness across the cortical hierarchy have been inconsistent. Finally, representations for different object classes became more distinguishable from lower to higher areas. Thus, deep neural networks trained using a gated Hebbian formulation of predictive coding can reproduce several properties associated with neuronal responses along the visual cortical hierarchy.
Collapse
Affiliation(s)
- Shirin Dora
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Intelligent Systems Research Centre, Ulster University, Londonderry, United Kingdom
| | - Sander M Bohte
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Machine Learning Group, Centre of Mathematics and Computer Science, Amsterdam, Netherlands
| | - Cyriel M A Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
12
|
Eeles E, Ward S, Teodorczuk A, Dissanayaka N, Burianová H. Consciousness and the rabbit holes of delirium. Med Hypotheses 2020; 144:110260. [PMID: 33254566 DOI: 10.1016/j.mehy.2020.110260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 11/24/2022]
Abstract
Delirium is a common disorder in hospitalized older adults and the defining characteristic is a disturbance of consciousness. Unfortunately, there are currently no testable measures of consciousness as pertains to its disruption in delirium. Not surprisingly rates of recognition of delirium suffer. Arguably, a greater understanding of the quantum of consciousness may improve delirium diagnosis through better diagnostic tools. Candidate dimensions of consciousness derived from fields of psychology, psychiatry, and philosophy are discussed and relevance to delirium explored. Based upon existing literature in the field of consciousness we identify the pre-reflective state, experiential awareness, and functional networks as candidate sites that may be affected in delirium. Opportunities for clinical instrument development and how these tools can be tested are discussed. We conclude that consciousness content may not hold to a unitary measurement, but facets of its integrity that are impacted in delirium are open to further exploration. Disorders in pre-reflective status, experiential awareness, and functional networks may represent the measurable "rabbit holes" of consciousness disturbance.
Collapse
Affiliation(s)
- Eamonn Eeles
- Internal Medicine Service, The Prince Charles Hospital, Brisbane, QLD, Australia; School of Medicine, Northside Clinical School, The University of Queensland, The Prince Charles Hospital, QLD, Australia; UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, QLD.
| | - S Ward
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, QLD; Redcliffe Hospital, Redcliffe, QLD, Australia
| | - A Teodorczuk
- School of Medicine, Griffith University, Gold Coast, Australia; Metro North Mental Health, The Prince Charles Hospital, Brisbane, Australia
| | - N Dissanayaka
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, QLD; Department of Neurology, Royal Brisbane & Women's Hospital, Herston, Brisbane, QLD, Australia; School of Psychology, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - H Burianová
- Department of Psychology, Bournemouth University, Fern Barrow, Poole, Dorset UK
| |
Collapse
|
13
|
Friedel EBN, Bach M, Heinrich SP. Attentional Interactions Between Vision and Hearing in Event-Related Responses to Crossmodal and Conjunct Oddballs. Multisens Res 2020; 33:251-275. [PMID: 31972541 DOI: 10.1163/22134808-20191329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/14/2019] [Indexed: 11/19/2022]
Abstract
Are alternation and co-occurrence of stimuli of different sensory modalities conspicuous? In a novel audio-visual oddball paradigm, the P300 was used as an index of the allocation of attention to investigate stimulus- and task-related interactions between modalities. Specifically, we assessed effects of modality alternation and the salience of conjunct oddball stimuli that were defined by the co-occurrence of both modalities. We presented (a) crossmodal audio-visual oddball sequences, where both oddballs and standards were unimodal, but of a different modality (i.e., visual oddball with auditory standard, or vice versa), and (b) oddball sequences where standards were randomly of either modality while the oddballs were a combination of both modalities (conjunct stimuli). Subjects were instructed to attend to one of the modalities (whether part of a conjunct stimulus or not). In addition, we also tested specific attention to the conjunct stimuli. P300-like responses occurred even when the oddball was of the unattended modality. The pattern of event-related potential (ERP) responses obtained with the two crossmodal oddball sequences switched symmetrically between stimulus modalities when the task modality was switched. Conjunct oddballs elicited no oddball response if only one modality was attended. However, when conjunctness was specifically attended, an oddball response was obtained. Crossmodal oddballs capture sufficient attention even when not attended. Conjunct oddballs, however, are not sufficiently salient to attract attention when the task is unimodal. Even when specifically attended, the processing of conjunctness appears to involve additional steps that delay the oddball response.
Collapse
Affiliation(s)
- Evelyn B N Friedel
- 1Eye Center, Medical Center, University of Freiburg, Germany.,2Faculty of Medicine, University of Freiburg, Germany
| | - Michael Bach
- 1Eye Center, Medical Center, University of Freiburg, Germany.,2Faculty of Medicine, University of Freiburg, Germany
| | - Sven P Heinrich
- 1Eye Center, Medical Center, University of Freiburg, Germany.,2Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
14
|
Sikkens T, Bosman CA, Olcese U. The Role of Top-Down Modulation in Shaping Sensory Processing Across Brain States: Implications for Consciousness. Front Syst Neurosci 2019; 13:31. [PMID: 31680883 PMCID: PMC6802962 DOI: 10.3389/fnsys.2019.00031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/05/2019] [Indexed: 11/24/2022] Open
Abstract
Top-down, feedback projections account for a large portion of all connections between neurons in the thalamocortical system, yet their precise role remains the subject of much discussion. A large number of studies has focused on investigating how sensory information is transformed across hierarchically-distributed processing stages in a feedforward fashion, and computational models have shown that purely feedforward artificial neural networks can even outperform humans in pattern classification tasks. What is then the functional role of feedback connections? Several key roles have been identified, ranging from attentional modulation to, crucially, conscious perception. Specifically, most of the major theories on consciousness postulate that feedback connections would play an essential role in enabling sensory information to be consciously perceived. Consequently, it follows that their efficacy in modulating target regions should drastically decrease in nonconscious brain states [non-rapid eye movement (REM) sleep, anesthesia] compared to conscious ones (wakefulness), and also in instances when a given sensory stimulus is not perceived compared to when it is. Until recently, however, this prediction could only be tested with correlative experiments, due to the lack of techniques to selectively manipulate and measure the activity of feedback pathways. In this article, we will review the most recent literature on the functions of feedback connections across brain states and based on the presence or absence of perception. We will focus on experiments studying mismatch negativity, a phenomenon which has been hypothesized to rely on top-down modulation but which persists during nonconscious states. While feedback modulation is generally dampened in nonconscious states and enhanced when perception occurs, there are clear deviations from this rule. As we will discuss, this may pose a challenge to most theories of consciousness, and possibly require a change in how the level of consciousness in supposedly nonconscious states is assessed.
Collapse
Affiliation(s)
- Tom Sikkens
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Conrado A Bosman
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Pennartz CMA, Farisco M, Evers K. Indicators and Criteria of Consciousness in Animals and Intelligent Machines: An Inside-Out Approach. Front Syst Neurosci 2019; 13:25. [PMID: 31379521 PMCID: PMC6660257 DOI: 10.3389/fnsys.2019.00025] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/24/2019] [Indexed: 01/02/2023] Open
Abstract
In today's society, it becomes increasingly important to assess which non-human and non-verbal beings possess consciousness. This review article aims to delineate criteria for consciousness especially in animals, while also taking into account intelligent artifacts. First, we circumscribe what we mean with "consciousness" and describe key features of subjective experience: qualitative richness, situatedness, intentionality and interpretation, integration and the combination of dynamic and stabilizing properties. We argue that consciousness has a biological function, which is to present the subject with a multimodal, situational survey of the surrounding world and body, subserving complex decision-making and goal-directed behavior. This survey reflects the brain's capacity for internal modeling of external events underlying changes in sensory state. Next, we follow an inside-out approach: how can the features of conscious experience, correlating to mechanisms inside the brain, be logically coupled to externally observable ("outside") properties? Instead of proposing criteria that would each define a "hard" threshold for consciousness, we outline six indicators: (i) goal-directed behavior and model-based learning; (ii) anatomic and physiological substrates for generating integrative multimodal representations; (iii) psychometrics and meta-cognition; (iv) episodic memory; (v) susceptibility to illusions and multistable perception; and (vi) specific visuospatial behaviors. Rather than emphasizing a particular indicator as being decisive, we propose that the consistency amongst these indicators can serve to assess consciousness in particular species. The integration of scores on the various indicators yields an overall, graded criterion for consciousness, somewhat comparable to the Glasgow Coma Scale for unresponsive patients. When considering theoretically derived measures of consciousness, it is argued that their validity should not be assessed on the basis of a single quantifiable measure, but requires cross-examination across multiple pieces of evidence, including the indicators proposed here. Current intelligent machines, including deep learning neural networks (DLNNs) and agile robots, are not indicated to be conscious yet. Instead of assessing machine consciousness by a brief Turing-type of test, evidence for it may gradually accumulate when we study machines ethologically and across time, considering multiple behaviors that require flexibility, improvisation, spontaneous problem-solving and the situational conspectus typically associated with conscious experience.
Collapse
Affiliation(s)
- Cyriel M. A. Pennartz
- Department of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area, Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Michele Farisco
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
- Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, Italy
| | - Kathinka Evers
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Meijer GT, Mertens PEC, Pennartz CMA, Olcese U, Lansink CS. The circuit architecture of cortical multisensory processing: Distinct functions jointly operating within a common anatomical network. Prog Neurobiol 2019; 174:1-15. [PMID: 30677428 DOI: 10.1016/j.pneurobio.2019.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 12/21/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022]
Abstract
Our perceptual systems continuously process sensory inputs from different modalities and organize these streams of information such that our subjective representation of the outside world is a unified experience. By doing so, they also enable further cognitive processing and behavioral action. While cortical multisensory processing has been extensively investigated in terms of psychophysics and mesoscale neural correlates, an in depth understanding of the underlying circuit-level mechanisms is lacking. Previous studies on circuit-level mechanisms of multisensory processing have predominantly focused on cue integration, i.e. the mechanism by which sensory features from different modalities are combined to yield more reliable stimulus estimates than those obtained by using single sensory modalities. In this review, we expand the framework on the circuit-level mechanisms of cortical multisensory processing by highlighting that multisensory processing is a family of functions - rather than a single operation - which involves not only the integration but also the segregation of modalities. In addition, multisensory processing not only depends on stimulus features, but also on cognitive resources, such as attention and memory, as well as behavioral context, to determine the behavioral outcome. We focus on rodent models as a powerful instrument to study the circuit-level bases of multisensory processes, because they enable combining cell-type-specific recording and interventional techniques with complex behavioral paradigms. We conclude that distinct multisensory processes share overlapping anatomical substrates, are implemented by diverse neuronal micro-circuitries that operate in parallel, and are flexibly recruited based on factors such as stimulus features and behavioral constraints.
Collapse
Affiliation(s)
- Guido T Meijer
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands.
| | - Paul E C Mertens
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands.
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands.
| | - Umberto Olcese
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands.
| | - Carien S Lansink
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Olcese U, Oude Lohuis MN, Pennartz CMA. Sensory Processing Across Conscious and Nonconscious Brain States: From Single Neurons to Distributed Networks for Inferential Representation. Front Syst Neurosci 2018; 12:49. [PMID: 30364373 PMCID: PMC6193318 DOI: 10.3389/fnsys.2018.00049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/25/2018] [Indexed: 11/29/2022] Open
Abstract
Neuronal activity is markedly different across brain states: it varies from desynchronized activity during wakefulness to the synchronous alternation between active and silent states characteristic of deep sleep. Surprisingly, limited attention has been paid to investigating how brain states affect sensory processing. While it was long assumed that the brain was mostly disconnected from external stimuli during sleep, an increasing number of studies indicates that sensory stimuli continue to be processed across all brain states-albeit differently. In this review article, we first discuss what constitutes a brain state. We argue that-next to global, behavioral states such as wakefulness and sleep-there is a concomitant need to distinguish bouts of oscillatory dynamics with specific global/local activity patterns and lasting for a few hundreds of milliseconds, as these can lead to the same sensory stimulus being either perceived or not. We define these short-lasting bouts as micro-states. We proceed to characterize how sensory-evoked neural responses vary between conscious and nonconscious states. We focus on two complementary aspects: neuronal ensembles and inter-areal communication. First, we review which features of ensemble activity are conducive to perception, and how these features vary across brain states. Properties such as heterogeneity, sparsity and synchronicity in neuronal ensembles will especially be considered as essential correlates of conscious processing. Second, we discuss how inter-areal communication varies across brain states and how this may affect brain operations and sensory processing. Finally, we discuss predictive coding (PC) and the concept of multi-level representations as a key framework for understanding conscious sensory processing. In this framework the brain implements conscious representations as inferences about world states across multiple representational levels. In this representational hierarchy, low-level inference may be carried out nonconsciously, whereas high levels integrate across different sensory modalities and larger spatial scales, correlating with conscious processing. This inferential framework is used to interpret several cellular and population-level findings in the context of brain states, and we briefly compare its implications to two other theories of consciousness. In conclusion, this review article, provides foundations to guide future studies aiming to uncover the mechanisms of sensory processing and perception across brain states.
Collapse
Affiliation(s)
- Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Matthijs N. Oude Lohuis
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Cyriel M. A. Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
Follmann R, Goldsmith CJ, Stein W. Multimodal sensory information is represented by a combinatorial code in a sensorimotor system. PLoS Biol 2018; 16:e2004527. [PMID: 30321170 PMCID: PMC6201955 DOI: 10.1371/journal.pbio.2004527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/25/2018] [Accepted: 10/02/2018] [Indexed: 11/22/2022] Open
Abstract
A ubiquitous feature of the nervous system is the processing of simultaneously arriving sensory inputs from different modalities. Yet, because of the difficulties of monitoring large populations of neurons with the single resolution required to determine their sensory responses, the cellular mechanisms of how populations of neurons encode different sensory modalities often remain enigmatic. We studied multimodal information encoding in a small sensorimotor system of the crustacean stomatogastric nervous system that drives rhythmic motor activity for the processing of food. This system is experimentally advantageous, as it produces a fictive behavioral output in vitro, and distinct sensory modalities can be selectively activated. It has the additional advantage that all sensory information is routed through a hub ganglion, the commissural ganglion, a structure with fewer than 220 neurons. Using optical imaging of a population of commissural neurons to track each individual neuron's response across sensory modalities, we provide evidence that multimodal information is encoded via a combinatorial code of recruited neurons. By selectively stimulating chemosensory and mechanosensory inputs that are functionally important for processing of food, we find that these two modalities were processed in a distributed network comprising the majority of commissural neurons imaged. In a total of 12 commissural ganglia, we show that 98% of all imaged neurons were involved in sensory processing, with the two modalities being processed by a highly overlapping set of neurons. Of these, 80% were multimodal, 18% were unimodal, and only 2% of the neurons did not respond to either modality. Differences between modalities were represented by the identities of the neurons participating in each sensory condition and by differences in response sign (excitation versus inhibition), with 46% changing their responses in the other modality. Consistent with the hypothesis that the commissural network encodes different sensory conditions in the combination of activated neurons, a new combination of excitation and inhibition was found when both pathways were activated simultaneously. The responses to this bimodal condition were distinct from either unimodal condition, and for 30% of the neurons, they were not predictive from the individual unimodal responses. Thus, in a sensorimotor network, different sensory modalities are encoded using a combinatorial code of neurons that are activated or inhibited. This provides motor networks with the ability to differentially respond to categorically different sensory conditions and may serve as a model to understand higher-level processing of multimodal information.
Collapse
Affiliation(s)
- Rosangela Follmann
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | | | - Wolfgang Stein
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| |
Collapse
|
19
|
Pennartz CMA. Consciousness, Representation, Action: The Importance of Being Goal-Directed. Trends Cogn Sci 2017; 22:137-153. [PMID: 29233478 DOI: 10.1016/j.tics.2017.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/14/2022]
Abstract
Recent years have witnessed fierce debates on the dependence of consciousness on interactions between a subject and the environment. Reviewing neuroscientific, computational, and clinical evidence, I will address three questions. First, does conscious experience necessarily depend on acute interactions between a subject and the environment? Second, does it depend on specific perception-action loops in the longer run? Third, which types of action does consciousness cohere with, if not with all of them? I argue that conscious contents do not necessarily depend on acute or long-term brain-environment interactions. Instead, consciousness is proposed to be specifically associated with, and subserve, deliberate, goal-directed behavior (GDB). Brain systems implied in conscious representation are highly connected to, but distinct from, neural substrates mediating GDB and declarative memory.
Collapse
Affiliation(s)
- Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, The Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Consciousness Regained: Disentangling Mechanisms, Brain Systems, and Behavioral Responses. J Neurosci 2017; 37:10882-10893. [PMID: 29118218 DOI: 10.1523/jneurosci.1838-17.2017] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 11/21/2022] Open
Abstract
How consciousness (experience) arises from and relates to material brain processes (the "mind-body problem") has been pondered by thinkers for centuries, and is regarded as among the deepest unsolved problems in science, with wide-ranging theoretical, clinical, and ethical implications. Until the last few decades, this was largely seen as a philosophical topic, but not widely accepted in mainstream neuroscience. Since the 1980s, however, novel methods and theoretical advances have yielded remarkable results, opening up the field for scientific and clinical progress. Since a seminal paper by Crick and Koch (1998) claimed that a science of consciousness should first search for its neural correlates (NCC), a variety of correlates have been suggested, including both content-specific NCCs, determining particular phenomenal components within an experience, and the full NCC, the neural substrates supporting entire conscious experiences. In this review, we present recent progress on theoretical, experimental, and clinical issues. Specifically, we (1) review methodological advances that are important for dissociating conscious experience from related enabling and executive functions, (2) suggest how critically reconsidering the role of the frontal cortex may further delineate NCCs, (3) advocate the need for general, objective, brain-based measures of the capacity for consciousness that are independent of sensory processing and executive functions, and (4) show how animal studies can reveal population and network phenomena of relevance for understanding mechanisms of consciousness.
Collapse
|
21
|
Spike-Based Functional Connectivity in Cerebral Cortex and Hippocampus: Loss of Global Connectivity Is Coupled to Preservation of Local Connectivity During Non-REM Sleep. J Neurosci 2017; 36:7676-92. [PMID: 27445145 DOI: 10.1523/jneurosci.4201-15.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 06/08/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Behavioral states are commonly considered global phenomena with homogeneous neural determinants. However, recent studies indicate that behavioral states modulate spiking activity with neuron-level specificity as a function of brain area, neuronal subtype, and preceding history. Although functional connectivity also strongly depends on behavioral state at a mesoscopic level and is globally weaker in non-REM (NREM) sleep and anesthesia than wakefulness, it is unknown how neuronal communication is modulated at the cellular level. We hypothesize that, as for neuronal activity, the influence of behavioral states on neuronal coupling strongly depends on type, location, and preceding history of involved neurons. Here, we applied nonlinear, information-theoretical measures of functional connectivity to ensemble recordings with single-cell resolution to quantify neuronal communication in the neocortex and hippocampus of rats during wakefulness and sleep. Although functional connectivity (measured in terms of coordination between firing rate fluctuations) was globally stronger in wakefulness than in NREM sleep (with distinct traits for cortical and hippocampal areas), the drop observed during NREM sleep was mainly determined by a loss of inter-areal connectivity between excitatory neurons. Conversely, local (intra-area) connectivity and long-range (inter-areal) coupling between interneurons were preserved during NREM sleep. Furthermore, neuronal networks that were either modulated or not by a behavioral task remained segregated during quiet wakefulness and NREM sleep. These results show that the drop in functional connectivity during wake-sleep transitions globally holds true at the cellular level, but confine this change mainly to long-range coupling between excitatory neurons. SIGNIFICANCE STATEMENT Studies performed at a mesoscopic level of analysis have shown that communication between cortical areas is disrupted in non-REM sleep and anesthesia. However, the neuronal determinants of this phenomenon are not known. Here, we applied nonlinear, information-theoretical measures of functional coupling to multi-area tetrode recordings from freely moving rats to investigate whether and how brain state modulates coordination between individual neurons. We found that the previously observed drop in functional connectivity during non-REM (NREM) sleep can be explained by a decrease in coupling between excitatory neurons located in distinct brain areas. Conversely, intra-area communication and coupling between interneurons are preserved. Our results provide significant new insights into the neuron-level mechanisms responsible for the loss of consciousness occurring in NREM sleep.
Collapse
|
22
|
The validity of Dawkins's selfish gene theory and the role of the unconscious in decision making. Behav Brain Sci 2014; 37:148-9. [PMID: 24775135 DOI: 10.1017/s0140525x13002070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although the proposed Selfish Goal Theory constitutes a major theoretical tour de force for addressing the issue of inconsistencies in human actions and the role of motivational goals in behavior, as it is based on an unproven biological paradigm (Dawkins's selfish gene theory) and overemphasizes the role of unconscious processes in decision making, it provides a questionable model of the underlying psychological structure of human agency.
Collapse
|
23
|
Bosman CA, Lansink CS, Pennartz CMA. Functions of gamma-band synchronization in cognition: from single circuits to functional diversity across cortical and subcortical systems. Eur J Neurosci 2014; 39:1982-99. [PMID: 24809619 DOI: 10.1111/ejn.12606] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/18/2014] [Accepted: 04/03/2014] [Indexed: 12/19/2022]
Abstract
Gamma-band activity (30-90 Hz) and the synchronization of neural activity in the gamma-frequency range have been observed in different cortical and subcortical structures and have been associated with different cognitive functions. However, it is still unknown whether gamma-band synchronization subserves a single universal function or a diversity of functions across the full spectrum of cognitive processes. Here, we address this question reviewing the mechanisms of gamma-band oscillation generation and the functions associated with gamma-band activity across several cortical and subcortical structures. Additionally, we raise a plausible explanation of why gamma rhythms are found so ubiquitously across brain structures. Gamma band activity originates from the interplay between inhibition and excitation. We stress that gamma oscillations, associated with this interplay, originate from basic functional motifs that conferred advantages for low-level system processing and multiple cognitive functions throughout evolution. We illustrate the multifunctionality of gamma-band activity by considering its role in neural systems for perception, selective attention, memory, motivation and behavioral control. We conclude that gamma-band oscillations support multiple cognitive processes, rather than a single one, which, however, can be traced back to a limited set of circuit motifs which are found universally across species and brain structures.
Collapse
Affiliation(s)
- Conrado A Bosman
- Cognitive and Systems Neuroscience Group, Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Postal Box 94216, 1090, GE Amsterdam, The Netherlands; Research Priority Program Brain & Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
24
|
Shen HY, Canas PM, Garcia-Sanz P, Lan JQ, Boison D, Moratalla R, Cunha RA, Chen JF. Adenosine A₂A receptors in striatal glutamatergic terminals and GABAergic neurons oppositely modulate psychostimulant action and DARPP-32 phosphorylation. PLoS One 2013; 8:e80902. [PMID: 24312250 PMCID: PMC3842921 DOI: 10.1371/journal.pone.0080902] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 10/17/2013] [Indexed: 12/03/2022] Open
Abstract
Adenosine A2A receptors (A2AR) are located postsynaptically in striatopallidal GABAergic neurons, antagonizing dopamine D2 receptor functions, and are also located presynaptically at corticostriatal terminals, facilitating glutamate release. To address the hypothesis that these two A2AR populations differently control the action of psychostimulants, we characterized A2AR modulation of cocaine-induced effects at the level of DARPP-32 phosphorylation at Thr-34 and Thr-75, c-Fos expression, and psychomotor activity using two lines of cell-type selective A2AR knockout (KO) mice with selective A2AR deletion in GABAergic neurons (striatum-A2AR-KO mice), or with A2AR deletion in both striatal GABAergic neurons and projecting cortical glutamatergic neurons (forebrain-A2AR-KO mice). We demonstrated that striatum-A2AR KO mice lacked A2ARs exclusively in striatal GABAergic terminals whereas forebrain-A2AR KO mice lacked A2ARs in both striatal GABAergic and glutamatergic terminals leading to a blunted A2AR-mediated facilitation of synaptosomal glutamate release. The inactivation of A2ARs in GABAergic neurons reduced striatal DARPP-32 phosphorylation at Thr-34 and increased its phosphorylation at Thr-75. Conversely, the additional deletion of corticostriatal glutamatergic A2ARs produced opposite effects on DARPP-32 phosphorylation at Thr-34 and Thr-75. This distinct modulation of DARPP-32 phosphorylation was associated with opposite responses to cocaine-induced striatal c-Fos expression and psychomotor activity in striatum-A2AR KO (enhanced) and forebrain-A2AR KO mice (reduced). Thus, A2ARs in glutamatergic corticostriatal terminals and in GABAergic striatal neurons modulate the action of psychostimulants and DARPP-32 phosphorylation in opposite ways. We conclude that A2ARs in glutamatergic terminals prominently control the action of psychostimulants and define a novel mechanism by which A2ARs fine-tune striatal activity by integrating GABAergic, dopaminergic and glutamatergic signaling.
Collapse
Affiliation(s)
- Hai-Ying Shen
- Molecular Neuropharmacology Lab, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Paula M. Canas
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Patricia Garcia-Sanz
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, and Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Jing-Quan Lan
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, Oregon, United States of America
| | - Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, Oregon, United States of America
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, and Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Rodrigo A. Cunha
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Jiang-Fan Chen
- Molecular Neuropharmacology Lab, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
25
|
Pause BM, Zlomuzica A, Kinugawa K, Mariani J, Pietrowsky R, Dere E. Perspectives on episodic-like and episodic memory. Front Behav Neurosci 2013; 7:33. [PMID: 23616754 PMCID: PMC3629296 DOI: 10.3389/fnbeh.2013.00033] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/06/2013] [Indexed: 11/30/2022] Open
Abstract
Episodic memory refers to the conscious recollection of a personal experience that contains information on what has happened and also where and when it happened. Recollection from episodic memory also implies a kind of first-person subjectivity that has been termed autonoetic consciousness. Episodic memory is extremely sensitive to cerebral aging and neurodegenerative diseases. In Alzheimer’s disease deficits in episodic memory function are among the first cognitive symptoms observed. Furthermore, impaired episodic memory function is also observed in a variety of other neuropsychiatric diseases including dissociative disorders, schizophrenia, and Parkinson disease. Unfortunately, it is quite difficult to induce and measure episodic memories in the laboratory and it is even more difficult to measure it in clinical populations. Presently, the tests used to assess episodic memory function do not comply with even down-sized definitions of episodic-like memory as a memory for what happened, where, and when. They also require sophisticated verbal competences and are difficult to apply to patient populations. In this review, we will summarize the progress made in defining behavioral criteria of episodic-like memory in animals (and humans) as well as the perspectives in developing novel tests of human episodic memory which can also account for phenomenological aspects of episodic memory such as autonoetic awareness. We will also define basic behavioral, procedural, and phenomenological criteria which might be helpful for the development of a valid and reliable clinical test of human episodic memory.
Collapse
Affiliation(s)
- Bettina M Pause
- Institute of Experimental Psychology, University of Düsseldorf Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Menzocchi M, Paoletti G, Carli G, Scattina E, Manzoni D, Santarcangelo EL. Hypnotizability-related effects of vestibular impairment on posture and locomotion. Int J Clin Exp Hypn 2010; 58:329-44. [PMID: 20509072 DOI: 10.1080/00207141003761155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Body sway and locomotion are differentially modulated in high (highs) and low (lows) hypnotizable subjects undergoing alteration of visual and neck/leg proprioceptive inputs. The study's aim was to investigate whether partial impairment of vestibular information due to backward head extension affects postural (Study 1) and locomotor behavior (Study 2) differentially in highs and lows. Results showed that, at variance with the visual and proprioceptive modalities, vestibular inactivation did not induce major differences between the 2 groups, with the exception of improvement in walking straight across consecutive trials, which was observed only in highs. The article presents an overview of the structures and mechanisms possibly involved in the observed hypnotizability-related differences in motor control and suggests that hypnotic susceptibility might be a relevant factor in neuro-rehabilitative treatments because it accounts for part of the variability in the sensorimotor self.
Collapse
|
27
|
Orpwood RD. Perceptual qualia and local network behavior in the cerebral cortex. J Integr Neurosci 2010; 9:123-52. [PMID: 20589951 DOI: 10.1142/s021963521000241x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 05/03/2010] [Indexed: 11/18/2022] Open
Abstract
This paper explores the implications of a recently published theory that relates the experience of qualia to the attractor activity in networks of pyramidal cells in the cerebral cortex. The paper builds on this theory, and aims to link activity in different networks to the nature of the qualia experienced. Some basic links between network activity and qualia experiences are initially presented, showing the importance of learning, and the paper then proceeds to relate these mechanisms to the qualia experienced during sensory perception. The paper argues that attractor behavior in networks of layer 2/3 pyramidal neurons could underpin the vivid sensory qualia of perception, and attractor behavior in networks of layer 5A pyramidal neurons could have a role in the more understanding kind of perceptual qualia. Communication between these networks is explored to suggest their involvement in putting incoming sensory information into the context of all prior experience, and the understanding that could result.
Collapse
Affiliation(s)
- Roger D Orpwood
- Bath Institute of Medical Engineering, University of Bath, Wolfson Centre, Royal United Hospital, Bath, UK.
| |
Collapse
|