1
|
Mysore KR, Cheng K, Suri LA, Fawaz R, Mavis AM, Kogan-Liberman D, Mohammad S, Taylor SA. Recent advances in the management of pediatric cholestatic liver diseases. J Pediatr Gastroenterol Nutr 2025; 80:549-558. [PMID: 39840645 PMCID: PMC11961318 DOI: 10.1002/jpn3.12462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/23/2025]
Abstract
Pediatric cholestatic liver diseases are rare conditions that can result from multiple specific underlying etiologies. Among the most common etiologies of pediatric cholestatic liver diseases are biliary atresia, Alagille syndrome (ALGS), and inherited disorders of bile acid transport. These diseases are characterized by episodic or chronic unremitting cholestasis. Due to the chronicity of these conditions, it is imperative to optimize medical management to improve patient quality of life, provide nutritional support, and reduce bile acid toxicity in efforts to slow disease progression. Cholestatic liver diseases remain the leading cause of pediatric liver transplantation, as many underlying disease etiologies have no curative medical therapies. In the present review, we provide an update on the nutritional, medical, and surgical management of pediatric cholestatic liver diseases. As recent advances have occurred in the field with the addition of ileal bile acid transporter (IBAT) inhibitors, we also review the results from prospective clinical trials, including their strengths and limitations. While recent clinical trials have demonstrated improved pruritus using IBAT inhibitors in ALGS and progressive familial intrahepatic cholestasis, establishing medical therapies proven to slow disease progression remains an area of unmet need.
Collapse
Affiliation(s)
- Krupa R Mysore
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Katherine Cheng
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | | | - Rima Fawaz
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Alisha M Mavis
- Department of Pediatrics, Levine Children's Hospital, Atrium Health, Charlotte, North Carolina, USA
| | - Debora Kogan-Liberman
- Department of Pediatrics, Hassenfeld Children's Hospital at NYU Langone, New York, New York, USA
| | - Saeed Mohammad
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sarah A Taylor
- Department of Pediatrics, Children's Hospital of Colorado, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
2
|
Gupta K, Chen D, Wells RG. Microcystin-RR is a biliary toxin selective for neonatal extrahepatic cholangiocytes. JHEP Rep 2025; 7:101218. [PMID: 39687604 PMCID: PMC11648759 DOI: 10.1016/j.jhepr.2024.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 12/18/2024] Open
Abstract
Background & Aims Biliary atresia is a fibrosing cholangiopathy affecting neonates that is thought to result from a prenatal environmental insult to the bile duct. Biliatresone, a plant toxin with an α-methylene ketone group, was previously implicated in biliary atresia in Australian livestock, but is found in a limited location and is unlikely to be a significant human toxin. We hypothesized that other unsaturated carbonyl compounds, some with the potential for significant human exposure, might also be biliary toxins. Methods We focused on the family of microcystins, cyclic peptide toxins from blue-green algae that are found worldwide, particularly during harmful algal blooms. We used primary extrahepatic cholangiocyte spheroids and extrahepatic bile duct explants from both neonatal [a total of 86 postnatal day (P) 2 mouse pups and 18 P2 rat pups (n = 8-10 per condition for both species)] and adult rodents [a total of 31 P15-18 mice (n = 10 or 11 per condition)] to study the biliary toxicity of microcystins and potential mechanisms involved. Results Results showed that 400 nM microcystin (MC)-RR, but not six other microcystins or the related algal toxin nodularin, caused >80% lumen closure in cell spheroids made from extrahepatic cholangiocytes isolated from 2-3-day-old mice (p <0.0001). By contrast, 400 nM MC-RR resulted in less than an average 5% lumen closure in spheroids derived from neonatal intrahepatic cholangiocytes or cells from adult mice (p = 0.4366). In addition, MC-RR caused occlusion of extrahepatic bile duct explants from 2-day-old mice (p <0.0001), but not 18-day-old mice. MC-RR also caused a 2.3-times increase in reactive oxygen species in neonatal cholangiocytes (p <0.0001), and treatment with N-acetyl cysteine partially prevented microcystin-RR-induced lumen closure (p = 0.0004), suggesting a role for redox homeostasis in its mechanism of action. Conclusions We identified MC-RR as a selective neonatal extrahepatic cholangiocyte toxin and suggest that it acts by increasing redox stress. Impact and implications The plant toxin biliatresone causes a biliary atresia-like disease in livestock and vertebrate animal model systems. We tested the widespread blue-green algal toxin, microcystin-RR, another highly electrophilic unsaturated carbonyl compound that is released during harmful algal blooms, and found that it was also a biliary toxin with specificity for neonatal extrahepatic cholangiocytes. This work should drive further animal studies and, ultimately, studies to determine whether human exposure to microcystin-RR causes biliary atresia.
Collapse
Affiliation(s)
- Kapish Gupta
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Dongning Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca G. Wells
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Tidwell J, Wu GY. Heritable Chronic Cholestatic Liver Diseases: A Review. J Clin Transl Hepatol 2024; 12:726-738. [PMID: 39130622 PMCID: PMC11310751 DOI: 10.14218/jcth.2024.00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 08/13/2024] Open
Abstract
Chronic cholestasis due to heritable causes is usually diagnosed in childhood. However, many cases can present and survive into adulthood. The time course varies considerably depending on the underlying etiology. Laboratory data usually reveal elevated conjugated hyperbilirubinemia, alkaline phosphatase, and gamma-glutamyl transpeptidase. Patients may be asymptomatic; however, when present, the typical symptoms are pruritus, jaundice, fatigue, and alcoholic stools. The diagnostic methods and management required depend on the underlying etiology. The development of genome-wide associated studies has allowed the identification of specific genetic mutations related to the pathophysiology of cholestatic liver diseases. The aim of this review was to highlight the genetics, clinical pathophysiology, presentation, diagnosis, and treatment of heritable etiologies of chronic cholestatic liver disease.
Collapse
Affiliation(s)
- Jasmine Tidwell
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - George Y. Wu
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
- Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
4
|
de Jong IEM, Wells RG. In Utero Extrahepatic Bile Duct Damage and Repair: Implications for Biliary Atresia. Pediatr Dev Pathol 2024; 27:291-310. [PMID: 38762769 PMCID: PMC11340255 DOI: 10.1177/10935266241247479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Biliary atresia (BA) is a cholangiopathy affecting the extrahepatic bile duct (EHBD) of newborns. The etiology and pathophysiology of BA are not fully understood; however, multiple causes of damage and obstruction of the neonatal EHBD have been identified. Initial damage to the EHBD likely occurs before birth. We discuss how different developmental stages in utero and birth itself could influence the susceptibility of the fetal EHBD to damage and a damaging wound-healing response. We propose that a damage-repair response of the fetal and neonatal EHBD involving redox stress and a program of fetal wound healing could-regardless of the cause of the initial damage-lead to either obstruction and BA or repair of the duct and recovery. This overarching concept should guide future research targeted toward identification of factors that contribute to recovery as opposed to progression of injury and fibrosis. Viewing BA through the lens of an in utero damage-repair response could open up new avenues for research and suggests exciting new therapeutic targets.
Collapse
Affiliation(s)
- Iris E. M. de Jong
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca G. Wells
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Eiamkulbutr S, Tubjareon C, Sanpavat A, Phewplung T, Srisan N, Sintusek P. Diseases of bile duct in children. World J Gastroenterol 2024; 30:1043-1072. [PMID: 38577180 PMCID: PMC10989494 DOI: 10.3748/wjg.v30.i9.1043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/26/2023] [Accepted: 02/04/2024] [Indexed: 03/06/2024] Open
Abstract
Several diseases originate from bile duct pathology. Despite studies on these diseases, certain etiologies of some of them still cannot be concluded. The most common disease of the bile duct in newborns is biliary atresia, whose prognosis varies according to the age of surgical correction. Other diseases such as Alagille syndrome, inspissated bile duct syndrome, and choledochal cysts are also time-sensitive because they can cause severe liver damage due to obstruction. The majority of these diseases present with cholestatic jaundice in the newborn or infant period, which is quite difficult to differentiate regarding clinical acumen and initial investigations. Intraoperative cholangiography is potentially necessary to make an accurate diagnosis, and further treatment will be performed synchronously or planned as findings suggest. This article provides a concise review of bile duct diseases, with interesting cases.
Collapse
Affiliation(s)
- Sutha Eiamkulbutr
- Department of Pediatrics, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Chomchanat Tubjareon
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Anapat Sanpavat
- Department of Pathology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Teerasak Phewplung
- Department of Radiology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nimmita Srisan
- Department of Surgery, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Palittiya Sintusek
- Center of Excellence in Thai Pediatric Gastroenterology, Hepatology and Immunology, Division of Gastroenterology, Department of Pediatrics, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Gupta K, Chen D, Wells RG. Microcystin-RR is a biliary toxin selective for neonatal cholangiocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552661. [PMID: 37609158 PMCID: PMC10441435 DOI: 10.1101/2023.08.09.552661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
BACKGROUND AND AIMS Biliary atresia is a fibrosing cholangiopathy affecting neonates that is thought to be caused by a prenatal environmental insult to the bile duct. Biliatresone, a plant toxin with an α-methylene ketone group, was previously implicated in toxin-induced biliary atresia in Australian livestock, but is found in a limited location and is highly unlikely to be a significant human toxin. We hypothesized that other molecules with α-methylene ketone groups, some with the potential for significant human exposure, might also be biliary toxins. APPROACH AND RESULTS We focused on the family of microcystins, cyclic peptide toxins from blue-green algae that have an α-methylene ketone group and are found worldwide, particularly during harmful algal blooms. We found that microcystin-RR, but not 6 other microcystins, caused damage to cell spheroids made using cholangiocytes isolated from 2-3-day-old mice, but not from adult mice. We also found that microcystin-RR caused occlusion of extrahepatic bile duct explants from 2-day-old mice, but not 18-day-old mice. Microcystin-RR caused elevated reactive oxygen species in neonatal cholangiocytes, and treatment with N-acetyl cysteine partially prevented microcystin-RRinduced lumen closure, suggesting a role for redox homeostasis in its mechanism of action. CONCLUSIONS This study highlights the potential for environmental toxins to cause neonatal biliary disease and identifies microcystin-RR acting via increased redox stress as a possible neonatal bile duct toxin.
Collapse
Affiliation(s)
- Kapish Gupta
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Dongning Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca G. Wells
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Schmidt HC, Hagens J, Schuppert P, Appl B, Raluy LP, Trochimiuk M, Philippi C, Li Z, Reinshagen K, Tomuschat C. Biliatresone induces cholangiopathy in C57BL/6J neonates. Sci Rep 2023; 13:10574. [PMID: 37386088 PMCID: PMC10310722 DOI: 10.1038/s41598-023-37354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Exposure to plant toxins or microbiota that are able to digest common food ingredients to toxic structures might be responsible for biliary atresia (BA). An isoflavonoid, biliatresone is known to effectively alter the extrahepatic bile duct (EHBD) development in BALB/c mice. Biliatresone causes a reduction of Glutathione (GSH) levels, SOX17 downregulation and is effectively countered with N-Acetyl-L-cysteine treatment in vitro. Therefore, reversing GSH-loss appears to be a promising treatment target for a translational approach. Since BALB/c mice have been described as sensitive in various models, we evaluated the toxic effect of biliatresone in robust C57BL/6J mice and confirmed its toxicity. Comparison between BALB/c and C57BL/6J mice revealed similarity in the toxic model. Affected neonates exhibited clinical symptoms of BA, such as jaundice, ascites, clay-colored stools, yellow urine and impaired weight gain. The gallbladders of jaundiced neonates were hydropic and EHBD were twisted and enlarged. Serum and histological analysis proved cholestasis. No anomalies were seen in the liver and EHBD of control animals. With our study we join a chain of evidence confirming that biliatresone is an effective agent for cross-lineage targeted alteration of the EHBD system.
Collapse
Affiliation(s)
- Hans Christian Schmidt
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Johanna Hagens
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Pauline Schuppert
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Birgit Appl
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Laia Pagerols Raluy
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Magdalena Trochimiuk
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Clara Philippi
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Zhongwen Li
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Konrad Reinshagen
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Tomuschat
- Research Laboratory W23, Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
8
|
Antala S, Taylor SA. Biliary Atresia in Children: Update on Disease Mechanism, Therapies, and Patient Outcomes. Clin Liver Dis 2022; 26:341-354. [PMID: 35868678 PMCID: PMC9309872 DOI: 10.1016/j.cld.2022.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Biliary atresia is a rare disease but remains the most common indication for pediatric liver transplantation as there are no effective medical therapies to slow progression after diagnosis. Variable contribution of genetic, immune, and environmental factors contributes to disease heterogeneity among patients with biliary atresia. Developing a deeper understanding of the disease mechanism will help to develop targeted medical therapies and improve patient outcomes.
Collapse
Affiliation(s)
- Swati Antala
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Sarah A. Taylor
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Fligor SC, Hirsch TI, Tsikis ST, Adeola A, Puder M. Current and emerging adjuvant therapies in biliary atresia. Front Pediatr 2022; 10:1007813. [PMID: 36313875 PMCID: PMC9614654 DOI: 10.3389/fped.2022.1007813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Following Kasai hepatic portoenterostomy (HPE), most patients with biliary atresia will eventually require liver transplantation due to progressive cirrhosis and liver failure. Preventing liver transplantation, or even delaying eventual liver transplantation, is the key to improving long-term outcomes. This review first examines the commonly used adjuvant therapies in post-HPE biliary atresia and the strength of the evidence supporting these therapies. Next, it examines the evolving frontiers of management through a comprehensive evaluation of both recently completed and ongoing clinical trials in biliary atresia. Promising therapies used in other cholestatic liver diseases with potential benefit in biliary atresia are discussed. Improving post-HPE management is critical to prevent complications, delay liver transplantation, and ultimately improve the long-term survival of patients with biliary atresia.
Collapse
Affiliation(s)
- Scott C Fligor
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas I Hirsch
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Savas T Tsikis
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrew Adeola
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Mark Puder
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Chen YT, Gao MJ, Zheng ZB, Huang L, Du Q, Zhu DW, Liu YM, Jin Z. Comparative analysis of cystic biliary atresia and choledochal cysts. Front Pediatr 2022; 10:947876. [PMID: 36090570 PMCID: PMC9448952 DOI: 10.3389/fped.2022.947876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/27/2022] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Cystic biliary atresia (CBA) is a rare and peculiar type of biliary atresia (BA) that is easily confused with infantile choledochal cysts (CCs). This study explored information for early CBA diagnosis and treatment. METHOD The authors retrospectively analyzed the clinical data of 32 children with hilar cysts from January 2013 to May 2021. According to the diagnosis, they were divided into the CBA (n = 12) and CC (n = 20) groups. Patient features, biochemical indexes, preoperative ultrasound characteristics, cholangiography features, and intraoperative findings were analyzed and compared between the two groups. RESULTS The alanine aminotransferase, aspartate aminotransferase, total bilirubin, and direct bilirubin levels in the CBA group were higher than in the CCs group (P < 0.05). Additionally, B-mode ultrasound showed a cystic mass in front of the hepatic hilum, and the cyst size was much smaller in the CBA group compared with the CC group (2.2 ± 1.3 cm vs. 6.0 ± 2.2 cm, P < 0.001). Among all of the parameters, cyst width was the most accurate for identifying CBA and CCs. A cutoff value of 2.5 cm (area under the curve, 0.98, P < 0.001) showed 90.9% sensitivity and 95% specificity for cyst size. CONCLUSION For children with early-onset severe jaundice, and if the width of the cystic mass was ≤2.5 cm, a diagnosis of CBA was highly likely. Early cholangiography and surgical treatment are necessary for the effective treatment of these infants.
Collapse
Affiliation(s)
- Yu-Tong Chen
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Ming-Juan Gao
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Ze-Bing Zheng
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Lu Huang
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Qing Du
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Dai-Wei Zhu
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Yuan-Mei Liu
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| | - Zhu Jin
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Pediatric Surgery, Guizhou Children's Hospital, Zunyi, China
| |
Collapse
|
11
|
Abstract
"Biliary atresia (BA) is a common cause of jaundice in infancy. There is increasing evidence that newborn screening with direct or conjugated bilirubin leads to earlier diagnosis. Although the Kasai portoenterostomy is the primary treatment, there are scientific advances in adjuvant therapies. As pediatric patients transition to adult care, multidisciplinary care is essential, given the complexity of this patient population."
Collapse
Affiliation(s)
- Sara E Yerina
- Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, 3800 Reservoir Road, NW, Washington, DC, USA
| | - Udeme D Ekong
- Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, 3800 Reservoir Road, NW, Washington, DC, USA; Department of Pediatrics, Georgetown University School of Medicine, Washington, DC, USA.
| |
Collapse
|
12
|
Impact of Parenteral Lipid Emulsion Components on Cholestatic Liver Disease in Neonates. Nutrients 2021; 13:nu13020508. [PMID: 33557154 PMCID: PMC7913904 DOI: 10.3390/nu13020508] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/30/2022] Open
Abstract
Total parenteral nutrition (TPN) is a life-saving intervention for infants that are unable to feed by mouth. Infants that remain on TPN for extended periods of time are at risk for the development of liver injury in the form of parenteral nutrition associated cholestasis (PNAC). Current research suggests the lipid component of TPN is a factor in the development of PNAC. Most notably, the fatty acid composition, vitamin E concentration, and presence of phytosterols are believed key mediators of lipid emulsion driven PNAC development. New emulsions comprised of fish oil and medium chain triglycerides show promise for reducing the incidence of PNAC in infants. In this review we will cover the current clinical studies on the benefit of fish oil and medium chain triglyceride containing lipid emulsions on the development of PNAC, the current constituents of lipid emulsions that may modulate the prevalence of PNAC, and potential new supplements to TPN to further reduce the incidence of PNAC.
Collapse
|
13
|
Abstract
Biliary atresia is characterised as an obliterative cholangiopathy of both extra-and intra-hepatic bile ducts. There is marked aetiological heterogeneity with a number of different variants, some syndromic and others perhaps virally-mediated. Current research aims to try and define possible mechanisms and pathogenesis though an actual breakthrough remains elusive. There has been little in the way of surgical advances beyond subtle variations in the Kasai portoenterostomy and laparoscopic equivalents have no declared advantage and have yet to prove equivalence in measures of outcome. The next target has been to maximise potential with better adjuvant therapy, though the evidence base for most currently available therapies such as steroids and ursodeoxycholic acid remains limited. Still high-dose steroid use is widespread, certainly in Europe and the Far East. Clearance of jaundice can be achieved in 50-60% of those subjected to portoenterostomy at <70 days and should be an achievable benchmark. Transplantation is a widely available "rescue" therapy though whether it should be an alternative as a primary procedure is arguable but becoming increasingly heard. The aim of clinical practice remains to get these infants for surgery as early as is possible though this can be difficult to accomplish in practice, and "low-cost" screening projects using stool colour charts have been limited outside of Taiwan and Japan. Centralisation of resources (medical and surgical) is associated with a diminution of time to portoenterostomy but application has been limited by entrenched health delivery models or geographical constraints.
Collapse
Affiliation(s)
- Federico Scottoni
- Department of Paediatric Surgery, Kings College Hospital, London SE5 9RS, United Kingdom
| | - Mark Davenport
- Department of Paediatric Surgery, Kings College Hospital, London SE5 9RS, United Kingdom.
| |
Collapse
|
14
|
Abstract
The treatment of biliary atresia (BA) is predominantly surgical with firstly an attempt at restoration of bile flow from the native liver by wide excision of the obstructed, obliterated extrahepatic biliary tree to the level of the porta hepatis and a portoenterostomy using a long Roux loop-Kasai portoenterostomy (KPE). Liver transplantation is reserved for those that fail this and for those where surgery is considered futile for reasons of age or stage of disease. As the aetiology of BA remains ill-defined, so adjuvant treatment has been largely based on pragmatism, trial and error. Systematic analysis of the few randomized placebo-controlled trial data and less well-controlled cohort studies have suggested benefit from post-operative high-dose steroids and ursodeoxycholic acid (UDCA) while the benefit of long-term prophylactic antibiotics, bile acid sequestrants (e.g., colestyramine) or probiotics remains unproven. Newer modalities such as antiviral therapy (AVT), immunoglobulin, FXR agonists (e.g., obeticholic acid), ileal bile acid transporter (IBAT) antagonists (e.g., maralixibat) remain unproven. This article reviews the current evidence for the efficacy of adjuvant medical therapy in BA.
Collapse
Affiliation(s)
- Jessica Burns
- Department of Paediatric Surgery, King's College Hospital, London, UK
| | - Mark Davenport
- Department of Paediatric Surgery, King's College Hospital, London, UK
| |
Collapse
|