1
|
Mikail M, Azizan TRPT, Noor MHM, Hassim HA, Che'Amat A, Latip MQA. Long-Tailed Macaque ( Macaca fascicularis) Contraception Methods: A Systematic Review. BIOLOGY 2023; 12:848. [PMID: 37372133 DOI: 10.3390/biology12060848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023]
Abstract
The contraception-based approach to wildlife management is a humane and effective alternative to population control methods. Wildlife management only has a few conventional ways to control overpopulation, such as culling, translocation, poisoning, and allowing natural death. Nevertheless, these methods usually have short-term, lethal, and unethical effects. The present systematic review aims to review the knowledge on contraception reported in long-tailed macaques as an alternative to population control. We obtained 719 records from searching CABI, PubMed, ScienceDirect, and Scopus electronic databases. After the screening and selection process, according to PRISMA guidelines, 19 articles that met the eligibility criteria were chosen. Of the 19 articles, 15 were studies on female long-tailed macaque contraception methods (six (6) hormonal and nine (9) non-hormonal). We analyzed four (4) selected articles on male Cynomolgus monkey contraception methods (two (2) hormonal and two (2) non-hormonal). One of the nine (9) articles on female long-tailed macaque contraception reports negative results. Furthermore, only two (2) studies used free-ranging long-tailed macaques as test subjects, while seventeen (17) tested on captive ones. The challenges of long-tailed macaque contraception identified in this review were the effectiveness of the contraceptive, the administration route, the economic feasibility, the distinction between captive and free-ranging Cynomolgus macaques, the choice of permanent or reversible contraception, the capability of contraceptive use for population control, and the lack of studies on the free-ranging long-tailed macaque. Notwithstanding the literature gap on long-tailed macaque contraception for population control, long-tailed macaque contraception exhibits potential as an alternative method to culling long-tailed macaque. Future research should address these obstacles to support the long-tailed macaque contraception as an alternative population control method.
Collapse
Affiliation(s)
- Muhammed Mikail
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Wildlife Research Centre, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Tengku Rinalfi Putra Tengku Azizan
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Wildlife Research Centre, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Mohd Hezmee Mohd Noor
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Hasliza Abu Hassim
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Azlan Che'Amat
- Wildlife Research Centre, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Mohd Qayyum Ab Latip
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Wildlife Research Centre, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
2
|
Gupta A, Pandey AN, Sharma A, Tiwari M, Yadav PK, Yadav AK, Pandey AK, Shrivastav TG, Chaube SK. Cyclic nucleotide phosphodiesterase inhibitors: possible therapeutic drugs for female fertility regulation. Eur J Pharmacol 2020; 883:173293. [PMID: 32663542 DOI: 10.1016/j.ejphar.2020.173293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/21/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are group of enzymes responsible for the hydrolysis of cyclic adenosine 3', 5' monophosphate (cAMP) and cyclic guanosine 3', 5' monophosphate (cGMP) levels in wide variety of cell types. These PDEs are detected in encircling granulosa cells or in oocyte with in follicular microenvironment and responsible for the decrease of cAMP and cGMP levels in mammalian oocytes. A transient decrease of cAMP level initiates downstream pathways to cause spontaneous meiotic resumption from diplotene arrest and induces oocyte maturation. The nonspecific PDE inhibitors (caffeine, pentoxifylline, theophylline, IBMX etc.) as well as specific PDE inhibitors (cilostamide, milrinone, org 9935, cilostazol etc.) have been used to elevate cAMP level and inhibit meiotic resumption from diplotene arrest and oocyte maturation, ovulation, fertilization and pregnancy rates both in vivo as well as under in vitro culture conditions. The PDEs inhibitors are used as powerful experimental tools to demonstrate cyclic nucleotide mediated changes in ovarian functions and thereby fertility. Indeed, non-hormonal nature and reversible effects of nonspecific as well as specific PDE inhibitors hold promise for the development of novel therapeutic drugs for female fertility regulation.
Collapse
Affiliation(s)
- Anumegha Gupta
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Alka Sharma
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Anil K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Banaras Hindu University, Varanasi, 221005, India
| | - Tulsidas G Shrivastav
- Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Baba Gang Nath Marg, Munirka, New Delhi, 110067, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India.
| |
Collapse
|
3
|
Jakkaraj S, Young VG, Georg GI. Syntheses of PDE3A inhibitor ORG9935 and determination of the absolute stereochemistries of its enantiomers by X-ray crystallography. Tetrahedron 2018; 74:2769-2774. [PMID: 30416214 PMCID: PMC6223663 DOI: 10.1016/j.tet.2018.04.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two synthetic methods were developed for the synthesis of PDE3A inhibitor ORG9935. The first one proceeds in six steps and 34% overall yield and the second one in five steps and an overall yield of 69% starting from commercially available starting material 5,6-dimethoxybenzo[b]thiophene-2-carboxylic acid (6). The enantiomers of ORG9935 were separated by chiral column chromatography and the absolute stereochemistry of the (+)-enantiomer, ORG20865 was determined by X-ray crystallography to possess the (S)-configuration. The (-)-enantiomer, ORG20864, was therefore assigned the (R)-stereochemistry. The biologically less active (+)-isomer ORG20865 was converted to racemic ORG9935 under basic conditions, which then can be separated again into the enantiomers. The crystal structure of ORG20865 is notable for having the highest Z' for any known pharmaceutical substance.
Collapse
Affiliation(s)
- Sudhakar Jakkaraj
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, United States
| | - Victor G. Young
- LeClair-Dow Chemical Instrumentation Facility, X-Ray Crystallographic Laboratory, Department of Chemistry, 207 Pleasant St. SE, Minneapolis, MN 55455
| | - Gunda I. Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, United States
| |
Collapse
|
4
|
Feichtinger M, Barnea ER, Nyachieo A, Brännström M, Kim SS. Allogeneic ovarian transplantation using immunomodulator preimplantation factor (PIF) as monotherapy restored ovarian function in olive baboon. J Assist Reprod Genet 2018; 35:81-89. [PMID: 29128910 PMCID: PMC5758471 DOI: 10.1007/s10815-017-1051-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/15/2017] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Allogeneic ovarian transplantation may be an alternative in the future to oocyte donation in women with premature ovarian failure. The objectives of this study were to (a) evaluate allotransplantation feasibility for restoration of ovarian function and (b) assess efficacy of synthetic preimplantation factor (PIF) monotherapy as sole immune-acceptance regimen. METHODS This is an experimental animal study using non-human primates (Papio anubis). Allogeneic orthotopic ovarian tissue transplantation was performed in two female olive baboons. PIF was administered as a monotherapy to prevent immune rejection and achieve transplant maintenance and function. Subjects underwent bilateral oophorectomy followed by cross-transplantation of prepared ovarian cortex. Postoperatively, subjects were monitored for clinical and biochemical signs of graft rejection and return of function. Weekly blood samples were obtained to monitor graft acceptance and endocrine function restoration. RESULTS Postoperatively, there were no clinical signs of rejection. Laboratory parameters (alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), creatinine) did not indicate organ rejection at any stage of the experiment. Initially, significant loss of follicles was noticed after grafting and serum follicle-stimulating hormone (FSH) and E2 levels were consistent with ovarian failure. Seven months after transplantation, one animal exhibited recurrence of ovarian endocrine function (perineal swelling, E2 rise, FSH decrease, and return of menstruation). CONCLUSIONS Organ rejection after allogeneic ovarian transplantation was prevented using PIF as monotherapy for the first time and no side effects were recorded. The study suggests the clinical feasibility of ovarian allotransplantation to obtain ovarian function.
Collapse
Affiliation(s)
- Michael Feichtinger
- Department of Obstetrics and Gynecology, Division of Gynecologic Endocrinology and Reproductive Medicine, Medical University of Vienna, Vienna, Austria
- Wunschbaby Institut Feichtinger, Vienna, Austria
| | - Eytan R Barnea
- BioIncept, LLC, Cherry Hill, NJ, 08003, USA
- SIEP, Society for the Investigation of Early Pregnancy, Cherry Hill, NJ, 08003, USA
| | | | - Mats Brännström
- Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF, Stockholm, Sweden
| | - S Samuel Kim
- University of Kansas, Kansas City, KS, USA.
- American-Sino Women's and Children's Hospital, 155 Songyuan Rd., Shanghai, China.
| |
Collapse
|
5
|
Derby N, Aravantinou M, Kenney J, Ugaonkar SR, Wesenberg A, Wilk J, Kizima L, Rodriguez A, Zhang S, Mizenina O, Levendosky K, Cooney ML, Seidor S, Gettie A, Grasperge B, Blanchard J, Piatak M, Lifson JD, Fernández-Romero J, Zydowsky TM, Robbiani M. An intravaginal ring that releases three antiviral agents and a contraceptive blocks SHIV-RT infection, reduces HSV-2 shedding, and suppresses hormonal cycling in rhesus macaques. Drug Deliv Transl Res 2017; 7:840-858. [PMID: 28600625 PMCID: PMC5656733 DOI: 10.1007/s13346-017-0389-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Women globally need access to multipurpose prevention technologies (MPTs) that prevent human immunodeficiency virus (HIV), sexually transmitted infections that increase HIV acquisition/transmission risk, and unintended pregnancy. Seeking an MPT with activity against HIV, herpes simplex virus-2 (HSV-2), and human papillomavirus (HPV), we developed a prototype intravaginal ring (IVR), the MZCL IVR, which released the antiviral agents MIV-150, zinc acetate, and carrageenan (MZC for short) and the contraceptive levonorgestrel (LNG). Previously, we showed that an MZC gel has potent activity against immunodeficiency viruses, HSV-2, and HPV and that the MZCL (MZC with LNG) IVR releases all four components in macaques in vivo at levels associated with efficacy. Vaginal fluid from treated macaques has in vitro activity against HIV, HSV-2, and HPV. Herein, we assessed the ability of the MZCL IVR to protect macaques against repeated co-challenge with HSV-2 and SHIV-RT (simian immunodeficiency virus [SIV] containing the reverse transcriptase gene from HIV) and prevent hormonal cycling. We evaluated in vivo drug release in co-challenged macaques by measuring drug levels in blood and vaginal fluid and residual drug levels in used IVRs. The MZCL IVR significantly prevented SHIV-RT infection, reduced HSV-2 vaginal shedding, and prevented cycling. No non-nucleoside HIV reverse transcriptase inhibitor (NNRTI)-resistant SHIV was detected in macaques that became infected after continuous exposure to MZC from the IVR. Macaques wearing the MZCL IVR also had carrageenan levels in vaginal fluid expected to protect from HPV (extrapolated from mice) and LNG levels in blood associated with contraceptive efficacy. The MZCL IVR is a promising MPT candidate that warrants further development.
Collapse
MESH Headings
- Alphapapillomavirus/drug effects
- Alphapapillomavirus/physiology
- Animals
- Antiviral Agents/administration & dosage
- Antiviral Agents/pharmacology
- Carrageenan/administration & dosage
- Carrageenan/pharmacology
- Contraceptive Agents, Female/administration & dosage
- Contraceptive Agents, Female/pharmacology
- Contraceptive Devices, Female
- Disease Models, Animal
- Drug Therapy, Combination/methods
- Female
- Herpes Simplex/prevention & control
- Herpesvirus 2, Human/drug effects
- Herpesvirus 2, Human/physiology
- Humans
- Macaca mulatta
- Menstrual Cycle
- Pyridines/administration & dosage
- Pyridines/pharmacology
- Simian Acquired Immunodeficiency Syndrome/prevention & control
- Urea/administration & dosage
- Urea/analogs & derivatives
- Urea/pharmacology
- Vaginal Creams, Foams, and Jellies/administration & dosage
- Vaginal Creams, Foams, and Jellies/pharmacology
- Virus Shedding/drug effects
- Zinc Acetate/administration & dosage
- Zinc Acetate/pharmacology
Collapse
Affiliation(s)
- Nina Derby
- Population Council, 1230 York Avenue, New York, NY, 10065, USA.
| | | | - Jessica Kenney
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | | | - Asa Wesenberg
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Jolanta Wilk
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Larisa Kizima
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Aixa Rodriguez
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Shimin Zhang
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Olga Mizenina
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | | | | | - Samantha Seidor
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, 455 First Avenue, 7th Floor, New York, NY, 10016, USA
| | - Brooke Grasperge
- Tulane Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433-8915, USA
| | - James Blanchard
- Tulane Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433-8915, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702-1201, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702-1201, USA
| | - José Fernández-Romero
- Population Council, 1230 York Avenue, New York, NY, 10065, USA
- Science Department, Borough of Manhattan Community College, The City University of New York, 199 Chambers Street, New York, NY, 10007, USA
| | | | | |
Collapse
|
6
|
Thompson JR, Valleau JC, Barling AN, Franco JG, DeCapo M, Bagley JL, Sullivan EL. Exposure to a High-Fat Diet during Early Development Programs Behavior and Impairs the Central Serotonergic System in Juvenile Non-Human Primates. Front Endocrinol (Lausanne) 2017; 8:164. [PMID: 28785241 PMCID: PMC5519527 DOI: 10.3389/fendo.2017.00164] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/27/2017] [Indexed: 12/29/2022] Open
Abstract
Perinatal exposure to maternal obesity and high-fat diet (HFD) consumption not only poses metabolic risks to offspring but also impacts brain development and mental health. Using a non-human primate model, we observed a persistent increase in anxiety in juvenile offspring exposed to a maternal HFD. Postweaning HFD consumption also increased anxiety and independently increased stereotypic behaviors. These behavioral changes were associated with modified cortisol stress response and impairments in the development of the central serotonin synthesis, with altered tryptophan hydroxylase-2 mRNA expression in the dorsal and median raphe. Postweaning HFD consumption decreased serotonergic immunoreactivity in area 10 of the prefrontal cortex. These results suggest that perinatal exposure to HFD consumption programs development of the brain and endocrine system, leading to behavioral impairments associated with mental health and neurodevelopmental disorders. Also, an early nutritional intervention (consumption of the control diet at weaning) was not sufficient to ameliorate many of the behavioral changes, such as increased anxiety, that were induced by maternal HFD consumption. Given the level of dietary fat consumption and maternal obesity in developed nations these findings have important implications for the mental health of future generations.
Collapse
Affiliation(s)
- Jacqueline R. Thompson
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Jeanette C. Valleau
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Ashley N. Barling
- Department of Biology, University of Portland, Portland, OR, United States
| | - Juliana G. Franco
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Madison DeCapo
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Jennifer L. Bagley
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Elinor L. Sullivan
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
- Department of Biology, University of Portland, Portland, OR, United States
- *Correspondence: Elinor L. Sullivan,
| |
Collapse
|
7
|
Gupta A, Tiwari M, Prasad S, Chaube SK. Role of Cyclic Nucleotide Phosphodiesterases During Meiotic Resumption From Diplotene Arrest in Mammalian Oocytes. J Cell Biochem 2016; 118:446-452. [PMID: 27662514 DOI: 10.1002/jcb.25748] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 01/09/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are group of enzymes that hydrolyze cyclic nucleotides in wide variety of cell types including encircling granulosa cells as well as associated oocytes. One group of PDEs are located in encircling granulosa cells and another group get expressed in the oocyte, while few other PDEs are expressed in both compartments. The PDE1A, PDE4D, PDE5A, PDE8A, and PDE8B are granulosa cell specific PDEs that hydrolyze adenosine 3',5'-cyclic monophosphate (cAMP) as well as guanosine 3',5'-cyclic monophosphate (cGMP) with different affinities. PDE3A, PDE8A as well as PDE9A are expressed in oocyte and specifically responsible for the cyclic nucleotide hydrolysis in the oocyte itself. Few other PDEs such as PDE7B, PDE10A, and PDE11A are either detected in granulosa cells or oocytes. Activation of these PDEs either in encircling granulosa cells or in oocyte directly or indirectly reduces intraoocyte cAMP level. Reduction of intraoocyte cAMP level modulates phosphorylation status of cyclin-dependent kinase 1 (Cdk1) and triggers cyclin B1 degradation that destabilizes maturation promoting factor (MPF) and/or increases Cdk1 activity. The destabilized MPF and/or increased Cdk1 activity leads to resumption of meiosis, which initiates the achievement of meiotic competency in preovulatory follicles of several mammalian species. Use of specific PDEs inhibitors block cyclic nucleotides hydrolysis that results in increase of intraoocyte cyclic nucleotides level, which leads to maintenance of meiotic arrest at diplotene stage in vivo as well as in vitro. Thus, cyclic nucleotide PDEs play important role in the achievement of meiotic competency by reducing intraoocyte cyclic nucleotides level in mammalian oocytes. J. Cell. Biochem. 118: 446-452, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anumegha Gupta
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Shilpa Prasad
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
8
|
Gupta SK, Malik A, Arukha AP. Ovarian and oocyte targets for development of female contraceptives. Expert Opin Ther Targets 2015; 19:1433-46. [DOI: 10.1517/14728222.2015.1051305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Jensen JT. Present and future contraception: does discovery of targets lead to new contraceptives? Expert Opin Ther Targets 2015; 19:1429-32. [DOI: 10.1517/14728222.2015.1039939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Hanna CB, Yao S, Ramsey CM, Hennebold JD, Zelinski MB, Jensen JT. Phosphodiesterase 3 (PDE3) inhibition with cilostazol does not block in vivo oocyte maturation in rhesus macaques (Macaca mulatta). Contraception 2015; 91:418-22. [PMID: 25645461 DOI: 10.1016/j.contraception.2015.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 01/25/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Studies in mice suggest that cilostazol, an FDA-approved phosphodiesterase 3 (PDE3) inhibitor, might have a contraceptive effect within the approved dose range. We sought to evaluate the potential contraceptive effects of cilostazol in a nonhuman primate model. STUDY DESIGN Adult female rhesus macaques were stimulated to develop multiple preovulatory follicles by administering human recombinant gonadotropins, and oocytes were collected by follicle aspiration 36 h after an ovulatory stimulus (human chorionic gonadotropin). Monkeys received no further treatment (controls) or the PDE3 inhibitor cilostazol at the maximum approved human dose of 100mg twice daily starting 6 days prior to follicle aspiration. Recovered oocytes were scored for meiotic stage [germinal vesicle (GV) intact, GV breakdown], and metaphase II stage oocytes were fertilized in vitro and observed for normal embryo development. RESULTS Similar proportions of GV stage oocytes were recovered from control (27%±4%) and cilostazol (27%±9%)-treated females, and the proportion of embryos that developed into blastocysts was also similar for both groups (7%±5% control vs. 15%±8% cilostazol). CONCLUSION Oral dosing of cilostazol tablets during controlled ovarian stimulation protocols did not prevent oocyte maturation or embryo development in macaques. IMPLICATIONS Since administration of the maximum approved human dose of cilostazol (an FDA-approved PDE3 inhibitor) to macaques did not prevent oocyte maturation or fertilization, it is not likely that this dose would be contraceptive in women.
Collapse
Affiliation(s)
- Carol B Hanna
- Division of Reproductive and Developmental Science, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Shan Yao
- Division of Reproductive and Developmental Science, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Cathy M Ramsey
- Division of Reproductive and Developmental Science, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Science, Oregon National Primate Research Center, Beaverton, OR 97006, USA; Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Mary B Zelinski
- Division of Reproductive and Developmental Science, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Jeffrey T Jensen
- Division of Reproductive and Developmental Science, Oregon National Primate Research Center, Beaverton, OR 97006, USA; Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
11
|
Eghlidi DH, Urbanski HF. Effects of Age and Estradiol on Gene Expression in the Rhesus Macaque Hypothalamus. Neuroendocrinology 2015; 101:236-45. [PMID: 25765287 PMCID: PMC4475460 DOI: 10.1159/000381063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/18/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND The hypothalamus plays a key role in mediating the effects of estrogen on many physiological functions, including reproduction, metabolism, and thermoregulation. We have previously observed marked estrogen-dependent gene expression changes within the hypothalamus of rhesus macaques during aging, especially in the KNDy neurons of the arcuate-median eminence (ARC-ME) that produce kisspeptin, neurokinin B, and dynorphin A. Little is known, however, about the mechanisms involved in mediating the feedback from estrogen onto these neurons. METHODS We used quantitative real-time PCR to profile age- and estrogen-dependent gene expression changes in the rhesus macaque hypothalamus. Our focus was on genes that encode steroid receptors (ESR1, ESR2, PGR, and AR) and on enzymes that contribute to the local synthesis of 17β-estradiol (E2; STS, HSD3B1/2, HSD17B5, and CYP19A). In addition, we used RT(2) Profiler™ PCR Arrays to profile a larger set of genes that are integral to hypothalamic function. RESULTS KISS1, KISS1R, TAC3, and NPY2R mRNA levels increased in surgically menopausal (ovariectomized) old females relative to age-matched ovariectomized animals that received E2 hormone therapy. In contrast, PGR, HSD17B, GNRH2, SLC6A3, KISS1, TAC3, and NPY2R mRNA levels increased after E2 supplementation. CONCLUSION The rhesus macaque ARC-ME expresses many genes that are responsive to changes in circulating estrogen levels, even during old age, and these may contribute to causing the normal and pathophysiological changes that occur during menopause.
Collapse
Affiliation(s)
- Dominique H. Eghlidi
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oreg., USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oreg., USA
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oreg., USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oreg., USA
- Deptartment of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oreg., USA
| |
Collapse
|
12
|
Albarzanchi AMT, Sayes CM, Ridha Albarzanchi MT, Fajt VR, Dees WL, Kraemer DC. Cilostazol blocks pregnancy in naturally cycling mice. Contraception 2013; 87:443-8. [DOI: 10.1016/j.contraception.2012.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 08/31/2012] [Accepted: 09/07/2012] [Indexed: 10/27/2022]
|
13
|
Hanna CB, Yao S, Wu X, Jensen JT. Identification of phosphodiesterase 9A as a cyclic guanosine monophosphate-specific phosphodiesterase in germinal vesicle oocytes: a proposed role in the resumption of meiosis. Fertil Steril 2012; 98:487-95.e1. [PMID: 22704629 DOI: 10.1016/j.fertnstert.2012.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/01/2012] [Accepted: 05/11/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To identify a cyclic guanosine monophosphate (cGMP)-specific phosphodiesterase (PDE) in nonhuman primate germinal vesicle (GV) oocytes and establish a proposed effect on oocyte maturation through preliminary experiments in mouse GV oocytes. DESIGN Controlled nonhuman primate and rodent experiments. SETTING Academic research institution. ANIMAL(S) Rhesus macaques and B6/129F1 mice. INTERVENTION(S) Stimulation of Rhesus macaques with follicle-stimulating hormone (FSH) to collect GV oocytes and cumulus for gene expression analysis, and stimulation of female mice with pregnant mare serum gonadotropin to collect GV oocytes. MAIN OUTCOME MEASURE(S) Expression of PDE transcript in primate GV oocytes and cumulus cells, measurement of fluorescence polarization of phosphodiesterase 3A (PDE3A) activity, and analysis of spontaneous resumption of meiosis in mouse GV oocytes. RESULT(S) Of five PDE transcripts detected in Rhesus GV oocytes, only PDE9A was cGMP-specific. The fluorescence polarization assays indicated cGMP has an inhibitory effect on PDE3A while the phosphodiesterase 9A (PDE9) inhibitor, BAY73-6691, does not. Similarly, BAY73-6691 had little effect on preventing spontaneous maturation in oocytes, but did augment the inhibitory effects of cGMP. Inclusion of 0 μM (control), 10 μM, 100 μM, and 1 mM BAY73-6691 statistically significantly increased the proportion of mouse oocytes maintaining GV arrest in the presence of the cGMP analog 8-Br-cGMP at 100 μM (8.8%, 11.4%, 18.8%, and 28%), 500 μM (21.1%, 38.1%, 74.5%, and 66.5%), and 1 mM (57.8%, 74.5%, 93.9%, and 94.0%), respectively. CONCLUSION(S) Phosphodiesterase 9A (PDE9A) is a cGMP-specific hydrolyzing enzyme present in primate oocytes, and PDE9 antagonists augment the inhibitory effect of cGMP during spontaneous in vitro maturation of GV mouse oocytes.
Collapse
Affiliation(s)
- Carol B Hanna
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon 97239, USA
| | | | | | | |
Collapse
|
14
|
The role of cilostazol, a phosphodiesterase 3 inhibitor, on oocyte maturation and subsequent pregnancy in mice. PLoS One 2012; 7:e30649. [PMID: 22292006 PMCID: PMC3265514 DOI: 10.1371/journal.pone.0030649] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/20/2011] [Indexed: 11/19/2022] Open
Abstract
It is important to identify effective contraceptive drugs that cause minimal disruption to physiological processes. Phosphodiesterase 3 (PDE3) inhibitors suppress meiosis in oocytes by decreasing the level of cAMP and blocking the extrusion of the first polar body. In this study, we tested the PDE3 inhibitor, cilostazol, as a potential contraceptive agent. The effects of cilostazol treatment in vitro and in vivo on the suppression of oocyte maturation in a mouse model were investigated. The results indicated that treatment with increasing concentrations of cilostazol led to a dose-dependent arrest in meiosis progression. The effective in vitro concentration was 1 µM and was 300 mg/kg in vivo. The effect of cilostazol was reversible. After removal of the drug, meiosis resumed and mouse oocytes matured in vitro, and showed normal chromosome alignment and spindle organization. After fertilization using an ICSI method, the oocytes showed normal morphology, fertilization rate, embryo cleavage, blastocyst formation, and number of viable pups when compared with controls. The offspring showed similar body weight and fertility. In vivo, the mice became infertile if the drug was injected sequentially, and became pregnant following discontinuation of cilostazol. More importantly, no side effects of cilostazol were observed in treated female mice as demonstrated by blood pressure and heart rate monitoring. It is concluded that cilostazol, a drug routinely used for intermittent claudication, can effectively inhibit oocyte maturation in vitro and in vivo, does not affect the developmental potential of oocytes following drug removal and has few side effects in female mice treated with this drug. These findings suggest that cilostazol may be a potential new contraceptive agent that may facilitate an efficacy and safety study of this drug.
Collapse
|
15
|
Dissen GA, Lomniczi A, Heger S, Neff TL, Ojeda SR. Hypothalamic EAP1 (enhanced at puberty 1) is required for menstrual cyclicity in nonhuman primates. Endocrinology 2012; 153:350-61. [PMID: 22128022 PMCID: PMC3249687 DOI: 10.1210/en.2011-1541] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mammalian reproductive cyclicity requires the periodic discharge of GnRH from hypothalamic neurons into the portal vessels connecting the neuroendocrine brain to the pituitary gland. GnRH secretion is, in turn, controlled by changes in neuronal and glial inputs to GnRH-producing neurons. The transcriptional control of this process is not well understood, but it appears to involve several genes. One of them, termed enhanced at puberty 1 (EAP1), has been postulated to function in the female hypothalamus as an upstream regulator of neuroendocrine reproductive function. RNA interference-mediated inhibition of EAP1 expression, targeted to the preoptic region, delays puberty and disrupts estrous cyclicity in rodents, suggesting that EAP1 is required for the normalcy of these events. Here, we show that knocking down EAP1 expression in a region of the medial basal hypothalamus that includes the arcuate nucleus, via lentiviral-mediated delivery of RNA interference, results in cessation of menstrual cyclicity in female rhesus monkeys undergoing regular menstrual cycles. Neither lentiviruses encoding an unrelated small interfering RNA nor the placement of viral particles carrying EAP1 small interfering RNA outside the medial basal hypothalamus-arcuate nucleus region affected menstrual cycles, indicating that region-specific expression of EAP1 in the hypothalamus is required for menstrual cyclicity in higher primates. The cellular mechanism by which EAP1 exerts this function is unknown, but the recent finding that EAP1 is an integral component of a powerful transcriptional-repressive complex suggests that EAP1 may control reproductive cyclicity by inhibiting downstream repressor genes involved in the neuroendocrine control of reproductive function.
Collapse
Affiliation(s)
- Gregory A Dissen
- Division of Neuroscience, Oregon National Primate Research Center, 505 North West 185th Avenue, Beaverton, Oregon 97006-3448, USA.
| | | | | | | | | |
Collapse
|
16
|
Helms CM, Grant KA. The effect of age on the discriminative stimulus effects of ethanol and its GABA(A) receptor mediation in cynomolgus monkeys. Psychopharmacology (Berl) 2011; 216:333-43. [PMID: 21340471 PMCID: PMC3134136 DOI: 10.1007/s00213-011-2219-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 02/05/2011] [Indexed: 02/07/2023]
Abstract
RATIONALE Excessive alcohol consumption is less common among aged compared to young adults, with aged adults showing greater sensitivity to many behavioral effects of ethanol. OBJECTIVES This study compared the discriminative stimulus effects of ethanol in young and middle-aged adult cynomolgus monkeys (Macaca fascicularis) and its γ-aminobutyric acid (GABA)(A) receptor mediation. METHODS Two male and two female monkeys trained to discriminate ethanol (1.0 g/kg, i.g.; 60-min pre-treatment interval) from water at 5-6 years of age (Grant et al. in Psychopharmacology 152:181-188, 2000) were re-trained in the current study more than a decade later (19.3 ± 1.0 years of age) for a within-subjects comparison. Also, four experimentally naïve middle-aged (mean ± SEM, 17.0 ± 1.5 years of age) female monkeys were trained to discriminate ethanol for between-subjects comparison with published data from young adult naïve monkeys. RESULTS Two of the naïve middle-aged monkeys attained criterion performance, with weak stimulus control and few discrimination tests, despite greater blood-ethanol concentration 60 min after 1.0 g/kg ethanol in middle-aged compared to young adult female monkeys (Green et al. in Alcohol Clin Exp Res 23:611-616, 1999). The efficacy of the GABA(A) receptor positive modulators pentobarbital, midazolam, allopregnanolone, pregnanolone, and androsterone to substitute for the discriminative stimulus effects of 1.0 g/kg ethanol was maintained from young adulthood to middle age. CONCLUSIONS The data suggest that 1.0 g/kg ethanol is a weak discriminative stimulus in naive middle-aged monkeys. Nevertheless, the GABA(A) receptor mechanisms mediating the discriminative stimulus effects of ethanol, when learned as a young adult, appear stable across one third of the primate lifespan.
Collapse
Affiliation(s)
- Christa M Helms
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006-6448, USA.
| | | |
Collapse
|
17
|
Herod SM, Dettmer AM, Novak MA, Meyer JS, Cameron JL. Sensitivity to stress-induced reproductive dysfunction is associated with a selective but not a generalized increase in activity of the adrenal axis. Am J Physiol Endocrinol Metab 2011; 300:E28-36. [PMID: 20959528 PMCID: PMC3023200 DOI: 10.1152/ajpendo.00223.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Stress-induced reproductive dysfunction is a relatively common cause of infertility in women. In response to everyday life stress, some individuals readily develop reproductive dysfunction (i.e., they are stress sensitive), whereas others are more stress resilient. Female cynomolgus monkeys, when exposed to mild combined psychosocial and metabolic stress (change in social environment + 20% reduced calorie diet), can be categorized as stress sensitive (SS; they rapidly become anovulatory in response to stress), medium stress resilient (MSR; they slowly become anovulatory in response to prolonged stress), or highly stress resilient (HSR; they maintain normal menstrual cycles in response to stress). In this study, we examined whether increased sensitivity to stress-induced reproductive dysfunction is associated with elevated adrenal axis activity by measuring 1) the diurnal release of ACTH and cortisol, 2) ACTH and cortisol in response to an acute psychological stress, 3) the percent suppression of cortisol in response to dexamethasone negative feedback, 4) the diurnal release of ACTH and cortisol following exposure to mild psychosocial and metabolic stress, 5) the concentration of cortisol in hair, and 6) adrenal weight. SS monkeys (n = 5) did not differ from MSR (n = 5) or HSR (n = 7) monkeys in any measurement of baseline HPA axis activity or the integrated measurements of chronic HPA axis activity. However, MSR + SS monkeys (n = 10) did secrete more cortisol than HSR monkeys during the daytime hours (1000-1800) following exposure to a novel social environment and reduced diet. We conclude that increased activity of the HPA axis is unlikely to be the primary mechanism causing increased sensitivity to stress-induced reproductive dysfunction.
Collapse
Affiliation(s)
- S. M. Herod
- 1Department of Behavioral Neuroscience and
- 2Division of Reproductive Science, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon;
| | | | - M. A. Novak
- 3Neuroscience and Behavior Program and
- 4Department of Psychology, University of Massachusetts, Amherst, Massachusetts;
| | - J. S. Meyer
- 3Neuroscience and Behavior Program and
- 4Department of Psychology, University of Massachusetts, Amherst, Massachusetts;
| | - J. L. Cameron
- 1Department of Behavioral Neuroscience and
- 2Division of Reproductive Science, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon;
- 5Department of Obstetrics and Gynecology, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon; and
- 6Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
18
|
|
19
|
Herod SM, Pohl CR, Cameron JL. Treatment with a CRH-R1 antagonist prevents stress-induced suppression of the central neural drive to the reproductive axis in female macaques. Am J Physiol Endocrinol Metab 2011; 300:E19-27. [PMID: 20823449 PMCID: PMC3023208 DOI: 10.1152/ajpendo.00224.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In response to everyday life stress, some individuals readily develop reproductive dysfunction (i.e., they are stress sensitive), whereas others are more stress resilient. When exposed to mild combined psychosocial plus metabolic stress (change in social environment plus reduced diet), female cynomolgus monkeys can be categorized as stress sensitive (SS; they rapidly become anovulatory in response to stress), medium stress resilient (MSR; they slowly become anovulatory in response to prolonged stress), or highly stress resilient (HSR; they maintain normal menstrual cycles in response to stress). Previously, we reported that monkeys that develop abnormal menstrual cycles following exposure to mild combined stress (MSR + SS) have increased plasma cortisol levels the day they move to a novel room and start a reduced diet compared with HSR monkeys. In this study, we examined whether there is a similar acute effect of mild combined stress on the reproductive axis specifically in the combined group of MSR + SS animals by measuring LH pulse frequency and whether treatment with a CRH-R1 antagonist can prevent a stress-induced suppression of LH pulse frequency presumably by inhibiting activity of the HPA axis. Animals that developed abnormal menstrual cycles in response to stress (MSR + SS monkeys) suppressed LH pulse frequency in response to stress exposure. Pretreatment with 10 mg/kg iv antalarmin prevented the stress-induced suppression of LH secretion in these animals without the stress-induced increase in cortisol secretion being blocked. We conclude that CRH, acting via nonneuroendocrine mechanisms to regulate neurotransmitter systems other than the HPA axis, plays a role in causing stress-induced reproductive impairment in stress-sensitive individuals.
Collapse
Affiliation(s)
- S. M. Herod
- 1Department of Behavioral Neuroscience and
- 2Division of Reproductive Science, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon;
| | - C. R. Pohl
- 3School of Health Sciences, Duquesne University, Pittsburgh Pennsylvania;
| | - J. L. Cameron
- 1Department of Behavioral Neuroscience and
- 2Division of Reproductive Science, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon;
- 4Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon; and
- 5Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Hugon-Rodin J, Chabbert-Buffet N, Bouchard P. The future of women's contraception: stakes and modalities. Ann N Y Acad Sci 2010; 1205:230-9. [DOI: 10.1111/j.1749-6632.2010.05688.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Smith JT, Shahab M, Pereira A, Pau KYF, Clarke IJ. Hypothalamic expression of KISS1 and gonadotropin inhibitory hormone genes during the menstrual cycle of a non-human primate. Biol Reprod 2010; 83:568-77. [PMID: 20574054 DOI: 10.1095/biolreprod.110.085407] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Kisspeptin, the product of the KISS1 gene, stimulates gonadotropin-releasing hormone (GnRH) secretion; gonadotropin inhibitory hormone (GnIH), encoded by the RF-amide-related peptide (RFRP) or NPVF gene, inhibits the reproductive axis. In sheep, kisspeptin neurons are found in the lateral preoptic area (POA) and the arcuate nucleus (ARC) and may be important for initiating the preovulatory GnRH/luteinizing hormone (LH) surge. GnIH cells are located in the ovine dorsomedial hypothalamic nucleus (DMN) and paraventricular nucleus (PVN), with similar distribution in the primate. KISS1 cells are found in the primate POA and ARC, but the function that kisspeptin and GnIH play in primates has not been elucidated. We examined KISS1 and NPVF mRNA throughout the menstrual cycle of a female primate, rhesus macaque (Macaca mulatta), using in situ hybridization. KISS1-expressing cells were found in the POA and ARC, and NPVF-expressing cells were located in the PVN/DMN. KISS1 expression in the caudal ARC and POA was higher in the late follicular phase of the cycle (just before the GnRH/LH surge) than in the luteal phase. NPVF expression was also higher in the late follicular phase. We ascertained whether kisspeptin and/or GnIH cells project to GnRH neurons in the primate. Close appositions of kisspeptin and GnIH fibers were found on GnRH neurons, with no change across the menstrual cycle. These data suggest a role for kisspeptin in the stimulation of GnRH cells before the preovulatory GnRH/LH surge in non-human primates. The role of GnIH is less clear, with paradoxical up-regulation of gene expression in the late follicular phase of the menstrual cycle.
Collapse
Affiliation(s)
- Jeremy T Smith
- Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | |
Collapse
|
22
|
Jensen JT, Stouffer RL, Stanley JE, Zelinski MB. Evaluation of the phosphodiesterase 3 inhibitor ORG 9935 as a contraceptive in female macaques: initial trials. Contraception 2009; 81:165-71. [PMID: 20103457 DOI: 10.1016/j.contraception.2009.09.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/28/2009] [Accepted: 09/30/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND The study was conducted to determine whether a phosphodiesterase (PDE) 3 inhibitor has potential as a novel contraceptive in primates. METHODS Regularly cycling adult female cynomolgus macaques of proven fertility (n=16) were treated for 7 months with placebo (controls) or the PDE3 inhibitor ORG 9935 as a daily food treat (150 mg/kg) or as a weekly depot injection (150 mg/kg, sc). After 1 month, a male of proven fertility was introduced into each group. Females underwent weekly monitoring of progesterone (P) and ultrasound evaluation for pregnancy if P remained elevated (1.0 ng/mL) >3 weeks. ORG 9935 values were evaluated using high-performance liquid chromatography. RESULTS Overall, the pregnancy rate in ORG 9935-treated monkeys (4/8, 50%) did not differ from controls (7/8, 88%; p=.5). However, no animal became pregnant in a cycle when the serum level of ORG 9935 exceeded 300 nmol/L. Moreover, two treated monkeys who mated throughout the treatment phase and did not conceive became pregnant within four cycles after stopping ORG 9935. The other two animals were discontinued prematurely from the protocol. CONCLUSIONS These results demonstrate that ORG 9935 may prevent pregnancy in primates at serum concentrations above 300 nmol/L and that the effect is reversible.
Collapse
Affiliation(s)
- Jeffrey T Jensen
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
23
|
Sasseville M, Albuz FK, Côté N, Guillemette C, Gilchrist RB, Richard FJ. Characterization of novel phosphodiesterases in the bovine ovarian follicle. Biol Reprod 2009; 81:415-25. [PMID: 19357367 DOI: 10.1095/biolreprod.108.074450] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The phosphodiesterase (PDE) family is a group of enzymes that catalyzes the transformation of cyclic nucleotides into 5' nucleotides. Based on rodents, the current mammalian model of PDE distribution in the ovarian follicle predicts Pde3a in the oocyte and Pde4d in the somatic cells. Using bovine as an experimental model, the present results showed that PDE3 was the predominant PDE activity in oocytes. However, cumulus cell cAMP-PDE activity was predominantly resistant to inhibition by 3-isobutyl-methylxantine, indicating PDE8 activity (60% of total PDE activity) and a minor role for PDE4 (<5%). A total of 20% of total oocyte PDE activity was also attributed to PDE8. The PDE activity measurements in mural granulosa cells from 2 to 6 mm in diameter suggest the presence of PDE4 and PDE8. In granulosa cells from follicles >10 mm, total PDE and PDE8 activities along with PDE8A protein level were increased compared with smaller follicles. The RT-PCR experiments showed that cumulus cells expressed PDE8A, PDE8B, and PDE10A. Western blot experiments showed PDE8A, PDE8B, and PDE4D proteins in mural granulosa cells and cumulus-oocyte complexes. PDE8 inhibition using dipyridamole in a dose-dependent manner increased cAMP levels in the cumulus-oocyte complexes and delayed oocyte nuclear maturation. These results are the first to demonstrate the functional presence of PDE8 in the mammalian ovarian follicle. This challenges the recently described cell-specific expression of cAMP-PDEs in the ovarian follicle and the notion that PDE4 is the predominant granulosa/cumulus cell PDE. These findings have implications for our understanding of hormonal regulation of folliculogenesis and the potential application of PDE inhibitors as novel contraceptives.
Collapse
Affiliation(s)
- Maxime Sasseville
- Département des Sciences Animales, Centre de Recherche en Biologie de la Reproduction, Université Laval, Sainte-Foy, Québec, Canada
| | | | | | | | | | | |
Collapse
|