1
|
Johnston DS, Goldberg E. Preclinical contraceptive development for men and women. Biol Reprod 2021; 103:147-156. [PMID: 32561907 DOI: 10.1093/biolre/ioaa076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/16/2022] Open
Abstract
This manuscript endeavors to present research considerations for the preclinical development of non-hormonal contraceptives. Topics include (1) how advances in genomics and bioinformatics impact the identification of novel targets for non-hormonal contraception, (2) the importance of target validation prior to investment in a contraceptive development campaign, (3) considerations on targeting gametogenesis vs gamete maturation/function, (4) how targets from the male reproductive system are expanding women's options for 'on demand' contraception, and (5) some emerging non-hormonal methods that are not based on a specific molecular target. Also presented are ideas for developing a pipeline of non-hypothalamic-pituitary-gonadal-acting contraceptives for men and women while balancing risk and innovation, and our perspective on the pros and cons of industry and academic environments on contraceptive development. Three product development programs are highlighted that are biologically interesting, innovative, and likely to influence the field of contraceptive development in years to come.
Collapse
Affiliation(s)
- Daniel S Johnston
- Contraception Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Erwin Goldberg
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
2
|
Su W, Matsumoto S, Banine F, Srivastava T, Dean J, Foster S, Pham P, Hammond B, Peters A, Girish KS, Rangappa KS, Basappa S, Jose J, Hennebold JD, Murphy MJ, Bennett-Toomey J, Back SA, Sherman LS. A modified flavonoid accelerates oligodendrocyte maturation and functional remyelination. Glia 2020; 68:263-279. [PMID: 31490574 PMCID: PMC8693768 DOI: 10.1002/glia.23715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022]
Abstract
Myelination delay and remyelination failure following insults to the central nervous system (CNS) impede axonal conduction and lead to motor, sensory and cognitive impairments. Both myelination and remyelination are often inhibited or delayed due to the failure of oligodendrocyte progenitor cells (OPCs) to mature into myelinating oligodendrocytes (OLs). Digestion products of the glycosaminoglycan hyaluronan (HA) have been implicated in blocking OPC maturation, but how these digestion products are generated is unclear. We tested the possibility that hyaluronidase activity is directly linked to the inhibition of OPC maturation by developing a novel modified flavonoid that functions as a hyaluronidase inhibitor. This compound, called S3, blocks some but not all hyaluronidases and only inhibits matrix metalloproteinase activity at high concentrations. We find that S3 reverses HA-mediated inhibition of OPC maturation in vitro, an effect that can be overcome by excess recombinant hyaluronidase. Furthermore, we find that hyaluronidase inhibition by S3 accelerates OPC maturation in an in vitro model of perinatal white matter injury. Finally, blocking hyaluronidase activity with S3 promotes functional remyelination in mice with lysolecithin-induced demyelinating corpus callosum lesions. All together, these findings support the notion that hyaluronidase activity originating from OPCs in CNS lesions is sufficient to prevent OPC maturation, which delays myelination or blocks remyelination. These data also indicate that modified flavonoids can act as selective inhibitors of hyaluronidase activity and can promote OPC maturation, making them excellent candidates to accelerate myelination or promote remyelination following perinatal and adult CNS insults.
Collapse
Affiliation(s)
- Weiping Su
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, USA
| | - Steven Matsumoto
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, USA
- Integrative Biosciences Department, School Dentistry, Oregon Health & Science University, USA
| | - Fatima Banine
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, USA
| | | | - Justin Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Scott Foster
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, USA
| | - Peter Pham
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, USA
| | - Brian Hammond
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, USA
| | - Alec Peters
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, USA
| | - Kesturu S. Girish
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru, India
| | | | - Salundi Basappa
- Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysuru, India
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, Phytochemistry, PharmaCampus, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jon D. Hennebold
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, USA
| | - Melinda J. Murphy
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, USA
| | - Jill Bennett-Toomey
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, USA
| | - Stephen A. Back
- Department of Pediatrics, Oregon Health & Science University, USA
- Department of Neurology, Oregon Health & Science University, USA
| | - Larry S. Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, USA
| |
Collapse
|
3
|
Bishop CV, Reiter TE, Erikson DW, Hanna CB, Daughtry BL, Chavez SL, Hennebold JD, Stouffer RL. Chronically elevated androgen and/or consumption of a Western-style diet impairs oocyte quality and granulosa cell function in the nonhuman primate periovulatory follicle. J Assist Reprod Genet 2019; 36:1497-1511. [PMID: 31187329 DOI: 10.1007/s10815-019-01497-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To investigate the impact of chronically elevated androgens in the presence and absence of an obesogenic diet on oocyte quality in the naturally selected primate periovulatory follicle. METHODS Rhesus macaques were treated using a 2-by-2 factorial design (n = 10/treatment) near the onset of menarche with implants containing either cholesterol (C) or testosterone (T, 4-5-fold increase above C) and a standard or "Western-style" diet alone (WSD) or in combination (T+WSD). Following ~ 3.5 years of treatment, females underwent controlled ovulation (COv, n = 7-10/treatment) cycles, and contents of the naturally selected periovulatory follicle were aspirated. Follicular fluid (FF) was analyzed for cytokines, chemokines, growth factors, and steroids. RNA was extracted from luteinizing granulosa cells (LGCs) and assessed by RNA-seq. RESULTS Only healthy, metaphase (M) I/II-stage oocytes (100%) were retrieved in the C group, whereas several degenerated oocytes were recovered in other groups (33-43% of T, WSD, and T+WSD samples). Levels of two chemokines and one growth factor were reduced (p < 0.04) in FF of follicles with a MI/MII oocyte in WSD+T (CCL11) or T and WSD+T groups (CCL2 and FGF2) compared to C and/or WSD. Intrafollicular cortisol was elevated in T compared to C follicles (p < 0.02). Changes in the expression pattern of 640+ gene products were detected in LGC samples from follicles with degenerated versus MI/MII-stage oocytes. Pathway analysis on RNAs altered by T and/or WSD found enrichment of genes mapping to steroidogenic and immune cell pathways. CONCLUSIONS Female primates experiencing hyperandrogenemia and/or consuming a WSD exhibit an altered intrafollicular microenvironment and reduced oocyte quality/competency, despite displaying menstrual cyclicity.
Collapse
Affiliation(s)
- Cecily V Bishop
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA. .,Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| | - Taylor E Reiter
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA
| | - David W Erikson
- Endocrine Technologies Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Carol B Hanna
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA
| | - Brittany L Daughtry
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA
| | - Shawn L Chavez
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA.,Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA.,Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jon D Hennebold
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA.,Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA.,Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Richard L Stouffer
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA.,Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
4
|
Treatment of female rhesus macaques with a somatostatin receptor antagonist that increases oocyte fertilization rates without affecting post-fertilization development outcomes. J Assist Reprod Genet 2018; 36:229-239. [PMID: 30430314 DOI: 10.1007/s10815-018-1369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022] Open
Abstract
PURPOSE To determine the effects of PGL1001, a somatostatin receptor isoform-2 (SSTR-2) antagonist, on ovarian follicle development, oocyte fertilization, and subsequent embryo developmental potential in the rhesus macaque. METHODS Cycling female rhesus macaques (N = 8) received vehicle through one menstrual (control) cycle, followed by daily injections of PGL1001, a SSTR-2 antagonist, for three menstrual (treatment) cycles. Main endpoints include overall animal health and ovarian hormones (e.g., estradiol [E2], progesterone [P4], and anti-Müllerian hormone [AMH]), ovarian circumference, numbers of oocytes and their maturation status following controlled ovarian stimulation (COS), as well as oocyte fertilization and subsequent blastocyst rates that were assessed in control and PGL1001 treatment cycles. Circulating PGL1001 levels were assessed at baseline as well as 6, 60, and 90 days during treatment. RESULTS PGL1001 treatment did not impact overall animal health, menstrual cycle length, or circulating levels of ovarian hormones (E2, P4, and AMH) in comparison to vehicle treatment during natural cycles. PGL1001 treatment increased (p ˂ 0.05) ovarian circumference and the day 8 to day 1 ratio of AMH levels (p ˂ 0.05) during a COS protocol, as well as oocyte fertilization rates compared to the vehicle treatment interval. Blastocyst development rates were not significantly different between vehicle and PGL1001 treatment groups. CONCLUSION Prolonged treatment with PGL1001 appears to be safe and does not affect rhesus macaque general health, menstrual cycle length, or ovarian hormone production. Interestingly, PGL1001 treatment increased the fertilization rate of rhesus macaque oocytes collected following ovarian stimulation.
Collapse
|
5
|
Bishop CV, Hennebold JD, Kahl CA, Stouffer RL. Knockdown of Progesterone Receptor (PGR) in Macaque Granulosa Cells Disrupts Ovulation and Progesterone Production. Biol Reprod 2016; 94:109. [PMID: 26985003 PMCID: PMC4939739 DOI: 10.1095/biolreprod.115.134981] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/14/2016] [Indexed: 12/22/2022] Open
Abstract
Adenoviral vectors (vectors) expressing short-hairpin RNAs complementary to macaque nuclear progesterone (P) receptor PGR mRNA (shPGR) or a nontargeting scrambled control (shScram) were used to determine the role PGR plays in ovulation/luteinization in rhesus monkeys. Nonluteinized granulosa cells collected from monkeys (n = 4) undergoing controlled ovarian stimulation protocols were exposed to either shPGR, shScram, or no virus for 24 h; human chorionic gonadotropin (hCG) was then added to half of the wells to induce luteinization (luteinized granulosa cells [LGCs]; n = 4-6 wells/treatment/monkey). Cells/media were collected 48, 72, and 120 h postvector for evaluation of PGR mRNA and P levels. Addition of hCG increased (P < 0.05) PGR mRNA and medium P levels in controls. However, a time-dependent decline (P < 0.05) in PGR mRNA and P occurred in shPGR vector groups. Injection of shPGR, but not shScram, vector into the preovulatory follicle 20 h before hCG administration during controlled ovulation protocols prevented follicle rupture in five of six monkeys as determined by laparoscopic evaluation, with a trapped oocyte confirmed in three of four follicles of excised ovaries. Injection of shPGR also prevented the rise in serum P levels following the hCG bolus compared to shScram (P < 0.05). Nuclear PGR immunostaining was undetectable in granulosa cells from shPGR-injected follicles, compared to intense staining in shScram controls. Thus, the nuclear PGR appears to mediate P action in the dominant follicle promoting ovulation in primates. In vitro and in vivo effects of PGR knockdown in LGCs also support the hypothesis that P enhances its own synthesis in the primate corpus luteum by promoting luteinization.
Collapse
Affiliation(s)
- Cecily V Bishop
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon
| | - Jon D Hennebold
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Christoph A Kahl
- Molecular Virology Support Core, Oregon National Primate Research Center, Beaverton, Oregon
| | - Richard L Stouffer
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
6
|
Taiyeb AM, Muhsen-Alanssari SA, Kraemer DC, Ash O, Fajt V, Ridha-Albarzanchi MT. Cilostazol blocks pregnancy in naturally cycling swine: An animal model. Life Sci 2015; 142:92-6. [DOI: 10.1016/j.lfs.2015.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/20/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
|