1
|
Kalali D, Hadjiyianni A, Isaakidou A. The use of interleukin-6 as a biomarker of lung cancer: A systematic review and meta-analysis. J Cancer Res Ther 2023; 19:S485-S489. [PMID: 38384009 DOI: 10.4103/jcrt.jcrt_2225_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/22/2022] [Indexed: 02/23/2024]
Abstract
BACKGROUND Lung cancer is known for its fatality due to diagnosis at a late stage, indicating the need for the discovery of novel diagnostic biomarkers. Interleukin-6 (IL-6) belongs to a family of inflammatory cytokines shown to be elevated in cancer patients. Hence, in this study, a systematic review and meta-analysis was undertaken to evaluate the association of IL-6 levels between lung cancer patients and healthy individuals, as this would further support its use as a clinical biomarker. METHODS All major electronic databases were systematically searched to find the existing literature from 2012 until September 2022 on the association of IL-6 levels with lung cancer. Mean and standard deviation of IL-6 levels of lung cancer patients and controls were recorded from the included case-control studies. The natural logarithm of the ratio of means (RoM) between patients and controls with its respective 95% confidence intervals was calculated to retrieve a pooled RoM value. RESULTS Eight studies involving 559 lung cancer patients and 462 healthy controls were in included in the meta-analysis and a random-effects model was used due to high heterogeneity (I2 = 99.38%). Overall, IL-6 was found to be higher in lung cancer patients (pooled ln RoM = 1.20, 95% CI: 0.72-1.69, P < 0.0001) and all included studies were found to carry a low risk of bias after quality assessment. CONCLUSIONS This meta-analysis revealed that IL-6 levels are higher in biological samples of lung cancer patients, indicating that they could be used as a biomarker for diagnosing lung cancer without complications. Further research should be undertaken to evaluate its diagnostic accuracy, in order to obtain more concrete evidence for its clinical use.
Collapse
Affiliation(s)
- Datis Kalali
- Medical School, University of Cyprus, Nicosia, Cyprus
- Department of Radiation Oncology, German Oncology Center, Limassol, Cyprus
| | | | - Athina Isaakidou
- Department of Medical Oncology, German Oncology Center, Limassol, Cyprus
| |
Collapse
|
2
|
Wen TH, Cheng A, Andreason C, Zahiri J, Xiao Y, Xu R, Bao B, Courchesne E, Barnes CC, Arias SJ, Pierce K. Large scale validation of an early-age eye-tracking biomarker of an autism spectrum disorder subtype. Sci Rep 2022; 12:4253. [PMID: 35277549 PMCID: PMC8917231 DOI: 10.1038/s41598-022-08102-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/28/2022] [Indexed: 01/07/2023] Open
Abstract
Few clinically validated biomarkers of ASD exist which can rapidly, accurately, and objectively identify autism during the first years of life and be used to support optimized treatment outcomes and advances in precision medicine. As such, the goal of the present study was to leverage both simple and computationally-advanced approaches to validate an eye-tracking measure of social attention preference, the GeoPref Test, among 1,863 ASD, delayed, or typical toddlers (12-48 months) referred from the community or general population via a primary care universal screening program. Toddlers participated in diagnostic and psychometric evaluations and the GeoPref Test: a 1-min movie containing side-by-side dynamic social and geometric images. Following testing, diagnosis was denoted as ASD, ASD features, LD, GDD, Other, typical sibling of ASD proband, or typical. Relative to other diagnostic groups, ASD toddlers exhibited the highest levels of visual attention towards geometric images and those with especially high fixation levels exhibited poor clinical profiles. Using the 69% fixation threshold, the GeoPref Test had 98% specificity, 17% sensitivity, 81% PPV, and 65% NPV. Sensitivity increased to 33% when saccades were included, with comparable validity across sex, ethnicity, or race. The GeoPref Test was also highly reliable up to 24 months following the initial test. Finally, fixation levels among twins concordant for ASD were significantly correlated, indicating that GeoPref Test performance may be genetically driven. As the GeoPref Test yields few false positives (~ 2%) and is equally valid across demographic categories, the current findings highlight the ability of the GeoPref Test to rapidly and accurately detect autism before the 2nd birthday in a subset of children and serve as a biomarker for a unique ASD subtype in clinical trials.
Collapse
Affiliation(s)
- Teresa H Wen
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA.
| | - Amanda Cheng
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Charlene Andreason
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Javad Zahiri
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Yaqiong Xiao
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Ronghui Xu
- Herbert Wertheim School of Public Health and Department of Mathematics, University of California, San Diego, La Jolla, CA, USA
| | - Bokan Bao
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
- Department of Bioinformatics and Systems Biology, University of California, San Diego, La Jolla, CA, USA
| | - Eric Courchesne
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Cynthia Carter Barnes
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Steven J Arias
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Karen Pierce
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA.
| |
Collapse
|
3
|
Cowell TW, Valera E, Jankelow A, Park J, Schrader AW, Ding R, Berger J, Bashir R, Han HS. Rapid, multiplexed detection of biomolecules using electrically distinct hydrogel beads. LAB ON A CHIP 2020; 20:2274-2283. [PMID: 32490455 PMCID: PMC10409638 DOI: 10.1039/d0lc00243g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rapid, low-cost, and multiplexed biomolecule detection is an important goal in the development of effective molecular diagnostics. Our recent work has demonstrated a microfluidic biochip device that can electrically quantitate a protein target with high sensitivity. This platform detects and quantifies a target analyte by counting and capturing micron-sized beads in response to an immunoassay on the bead surface. Existing microparticles limit the technique to the detection of a single protein target and lack the magnetic properties required for separation of the microparticles for direct measurements from whole blood. Here, we report new precisely engineered microparticles that achieve electrical multiplexing and adapt this platform for low-cost and label-free multiplexed electrical detection of biomolecules. Droplet microfluidic synthesis yielded highly-monodisperse populations of magnetic hydrogel beads (MHBs) with the necessary properties for multiplexing the electrical Coulter counting on chip. Each bead population was designed to contain a different amount of the hydrogel material, resulting in a unique electrical impedance signature during Coulter counting, thereby enabling unique identification of each bead. These monodisperse bead populations span a narrow range of sizes ensuring that all can be captured sensitively and selectively under simultaneously flow. Incorporating these newly synthesized beads, we demonstrate versatile and multiplexed biomolecule detection of proteins or DNA targets. This development of multiplexed beads for the electrical detection of biomolecules, provides a critical advancement towards multiplexing the Coulter counting approach and the development of a low cost point-of-care diagnostic sensor.
Collapse
Affiliation(s)
- Thomas W Cowell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 South Mathews Ave., Urbana, Illinois 61801, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Park JJH, Hsu G, Siden EG, Thorlund K, Mills EJ. An overview of precision oncology basket and umbrella trials for clinicians. CA Cancer J Clin 2020; 70:125-137. [PMID: 32031692 PMCID: PMC7187272 DOI: 10.3322/caac.21600] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
With advancements in biomarkers and momentum in precision medicine, biomarker-guided trials such as basket trials and umbrella trials have been developed under the master protocol framework. A master protocol refers to a single, overarching design developed to evaluate multiple hypotheses with the general goal of improving the efficiency of trial evaluation. One type of master protocol is the basket trial, in which a targeted therapy is evaluated for multiple diseases that share common molecular alterations or risk factors that may help predict whether the patients will respond to the given therapy. Another variant of a master protocol is the umbrella trial, in which multiple targeted therapies are evaluated for a single disease that is stratified into multiple subgroups based on different molecular or other predictive risk factors. Both designs follow the core principle of precision medicine-to tailor intervention strategies based on the patient's risk factor(s) that can help predict whether they will respond to a specific treatment. There have been increasing numbers of basket and umbrella trials, but they are still poorly understood. This article reviews common characteristics of basket and umbrella trials, key trials and recent US Food and Drug Administration approvals for precision oncology, and important considerations for clinical readers when critically evaluating future publications on basket trials and umbrella trials and for researchers when designing these clinical trials.
Collapse
Affiliation(s)
- Jay J. H. Park
- Experimental Medicine, Department of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Grace Hsu
- Department of Health Research Methodology, Evidence, and ImpactMcMaster UniversityHamiltonOntarioCanada
| | - Ellie G. Siden
- Experimental Medicine, Department of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kristian Thorlund
- Department of Health Research Methodology, Evidence, and ImpactMcMaster UniversityHamiltonOntarioCanada
- Cytel IncVancouverBritish ColumbiaCanada
| | - Edward J. Mills
- Department of Health Research Methodology, Evidence, and ImpactMcMaster UniversityHamiltonOntarioCanada
- Cytel IncVancouverBritish ColumbiaCanada
| |
Collapse
|