1
|
Jiang Y, Luo J, Guo X, Qiao Y, Li Y, Zhang Y, Zhou R, Vaculík M, Li T. Phyllosphere microbiome assists the hyperaccumulating plant in resisting heavy metal stress. J Environ Sci (China) 2025; 154:563-574. [PMID: 40049897 DOI: 10.1016/j.jes.2024.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/13/2025]
Abstract
Phyllosphere microbiome plays an irreplaceable role in maintaining plant health under stress, but its structure and functions in heavy metal-hyperaccumulating plants remain elusive. Here, the phyllosphere microbiome, inhabiting hyperaccumulating (HE) and non-hyperaccumulating ecotype (NHE) of Sedum alfredii grown in soils with varying heavy metal concentration, was characterized. Compared with NHE, the microbial community α-diversity was greater in HE. Core phyllosphere taxa with high relative abundance (>10 %), including Streptomyces and Nocardia (bacteria), Cladosporium and Acremonium (fungi), were significantly related to cadmium (Cd) and zinc (Zn) concentration and biomass of host plants. Moreover, microbial co-occurrence networks in HE exhibited greater complexity than those in NHE. Additionally, proportions of positive associations in HE bacterial networks increased with the rising heavy metal concentration, indicating a higher resistance of HE phyllosphere microbiome to heavy metal stress. Furthermore, in contrast to NHE, microbial community functions, primarily involved in heavy metal stress resistance, were more abundant in HE, in which microbiome assisted hosts to resist heavy metal stress better. Collectively, this study indicated that phyllosphere microbiome of the hyperaccumulator played an indispensable role in assisting hosts to resist heavy metal stress, and provided new insights into phyllosphere microbial application potential in phytoremediation.
Collapse
Affiliation(s)
- Yue Jiang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Guo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yabei Qiao
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuhang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Runhui Zhou
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava 84215, Slovakia
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| |
Collapse
|
2
|
Liu L, Xiao C, Gao Y, Jiang T, Xu K, Chen J, Lin Z, Chen J, Tian S, Lu L. Inoculation of multi-metal-resistant Bacillus sp. to a hyperaccumulator plant Sedum alfredii for facilitating phytoextraction of heavy metals from contaminated soil. CHEMOSPHERE 2024; 366:143464. [PMID: 39368497 DOI: 10.1016/j.chemosphere.2024.143464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Co-contamination of soil by multiple heavy metals is a significant global challenge. An effective strategy to address this issue involves using hyperaccumulators such as Sedum alfredii (S. alfredii). The efficiency of phytoremediation can be improved by supplementing with plant growth-promoting bacteria (PGPB). However, bacteria resources of PGPB resistant to multi-heavy metal contamination are still lacking. This study focused nine different strains of Bacillus and screened for resistance to heavy metals including cadmium (Cd), zinc (Zn), copper (Cu), and lead (Pb). A superior strain, Bacillus subtilis PY79 (B. subtilis), showed tolerance for all tested metals. Inoculation with B. subtilis in the rhizosphere of S. alfredii increased the accumulation of Cd, Zn, Cu, and Pb by 88.02%, 58.99%, 90.22%, and 54.97% in the plant shoots after 30 days respectively. B. subtilis application lowered the pH of the rhizosphere soil, thereby increasing the bioavailability of nutrients and heavy metals. Furthermore, B. subtilis helped S. alfredii recruit PGPB and heavy metal-resistant bacteria such as Edaphobacter, Niastella, and Chitinophaga, enhancing the growth and phytoremediation efficiency. Moreover, inoculation with B. subtilis not only upregulated genes of the ABC, HMA, ZIP, and MTP families involved in the translocation and detoxification of heavy metals but also increased the secretion of antioxidants within the cells. These findings indicate that B. subtilis enhances the tolerance, uptake, and translocation of heavy metals in S. alfredii, offering valuable insights for the phytoremediation of multi-metal-contaminated soils.
Collapse
Affiliation(s)
- Lianghui Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Chun Xiao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Yuxiao Gao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Tianchi Jiang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Kuan Xu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Jiuzhou Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Zhi Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Jing Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Shengke Tian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Zhao F, Chen JX, Xu H, Han Y, Zhou M, Wang G, Ma LQ, Chen Y. Arsenite Antiporter PvACR3 Driven by Its Native Promoter Increases Leaf Arsenic Accumulation in Tobacco. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11534-11541. [PMID: 38865317 DOI: 10.1021/acs.est.4c00977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Pteris vittata is the first-reported arsenic (As) hyperaccumulator, which has been applied to phytoremediation of As-contaminated soil. PvACR3, a key arsenite (AsIII) antiporter, plays an important role in As hyperaccumulation in P. vittata. However, its functions in plants are not fully understood. In this study, the PvACR3 gene was heterologously expressed in tobacco, driven by its native promoter (ProPvACR3). After growing at 5 μM AsIII or 10 μM AsV in hydroponics for 1-5 days, PvACR3-expression enhanced the As levels in leaves by 66.4-113 and 51.8-101%, without impacting the As contents in the roots or stems. When cultivated in As-contaminated soil, PvACR3-expressed transgenic plants accumulated 47.9-85.5% greater As in the leaves than wild-type plants. In addition, PvACR3-expression increased the As resistance in transgenic tobacco, showing that enhanced leaf As levels are not detrimental to its overall As tolerance. PvACR3 was mainly expressed in tobacco leaf veins and was likely to unload AsIII from the vein xylem vessels to the mesophyll cells, thus elevating the leaf As levels. This work demonstrates that heterologously expressing PvACR3 under its native promoter specifically enhances leaf As accumulation in tobacco, which helps to reveal the As-hyperaccumulation mechanism in P. vittata and to enhance the As accumulation in plant leaves for phytoremediation.
Collapse
Affiliation(s)
- Fei Zhao
- School of Environment, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Jun-Xiu Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hua Xu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yu Han
- School of Environment, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Mingxi Zhou
- School of Environment, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanshan Chen
- School of Environment, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
4
|
Cardoso P, Pinto R, Lopes T, Figueira E. How Bacteria Cope with Oxidative Stress Induced by Cadmium: Volatile Communication Is Differentially Perceived among Strains. Antioxidants (Basel) 2024; 13:565. [PMID: 38790670 PMCID: PMC11118407 DOI: 10.3390/antiox13050565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Soil is an environment with numerous niches, where bacteria are exposed to diverse conditions. Some bacteria are exposed earlier than others to pressure, and the emission of signals that other bacteria can receive and perceive may allow a better response to an eminent stimulus. To shed light on how bacteria trigger their response and adapt to changes in the environment, the intra- and interspecific influences of volatiles on bacterial strains growing under non-stressed and cadmium-stressed conditions were assessed. Each strain was exposed to its volatiles emitted by cells growing under different conditions to test whether the environment in which a cell grows influences neighboring cells. The five genera tested showed different responses, with Rhizobium displaying the greatest influence. In a second experiment, 13 strains from different genera were grown under control conditions but exposed to volatiles released by Cd-stressed Rhizobium cells to ascertain whether Rhizobium's observed influence was strain-specific or broader. Our results showed that the volatiles emitted by some bacteria under stress are differentially perceived and translated into biochemical changes (growth, alteration of the antioxidant response, and oxidative damage) by other bacteria, which may increase the adaptability and resilience of bacterial communities to environmental changes, especially those with a prooxidant nature. Cadmium (Cd) contamination of soils constitutes a risk to the environment and human health. Here, we showed the effects of Cd exposure on bacteria and how volatile communication influences the biochemistry related to coping with oxidative stress. This knowledge can be important for remediation and risk assessment and highlights that new biological features, such as volatile communication, should be considered when studying and assessing the impact of contaminants on soil ecosystems.
Collapse
Affiliation(s)
- Paulo Cardoso
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.C.); (R.P.); (T.L.)
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo Pinto
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.C.); (R.P.); (T.L.)
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tiago Lopes
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.C.); (R.P.); (T.L.)
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.C.); (R.P.); (T.L.)
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
5
|
Wei J, Dai J, Shi X, Zhao R, Fu G, Li R, Xia C, Zhang L, Zhou T, Wang H, Shi Y. Cadmium disrupts spermatogenic cell cycle via piRNA-DQ717867/p53 pathway. Reprod Toxicol 2024; 125:108554. [PMID: 38331007 DOI: 10.1016/j.reprotox.2024.108554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Cadmium (Cd) is a harmful environmental pollutant that disrupts public health, including respiratory, digestive, and reproductive systems. In this study, male rats were exposed to CdCl2 at a dose of 3 mg/kg by oral for 28 days to investigate the impact on spermatogenesis. Testis tissue samples were collected after sacrifice, and piRNA expression levels were measured using piRNA microarray and qPCR. PiRNAs, specialized molecules involved in spermatogenesis, were examined. CdCl2 exposure led to disrupted piRNA expression, particularly in piRNA-DQ759395 in rats. This piRNA was found to have a binding site with p53, and a similar piRNA-DQ717867 was discovered in mice. In GC-2spd cells, CdCl2 exposure increased piRNA-DQ717867 expression, which resulted in cell cycle arrest and abnormal expression of cell cycle-related proteins. The activation of p53-related pathways and disruptions in cell cycle regulation were also observed. Antagomir-717867 transfections and PFT-a pretreatment in GC-2spd cells supported the involvement of piRNA-DQ717867 in regulating cell cycle-related proteins. This study suggests that Cd exposure induces abnormal expression of piRNA-DQ759395 in rat testis and that piRNA-DQ717867 may regulate p53, causing cell cycle abnormalities in GC-2spd cells. These findings help understand the mechanisms of male reproductive toxicity caused by Cd exposure and emphasize the role of piRNAs in cell cycle regulation and male reproductive health.
Collapse
Affiliation(s)
- Jiaoyang Wei
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Juan Dai
- Wuhan centers for Disease Prevention and Control, China
| | - Xiaofan Shi
- Qinghai centers for Disease Prevention and Control, China
| | - Ruixue Zhao
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | | | - Rui Li
- Central China Normal University, China
| | - Chao Xia
- Ezhou centers for Disease Prevention and Control, China
| | - Ling Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Ting Zhou
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Huaiji Wang
- Wuhan centers for Disease Prevention and Control, China.
| | - Yuqin Shi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China.
| |
Collapse
|
6
|
Jalil S, Nazir MM, Ali Q, Zulfiqar F, Moosa A, Altaf MA, Zaid A, Nafees M, Yong JWH, Jin X. Zinc and nano zinc mediated alleviation of heavy metals and metalloids in plants: an overview. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:870-888. [PMID: 37598713 DOI: 10.1071/fp23021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/30/2023] [Indexed: 08/22/2023]
Abstract
Heavy metals and metalloids (HMs) contamination in the environment has heightened recently due to increasing global concern for food safety and human livability. Zinc (Zn2+ ) is an important nutrient required for the normal development of plants. It is an essential cofactor for the vital enzymes involved in various biological mechanisms of plants. Interestingly, Zn2+ has an additional role in the detoxification of HMs in plants due to its unique biochemical-mediating role in several soil and plant processes. During any exposure to high levels of HMs, the application of Zn2+ would confer greater plant resilience by decreasing oxidative stress, maintaining uptake of nutrients, photosynthesis productivity and optimising osmolytes concentration. Zn2+ also has an important role in ameliorating HMs toxicity by regulating metal uptake through the expression of certain metal transporter genes, targeted chelation and translocation from roots to shoots. This review examined the vital roles of Zn2+ and nano Zn in plants and described their involvement in alleviating HMs toxicity in plants. Moving forward, a broad understanding of uptake, transport, signalling and tolerance mechanisms of Zn2+ /zinc and its nanoparticles in alleviating HMs toxicity of plants will be the first step towards a wider incorporation of Zn2+ into agricultural practices.
Collapse
Affiliation(s)
- Sanaullah Jalil
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, Punjab University, Lahore 54590, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agricultural and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Abbu Zaid
- Department of Botany, Government Gandhi Memorial Science College, Jammu, India
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden
| | - Xiaoli Jin
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
7
|
Zhao F, Han Y, Shi H, Wang G, Zhou M, Chen Y. Arsenic in the hyperaccumulator Pteris vittata: A review of benefits, toxicity, and metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165232. [PMID: 37392892 DOI: 10.1016/j.scitotenv.2023.165232] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Arsenic (As) is a toxic metalloid, elevated levels of which in soils are becoming a major global environmental issue that poses potential health risks to humans. Pteris vittata, the first known As hyperaccumulator, has been successfully used to remediate As-polluted soils. Understanding why and how P. vittata hyperaccumulates As is the core theoretical basis of As phytoremediation technology. In this review, we highlight the beneficial effects of As in P. vittata, including growth promotion, elemental defense, and other potential benefits. The stimulated growth of P. vittata induced by As can be defined as As hormesis, but differs from that in non-hyperaccumulators in some aspects. Furthermore, the As coping mechanisms of P. vittata, including As uptake, reduction, efflux, translocation, and sequestration/detoxification are discussed. We hypothesize that P. vittata has evolved strong As uptake and translocation capacities to obtain beneficial effects from As, which gradually leads to As accumulation. During this process, P. vittata has developed a strong As vacuolar sequestration ability to detoxify overloaded As, which enables it to accumulate extremely high As concentrations in its fronds. This review also provides insights into several important research gaps that need to be addressed to advance our understanding of As hyperaccumulation in P. vittata from the perspective of the benefits of As.
Collapse
Affiliation(s)
- Fei Zhao
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Yu Han
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Hongyi Shi
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Mingxi Zhou
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, 37005 Ceske Budejovice, Czech Republic.
| | - Yanshan Chen
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
8
|
Bai Y, Wan X, Lei M, Wang L, Chen T. Research advances in mechanisms of arsenic hyperaccumulation of Pteris vittata: Perspectives from plant physiology, molecular biology, and phylogeny. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132463. [PMID: 37690196 DOI: 10.1016/j.jhazmat.2023.132463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Pteris vittata, as the firstly discovered arsenic (As) hyperaccumulator, has great application value in As-contaminated soil remediation. Currently, the genes involved in As hyperaccumulation in P. vittata have been mined continuously, while they have not been used in practice to enhance phytoremediation efficiency. Aiming to better assist the practice of phytoremediation, this review collects 130 studies to clarify the progress in research into the As hyperaccumulation process in P. vittata from multiple perspectives. Antioxidant defense, rhizosphere activities, vacuolar sequestration, and As efflux are important physiological activities involved in As hyperaccumulation in P. vittata. Among related 19 genes, PHT, TIP, ACR3, ACR2 and HAC family genes play essential roles in arsenate (AsⅤ) transport, arsenite (AsⅢ) transport, vacuole sequestration of AsⅢ, and the reduction of AsⅤ to AsⅢ, respectively. Gene ontology enrichment analysis indicated it is necessary to further explore genes that can bind to related ions, with transport activity, or with function of transmembrane transport. Phylogeny analysis results implied ACR2, HAC and ACR3 family genes with rapid evolutionary rate may be the decisive factors for P. vittata as an As hyperaccumulator. A deeper understanding of the As hyperaccumulation network and key gene components could provide useful tools for further bio-engineered phytoremediation.
Collapse
Affiliation(s)
- Yang Bai
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingqing Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongbin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Meng Y, Cui Y, Peng F, Guo L, Cui R, Xu N, Huang H, Han M, Fan Y, Zhang M, Sun Y, Wang L, Yang Z, Liu M, Chen W, Ni K, Wang D, Zhao L, Lu X, Chen X, Wang J, Wang S, Ye W. GhCYS2 governs the tolerance against cadmium stress by regulating cell viability and photosynthesis in cotton. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115386. [PMID: 37598545 DOI: 10.1016/j.ecoenv.2023.115386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Cysteine, an early sulfur-containing compound in plants, is of significant importance in sulfur metabolism. CYS encodes cysteine synthetase that further catalyzes cysteine synthesis. In this investigation, CYS genes, identified from genome-wide analysis of Gossypium hirsutum bioinformatically, led to the discovery of GhCYS2 as the pivotal gene responsible for Cd2+ response. The silencing of GhCYS2 through virus-induced gene silencing (VIGS) rendered plants highly susceptible to Cd2+ stress. Silencing GhCYS2 in plants resulted in diminished levels of cysteine and glutathione while leading to the accumulation of MDA and ROS within cells, thereby impeding the regular process of photosynthesis. Consequently, the stomatal aperture of leaves decreased, epidermal cells underwent distortion and deformation, intercellular connections are dramatically disrupted, and fissures manifested between cells. Ultimately, these detrimental effected culminating in plant wilting and a substantial reduction in biomass. The association established between Cd2+ and cysteine in this investigation offered a valuable reference point for further inquiry into the functional and regulatory mechanisms of cysteine synthesis genes.
Collapse
Affiliation(s)
- Yuan Meng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Yupeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Fanjia Peng
- Hunan Institute of Cotton Science, Changde 415101, Hunan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Ruifeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Nan Xu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Hui Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Menghao Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Yupin Sun
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Lidong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Zhining Yang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Mengyue Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Wenhua Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Kesong Ni
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China.
| |
Collapse
|
10
|
Risse SBL, Puschenreiter M, Tognacchini A. Rhizosphere processes by the nickel hyperaccumulator Odontarrhena chalcidica suggest Ni mobilization. PLANT AND SOIL 2023; 495:43-56. [PMID: 38313193 PMCID: PMC10834574 DOI: 10.1007/s11104-023-06161-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/06/2023] [Indexed: 02/06/2024]
Abstract
Background and aims Plant Ni uptake in aboveground biomass exceeding concentrations of 1000 μg g-1 in dry weight is defined as Ni hyperaccumulation. Whether hyperaccumulators are capable of mobilizing larger Ni pools than non-accumulators is still debated and rhizosphere processes are still largely unknown. The aim of this study was to investigate rhizosphere processes and possible Ni mobilization by the Ni hyperaccumulator Odontarrhena chalcidica and to test Ni uptake in relation to a soil Ni gradient. Methods The Ni hyperaccumulator O. chalcidica was grown in a pot experiment on six soils showing a pseudo-total Ni and labile (DTPA-extractable) Ni gradient and on an additional soil showing high pseudo-total but low labile Ni. Soil pore water was sampled to monitor changes in soil solution ionome, pH, and dissolved organic carbon (DOC) along the experiment. Results Results showed that Ni and Fe concentrations, pH as well as DOC concentrations in pore water were significantly increased by O. chalcidica compared to unplanted soils. A positive correlation between Ni in shoots and pseudo-total concentrations and pH in soil was observed, although plant Ni concentrations did not clearly show the same linear pattern with soil available Ni. Conclusions This study shows a clear root-induced Ni and Fe mobilization in the rhizosphere of O. chalcidica and suggests a rhizosphere mechanism based on soil alkalinization and exudation of organic ligands. Furthermore, it was demonstrated that soil pH and pseudo-total Ni are better predictors of Ni plant uptake in O. chalcidica than labile soil Ni. Supplementary Information The online version contains supplementary material available at 10.1007/s11104-023-06161-w.
Collapse
Affiliation(s)
- Sören B L Risse
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
- Centre for Microbiology and Environmental Systems Science, Department for Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Markus Puschenreiter
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Alice Tognacchini
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| |
Collapse
|
11
|
Li A, Lu Y, Zhen D, Guo Z, Wang G, Shi K, Liao S. Enterobacter sp. E1 increased arsenic uptake in Pteris vittata by promoting plant growth and dissolving Fe-bound arsenic. CHEMOSPHERE 2023; 329:138663. [PMID: 37044144 DOI: 10.1016/j.chemosphere.2023.138663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Microbes affect arsenic accumulation in the arsenic-hyperaccumulator Pteris vittata, but the associated molecular mechanism remains uncertain. Here, we investigated the effect of Enterobacter sp. E1 on arsenic accumulation by P. vittata. Strain E1 presented capacities of arsenate [As(V)] and Fe(III) reduction during cultivation. In the pot experiment with P. vittata, the biomass, arsenic content, and chlorophyll content of P. vittata significantly increased by 30.03%, 74.9%, and 112.1%, respectively. Strikingly, the water-soluble plus exchangeable arsenic (WE-As) significantly increased by 52.05%, while Fe-bound arsenic (Fe-As) decreased by 29.64% in the potted soil treated with strain E1. The possible role of activation of arsenic by strain E1 was subsequently investigated by exposing As(V)-absorbed ferrihydrite to the bacterial culture. Speciation analyses of As showed that strain E1 significantly increased soluble levels of As and Fe and that more As(V) was reduced to arsenite. Additionally, increased microbial diversity and soil enzymatic activities in soils indicated that strain E1 posed few ecological risks. These results indicate that strain E1 effectively increased As accumulation in P. vittata mainly by promoting plant growth and dissolving soil arsenic. Our findings suggest that As(V) and Fe(III)-reducer E1 could be used to enhance the phytoremediation of P. vittata in arsenic-contaminated soils.
Collapse
Affiliation(s)
- Aiting Li
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yingying Lu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Da Zhen
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Ziheng Guo
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Kaixiang Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Shuijiao Liao
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
12
|
Wang P, Chen Z, Meng Y, Shi H, Lou C, Zheng X, Li G, Li X, Peng W, Kang G. Wheat PHT1;9 acts as one candidate arsenate absorption transporter for phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131219. [PMID: 36940527 DOI: 10.1016/j.jhazmat.2023.131219] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
Arsenate (AsV) is one of the most common forms of arsenic (As) in environment and plant high-affinity phosphate transporters (PHT1s) are the primary plant AsV transporters. However, few PHT1s involved in AsV absorption have been identified in crops. In our previous study, TaPHT1;3, TaPHT1;6 and TaPHT1;9 were identified to function in phosphate absorption. Here, their AsV absorption capacities were evaluated using several experiments. Ectopic expression in yeast mutants indicated that TaPHT1;9 had the highest AsV absorption rates, followed by TaPHT1;6, while not for TaPHT1;3. Under AsV stress, further, BSMV-VIGS-mediated TaPHT1;9-silencing wheat plants exhibited higher AsV tolerance and lower As concentrations than TaPHT1;6-silenced plants, whereas TaPHT1;3-silencing plants had similar phenotype and AsV concentrations to control. These suggested that TaPHT1;9 and TaPHT1;6 possessed AsV absorption capacity with the former showing higher activities. Under hydroponic condition, furthermore, CRISPR-edited TaPHT1;9 wheat mutants showed the enhanced tolerance to AsV with decreased As distributions and concentrations, whereas TaPHT1;9 ectopic expression transgenic rice plants had the opposite results. Also, under AsV-contaminated soil condition, TaPHT1;9 transgenic rice plants exhibited depressed AsV tolerance with increased As concentrations in roots, straws and grains. Moreover, Pi addition alleviated the AsV toxicity. These suggested that TaPHT1;9 should be a candidate target gene for AsV phytoremediation.
Collapse
Affiliation(s)
- Pengfei Wang
- Henan Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Zedong Chen
- Henan Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanjun Meng
- Henan Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Huanting Shi
- Henan Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Chuang Lou
- Henan Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Xu Zheng
- Henan Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Gezi Li
- Henan Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangnan Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Wanxi Peng
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China
| | - Guozhang Kang
- Henan Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou 450046, China; The State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
13
|
Long H, Fang J, Ye L, Zhang B, Hui C, Deng X, Merchant SS, Huang K. Structural and functional regulation of Chlamydomonas lysosome-related organelles during environmental changes. PLANT PHYSIOLOGY 2023; 192:927-944. [PMID: 36946208 PMCID: PMC10231462 DOI: 10.1093/plphys/kiad189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/01/2023] [Accepted: 02/16/2023] [Indexed: 06/01/2023]
Abstract
Lysosome-related organelles (LROs) are a class of heterogeneous organelles conserved in eukaryotes that primarily play a role in storage and secretion. An important function of LROs is to mediate metal homeostasis. Chlamydomonas reinhardtii is a model organism for studying metal ion metabolism; however, structural and functional analyses of LROs in C. reinhardtii are insufficient. Here, we optimized a method for purifying these organelles from 2 populations of cells: stationary phase or overloaded with iron. The morphology, elemental content, and lysosomal activities differed between the 2 preparations, even though both have phosphorus and metal ion storage functions. LROs in stationary phase cells had multiple non-membrane-bound polyphosphate granules to store phosphorus. Those in iron-overloaded cells were similar to acidocalcisomes (ACs), which have a boundary membrane and contain 1 or 2 large polyphosphate granules to store more phosphorus. We established a method for quantifying the capacity of LROs to sequester individual trace metals. Based on a comparative proteomic analysis of these 2 types of LROs, we present a comprehensive AC proteome and identified 113 putative AC proteins. The methods and protein inventories provide a framework for studying the biogenesis and modification of LROs and the mechanisms by which they participate in regulating metal ion metabolism.
Collapse
Affiliation(s)
- Huan Long
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Fang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430072, China
| | - Lian Ye
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baolong Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Colleen Hui
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Sabeeha S Merchant
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Cui L, Chen Y, Liu J, Zhang Q, Xu L, Yang Z. Spraying Zinc Sulfate to Reveal the Mechanism through the Glutathione Metabolic Pathway Regulates the Cadmium Tolerance of Seashore Paspalum ( Paspalum vaginatum Swartz). PLANTS (BASEL, SWITZERLAND) 2023; 12:1982. [PMID: 37653899 PMCID: PMC10221796 DOI: 10.3390/plants12101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 09/02/2023]
Abstract
Cadmium (Cd) is considered to be one of the most toxic metals, causing serious harm to plants' growth and humans' health. Therefore, it is necessary to study simple, practical, and environmentally friendly methods to reduce its toxicity. Until now, people have applied zinc sulfate to improve the Cd tolerance of plants. However, related studies have mainly focused on physiological and biochemical aspects, with a lack of in-depth molecular mechanism research. In this study, we sprayed high (40 mM) and low (2.5 mM) concentrations of zinc sulfate on seashore paspalum (Paspalum vaginatum Swartz) plants under 0.5 mM Cd stress. Transcriptome sequencing and physiological indicators were used to reveal the mechanism of Cd tolerance. Compared with the control treatment, we found that zinc sulfate decreased the content of Cd2+ by 57.03-73.39%, and that the transfer coefficient of Cd decreased by 58.91-75.25% in different parts of plants. In addition, our results indicate that the antioxidant capacity of plants was improved, with marked increases in the glutathione content and the activity levels of glutathione reductase (GR), glutathione S-transferase (GST), and other enzymes. Transcriptome sequencing showed that the differentially expressed genes in both the 0.5 Zn and 40 Zn treatments were mainly genes encoding GST. This study suggests that genes encoding GST in the glutathione pathway may play an important role in regulating the Cd tolerance of seashore paspalum. Furthermore, the present study provides a theoretical reference for the regulation mechanism caused by zinc sulfate spraying to improve plants' Cd tolerance.
Collapse
Affiliation(s)
- Liwen Cui
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | - Zhimin Yang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Yu M, Zhuo R, Lu Z, Li S, Chen J, Wang Y, Li J, Han X. Molecular insights into lignin biosynthesis on cadmium tolerance: Morphology, transcriptome and proteome profiling in Salix matsudana. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129909. [PMID: 36099736 DOI: 10.1016/j.jhazmat.2022.129909] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Soil pollution caused by cadmium (Cd) is a serious concern. Phytoremediation is a popular technology in the remediation of Cd-contaminated soil. Salix matsudana var. matsudana f. umbraculifera Rehd. has been characterized as a high Cd-accumulating and tolerant willow (HCW). Here, transcriptome and proteome profiling, along with morphology analyses were performed to explore molecular cross-talk involved in Cd tolerance. Our results showed that 73%- 83% of the Cd in roots accumulated in the cell walls and root xylem cell walls were significantly thickened. From transcriptome and proteome analysis, a total of 153 up-regulated differentially-expressed genes and 655 up-regulated differentially-expressed proteins were found in common between two comparison groups (1 d and 4 d vs. respective control). Furthermore, phenylpropanoid biosynthesis was identified as a key pathway in response to Cd stress. In this pathway, lignin biosynthesis genes or proteins were significantly up-regulated, and lignin content increased significantly in roots under Cd stress. Two Cd-induced genes cinnamoyl-CoA reductase 1 (SmCCR1) and cinnamyl alcohol dehydrogenase 7 (SmCAD7) from HCW increased the lignin content and enhanced Cd tolerance in transgenic poplar calli. These results lay the foundation for further clarifying the molecular mechanisms of Cd tolerance in woody plants.
Collapse
Affiliation(s)
- Miao Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China; Forestry Faculty, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Zhuchou Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Shaocui Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Juanjuan Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Yujun Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Jihong Li
- Forestry College of Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China.
| |
Collapse
|
16
|
Maharajan T, Chellasamy G, Tp AK, Ceasar SA, Yun K. The role of metal transporters in phytoremediation: A closer look at Arabidopsis. CHEMOSPHERE 2023; 310:136881. [PMID: 36257391 DOI: 10.1016/j.chemosphere.2022.136881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Pollution of the environment by heavy metals (HMs) has recently become a global issue, affecting the health of all living organisms. Continuous human activities (industrialization and urbanization) are the major causes of HM release into the environment. Over the years, two methods (physical and chemical) have been widely used to reduce HMs in polluted environment. However, these two methods are inefficient and very expensive to reduce the HMs released into the atmosphere. Alternatively, researchers are trying to remove the HMs by employing hyper-accumulator plants. This method, referred to phytoremediation, is highly efficient, cost-effective, and eco-friendly. Phytoremediation can be divided into five types: phytostabilization, phytodegradation, rhizofiltration, phytoextraction, and phytovolatilization, all of which contribute to HMs removal from the polluted environment. Brassicaceae family members (particularly Arabidopsis thaliana) can accumulate more HMs from the contaminated environment than those of other plants. This comprehensive review focuses on how HMs pollute the environment and discusses the phytoremediation measures required to reduce the impact of HMs on the environment. We discuss the role of metal transporters in phytoremediation with a focus on Arabidopsis. Then draw insights into the role of genome editing tools in enhancing phytoremediation efficiency. This review is expected to initiate further research to improve phytoremediation by biotechnological approaches to conserve the environment from pollution.
Collapse
Affiliation(s)
- Theivanayagam Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Cochin, 683 104, Kerala, India
| | - Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Gyeonggi-do, 13120, Republic of Korea
| | - Ajeesh Krishna Tp
- Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Cochin, 683 104, Kerala, India
| | - Stanislaus Antony Ceasar
- Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Cochin, 683 104, Kerala, India.
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Gyeonggi-do, 13120, Republic of Korea.
| |
Collapse
|
17
|
Boosting Sustainable Agriculture by Arbuscular Mycorrhiza under Stress Condition: Mechanism and Future Prospective. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5275449. [PMID: 36619307 PMCID: PMC9815931 DOI: 10.1155/2022/5275449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022]
Abstract
Global agriculture is frequently subjected to stresses from increased salt content, drought, heavy metals, and other factors, which limit plant growth and production, deteriorate soil health, and constitute a severe danger to global food security. Development of environmentally acceptable mitigation techniques against stresses and restrictions on the use of chemical fertilizers in agricultural fields is essential. Therefore, eco-friendly practises must be kept to prevent the detrimental impacts of stress on agricultural regions. The advanced metabolic machinery needed to handle this issue is not now existent in plants to deal against the stresses. Research has shown that the key role and mechanisms of arbuscular mycorrhiza fungi (AMF) to enhance plant nutrient uptake, immobilisation and translocation of heavy metals, and plant growth-promoting attributes may be suitable agents for plant growth under diversed stressed condition. The successful symbiosis and the functional relationship between the plant and AMF may build the protective regulatory mechansm against the key challenge in particular stress. AMF's compatibility with hyperaccumulator plants has also been supported by studies on gene regulation and theoretical arguments. In order to address this account, the present review included reducing the impacts of biotic and abiotic stress through AMF, the mechanisms of AMF to improve the host plant's capacity to endure stress, and the strategies employed by AM fungus to support plant survival in stressful conditions.
Collapse
|
18
|
Luo J, Gu S, Guo X, Liu Y, Tao Q, Zhao HP, Liang Y, Banerjee S, Li T. Core Microbiota in the Rhizosphere of Heavy Metal Accumulators and Its Contribution to Plant Performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12975-12987. [PMID: 36067360 DOI: 10.1021/acs.est.1c08832] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Persistent microbial symbioses can confer greater fitness to their host under unfavorable conditions, but manipulating such beneficial interactions necessitates a mechanistic understanding of the consistently important microbiomes for the plant. Here, we examined the phylogenetic profiles and plant-beneficial traits of the core microbiota that consistently inhabits the rhizosphere of four divergent Cd hyperaccumulators and an accumulator. We evidenced the existence of a conserved core rhizosphere microbiota in each plant distinct from that in the non-hyperaccumulating plant. Members of Burkholderiaceae and Sphingomonas were the shared cores across hyperaccumulators and accumulators. Several keystone taxa in the rhizosphere networks were part of the core microbiota, the abundance of which was an important predictor of plant Cd accumulation. Furthermore, an inoculation experiment with synthetic communities comprising isolates belonging to the shared cores indicated that core microorganisms could facilitate plant growth and metal tolerance. Using RNA-based stable isotope probing, we discovered that abundant core taxa overlapped with active rhizobacteria utilizing root exudates, implying that the core rhizosphere microbiota assimilating plant-derived carbon may provide benefits to plant growth and host phenotype such as Cd accumulation. Our study suggests common principles underpinning hyperaccumulator-microbiome interactions, where plants consistently interact with a core set of microbes contributing to host fitness and plant performance. These findings lay the foundation for harnessing the persistent root microbiomes to accelerate the restoration of metal-disturbed soils.
Collapse
Affiliation(s)
- Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shaohua Gu
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, 100091 Beijing, China
| | - Xinyu Guo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuankun Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - He-Ping Zhao
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Samiran Banerjee
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Yu W, Deng S, Chen X, Cheng Y, Li Z, Wu J, Zhu D, Zhou J, Cao Y, Fayyaz P, Shi W, Luo Z. PcNRAMP1 Enhances Cadmium Uptake and Accumulation in Populus × canescens. Int J Mol Sci 2022; 23:ijms23147593. [PMID: 35886940 PMCID: PMC9316961 DOI: 10.3390/ijms23147593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
Poplars are proposed for the phytoremediation of heavy metal (HM) polluted soil. Characterization of genes involved in HM uptake and accumulation in poplars is crucial for improving the phytoremediation efficiency. Here, Natural Resistance-Associated Macrophage Protein 1 (NRAMP1) encoding a transporter involved in cadmium (Cd) uptake and transport was functionally characterized in Populus × canescens. Eight putative PcNRAMPs were identified in the poplar genome and most of them were primarily expressed in the roots. The expression of PcNRAMP1 was induced in Cd-exposed roots and it encoded a plasma membrane-localized protein. PcNRAMP1 showed transport activity for Cd2+ when expressed in yeast. The PcNRAMP1-overexpressed poplars enhanced net Cd2+ influxes by 39–52% in the roots and Cd accumulation by 25–29% in aerial parts compared to the wildtype (WT). However, Cd-induced biomass decreases were similar between the transgenics and WT. Further analysis displayed that the two amino acid residues of PcNRAMP1, i.e., M236 and P405, play pivotal roles in regulating its transport activity for Cd2+. These results suggest that PcNRAMP1 is a plasma membrane-localized transporter involved in Cd uptake and transporting Cd from the roots to aerial tissues, and that the conserved residues in PcNRAMP1 are essential for its Cd transport activity in poplars.
Collapse
Affiliation(s)
- Wenjian Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Shurong Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Xin Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Yao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Zhuorong Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Jiangting Wu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Dongyue Zhu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Yuan Cao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Payam Fayyaz
- Forest, Range and Watershed Management Department, Agriculture and Natural Resources Faculty, Yasouj University, Yasuj 75919-63179, Iran;
| | - Wenguang Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
- Correspondence: (W.S.); (Z.L.)
| | - Zhibin Luo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
- Correspondence: (W.S.); (Z.L.)
| |
Collapse
|
20
|
Nawaz H, Ali A, Saleem MH, Ameer A, Hafeez A, Alharbi K, Ezzat A, Khan A, Jamil M, Farid G. Comparative effectiveness of EDTA and citric acid assisted phytoremediation of Ni contaminated soil by using canola (Brassica napus). BRAZ J BIOL 2022; 82:e261785. [PMID: 35703635 DOI: 10.1590/1519-6984.261785] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Phytoremediation is an ecofriendly technique to clean heavy metals from contaminated soil by the use of high biomass producing plant species. Chelators can help to improve this biological technique by increasing metal solubility. Therefore, a pot experiment was conducted to determine the effect of the chelators EDTA and citric acid (CA) in phytoremediation of Ni contaminated soil by using Brassica napus (canola). Two cultivars of B. napus, Con-II (tolerant) and Oscar (sensitive), were selected after screening and exposed to NiSO4 at 30 ppm at the time of sowing. CA (10 mM) and EDTA (1.5 mM) were applied either alone or in combination with each other after two weeks of Ni treatments. Different parameters like morpho-physiological and biochemical data were recorded after 15 days of chelate application. The results highlighted the successful use of chelating agents (CA and EDTA) not only to ameliorate Ni stress but also to enhance Ni accumulation which is prerequisite for phytoremediation. The basal application of 10 mMCA and 1.5 mM EDTA concentration proved to be effective for the growth of plants. The combination of chelating agents failed to show any synergistic effects.
Collapse
Affiliation(s)
- H Nawaz
- University of Education, Division of Science and Technology, Department of Botany, Lahore, Punjab, Pakistan.,University of Sargodha, Department of Botany, Sargodha, Pakistan
| | - A Ali
- University of Sargodha, Department of Botany, Sargodha, Pakistan
| | - M H Saleem
- Agriculture University, College of Plant Science and Technology, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Researches of Yangtze River, Wuhan, China
| | - A Ameer
- University of Agriculture, Department of Botany, Faisalabad, Pakistan
| | - A Hafeez
- Quaid-i-Azam University, Department of Plant Sciences, Islamabad, Pakistan
| | - K Alharbi
- Princess Nourah bint Abdulrahman University, College of Science, Department of Biology, Riyadh, Saudi Arabia
| | - A Ezzat
- King Khalid University, College of Science, Department of Biology, Abha, Saudia Arabia.,South Valley University, Faculty of Veterinary Medicine, Department of Theriogenology, Qena, Egypt
| | - A Khan
- University of Education, Division of Science and Technology, Department of Botany, Lahore, Punjab, Pakistan
| | - M Jamil
- The Islamia University of Bahawalpur, Department of Botany, Bahawalpur, Pakistan
| | - G Farid
- Nuclear Institute for Agriculture and Biology - NIAB, Faisalabad, Pakistan
| |
Collapse
|
21
|
Pottier M, Le Thi VA, Primard-Brisset C, Marion J, Wolf Bianchi M, Victor C, Déjardin A, Pilate G, Thomine S. Duplication of NRAMP3 gene in poplars generated two homologous transporters with distinct functions. Mol Biol Evol 2022; 39:msac129. [PMID: 35700212 PMCID: PMC9234761 DOI: 10.1093/molbev/msac129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 12/02/2022] Open
Abstract
Transition metals are essential for a wealth of metabolic reactions, but their concentrations need to be tightly controlled across cells and cell compartments, as metal excess or imbalance has deleterious effects. Metal homeostasis is achieved by a combination of metal transport across membranes and metal binding to a variety of molecules. Gene duplication is a key process in evolution, as emergence of advantageous mutations on one of the copies can confer a new function. Here, we report that the poplar genome contains two paralogues encoding NRAMP3 metal transporters localized in tandem. All Populus species analyzed had two copies of NRAMP3, whereas only one could be identified in Salix species indicating that duplication occurred when the two genera separated. Both copies are under purifying selection and encode functional transporters, as shown by expression in the yeast heterologous expression system. However, genetic complementation revealed that only one of the paralogues has retained the original function in release of metals stored in the vacuole previously characterized in A. thaliana. Confocal imaging showed that the other copy has acquired a distinct localization to the Trans Golgi Network (TGN). Expression in poplar suggested that the copy of NRAMP3 localized on the TGN has a novel function in the control of cell-to-cell transport of manganese. This work provides a clear case of neo-functionalization through change in the subcellular localization of a metal transporter as well as evidence for the involvement of the secretory pathway in cell-to-cell transport of manganese.
Collapse
Affiliation(s)
- Mathieu Pottier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Van Anh Le Thi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Catherine Primard-Brisset
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jessica Marion
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Michele Wolf Bianchi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Cindy Victor
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | | | | | - Sébastien Thomine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
22
|
Grignet A, Sahraoui ALH, Teillaud S, Fontaine J, Papin A, Bert V. Phytoextraction of Zn and Cd with Arabidopsis halleri: a focus on fertilization and biological amendment as a means of increasing biomass and Cd and Zn concentrations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22675-22686. [PMID: 34797549 DOI: 10.1007/s11356-021-17256-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
The current work aims to investigate the influence of fertilization (fertilizer) and fungal inoculation (Funneliformis mosseae and Serendipita indica (formerly Piriformospora indica), respectively arbuscular mycorrhizal (AMF) and endophytic fungi) on the phytoextraction potential of Arabidopsis halleri (L.) O'Kane & Al-Shehbaz (biomass yield and/or aboveground part Zn and Cd concentrations) over one life plant cycle. The mycorrhizal rates of A. halleri were measured in situ while the fungal inoculation experiments were carried out under controlled conditions. For the first time, it is demonstrated that the fertilizer used on A. halleri increased its biomass not only at the rosette stage but also at the flowering and fruiting stages. Fertilizer reduced the Zn concentration variability between developmental stages and increased the Cd concentration at fruiting stage. A. halleri roots did not show AMF colonization at any stage in our field conditions, neither in the absence nor in the presence of fertilizer, thus suggesting that A. halleri is not naturally mycorrhizal. Induced mycorrhization agreed with this result. However, S. indica has been shown to successfully colonize A. halleri roots under controlled conditions. This study confirms the benefit of using fertilizer to increase the phytoextraction potential of A. halleri. Overall, these results contribute to the future applicability of A. halleri in a phytomanagement strategy by giving information on its cultural itinerary.
Collapse
Affiliation(s)
- Arnaud Grignet
- Clean Technologies and Circular Economy Unit, SIT Department, INERIS, Parc Technologique Alata BP 2, 60550, Verneuil en Halatte, France
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50 rue Ferdinand Buisson, 62228, Calais Cedex, France
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50 rue Ferdinand Buisson, 62228, Calais Cedex, France
| | - Samuel Teillaud
- Clean Technologies and Circular Economy Unit, SIT Department, INERIS, Parc Technologique Alata BP 2, 60550, Verneuil en Halatte, France
| | - Joël Fontaine
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50 rue Ferdinand Buisson, 62228, Calais Cedex, France
| | - Arnaud Papin
- Analytical Methods and Developments for the Environment, MIV Department, INERIS, Parc Technologique Alata BP 2, 60550, Verneuil en Halatte, France
| | - Valérie Bert
- Clean Technologies and Circular Economy Unit, SIT Department, INERIS, Parc Technologique Alata BP 2, 60550, Verneuil en Halatte, France.
| |
Collapse
|
23
|
Boorboori MR, Zhang HY. Arbuscular Mycorrhizal Fungi Are an Influential Factor in Improving the Phytoremediation of Arsenic, Cadmium, Lead, and Chromium. J Fungi (Basel) 2022; 8:176. [PMID: 35205936 PMCID: PMC8879560 DOI: 10.3390/jof8020176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/27/2022] Open
Abstract
The increasing expansion of mines, factories, and agricultural lands has caused many changes and pollution in soils and water of several parts of the world. In recent years, metal(loid)s are one of the most dangerous environmental pollutants, which directly and indirectly enters the food cycle of humans and animals, resulting in irreparable damage to their health and even causing their death. One of the most important missions of ecologists and environmental scientists is to find suitable solutions to reduce metal(loid)s pollution and prevent their spread and penetration in soil and groundwater. In recent years, phytoremediation was considered a cheap and effective solution to reducing metal(loid)s pollution in soil and water. Additionally, the effect of soil microorganisms on increasing phytoremediation was given special attention; therefore, this study attempted to investigate the role of arbuscular mycorrhizal fungus in the phytoremediation system and in reducing contamination by some metal(loid)s in order to put a straightforward path in front of other researchers.
Collapse
Affiliation(s)
| | - Hai-Yang Zhang
- College of Environment and Surveying and Mapping Engineering, Suzhou University, Suzhou 234000, China;
| |
Collapse
|
24
|
Zhang J, Shi Z, Gao Z, Wen Y, Wang W, Liu W, Wang X, Zhu F. Identification of three metallothioneins in the black soldier fly and their functions in Cd accumulation and detoxification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117146. [PMID: 34438505 DOI: 10.1016/j.envpol.2021.117146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 06/13/2023]
Abstract
The black soldier fly (BSF) Hermetia illucens has a strong tolerance to cadmium stress. This helps to use BSF in entomoremediation of heavy metal pollution. Rich metallothionein (MT) proteins were thought to be important for some insects to endure the toxicity of heavy metal. We identified and characterized three MTs genes in BSF (BSFMTs), including BSFMT1, BSFMT2A, and BSFMT2B. Molecular modeling was used to predict metal binding sites. Phylogenetic analysis was used to identify gene families. Overexpression of the recombinant black soldier fly metallothioneins was found to confer Cd tolerance in Escherichia coli. Finally, functions of BSFMTs in BSF were explored through RNA interference (RNAi). RNAi results of BSFMT2B showed that the larval fresh weight decreased significantly, and the larvae mortality increased significantly. This study suggests that BSFMTs have important properties in Cd detoxification and tolerance in BSF. Further characterization analyses of physiological function about metallothioneins are necessary in BSF and other insects.
Collapse
Affiliation(s)
- Jie Zhang
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion By Insects, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhihui Shi
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion By Insects, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhenghui Gao
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion By Insects, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yiting Wen
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion By Insects, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Wanqiang Wang
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion By Insects, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Wen Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaoping Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Fen Zhu
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion By Insects, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
25
|
Subpiramaniyam S. Portulaca oleracea L. for phytoremediation and biomonitoring in metal-contaminated environments. CHEMOSPHERE 2021; 280:130784. [PMID: 33971418 DOI: 10.1016/j.chemosphere.2021.130784] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/11/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
In phytoremediation and biomonitoring, plants are used to clean and monitor contaminated environments, respectively. Thus, scientists are searching for ideal plants, i.e., those that rapidly uptake and accumulate a considerable quantity of contaminants in their tissues, with or without toxicity symptoms. All these aspects are satisfied by the annual herbaceous plant Portulaca oleracea L. P. oleracea L. is ranked eighth as "most common plant in the world" and twelfth as "non-cultivating species well colonise[d] in new areas." Because of its fast regeneration of shoots and roots from leaves and roots and leaves from the stem and its tolerance capacity for metal stress, this plant has been used for phytoremediation and biomonitoring studies in the field, as well as in pot and hydroponics studies. The growth attributes of this plant in metal-stressed environments and the uptake of metals from its growth media (via the root), which is followed by the accumulation of the metals in its tissues, have been studied. Metal is translocated from the root into the shoot and is calculated as the translocation factor, TF; the metal taken from the soil into the plant is calculated as the bioaccumulation factor, BAF. These measures have been used to determine the hyperaccumulation (uptake and storage of unusually large amounts of metals) potential of the plant. This review article critically evaluates the literature studies to increase the practicability of phytoremediation and biomonitoring approaches using various life stages of P. oleracea.
Collapse
Affiliation(s)
- Sivakumar Subpiramaniyam
- Department of Bioenvironmental Energy, College of Natural Resource and Life Science, Pusan National University, Miryang-si, Gyeongsangnam-do, 50463, Republic of Korea.
| |
Collapse
|
26
|
Li X, Chen D, Yang Y, Liu Y, Luo L, Chen Q, Yang Y. Comparative transcriptomics analysis reveals differential Cd response processes in roots of two turnip landraces with different Cd accumulation capacities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112392. [PMID: 34102395 DOI: 10.1016/j.ecoenv.2021.112392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/05/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Understanding the molecular mechanisms of cadmium (Cd) tolerance and accumulation in plants is important to address Cd pollution. In the present study, we performed comparative transcriptome analysis to identify the Cd response processes in the roots of two turnip landraces, KTRG-B14 (high-Cd accumulation) and KTRG-B36 (low-Cd accumulation). Two common enhanced processes, glutathione metabolism and antioxidant system, were identified in both landraces. However, some differential antioxidant processes are likely employed by two landraces, namely, several genes encoding peptide methionine sulfoxide reductases and thioredoxins were up-regulated in B14, whereas flavonoid synthesis was potentially induced to fight against oxidative stress in B36. In addition to the commonly upregulated ZINC INDUCED FACILITATOR 1-like gene in two landraces, different metal transporter-encoding genes identified in B14 (DETOXIFICATION 1) and B36 (PLANT CADMIUM RESISTANCE 2-like, probable zinc transporter 10, and ABC transporter C family member 3) were responsible for Cd accumulation and distribution in cells. Several genes that encode extensins were specifically upregulated in B14, which may improve Cd accumulation in cell walls or regulate root development to absorb more Cd. Meanwhile, the induced high-affinity nitrate transporter 2.1-like gene was also likely to contribute to the higher Cd accumulation in B14. However, Cd also caused some toxic symptoms in both landraces. Cd stress might inhibit iron uptake in both landraces whereas many apoenzyme-encoding genes were influenced in B36, which may be attributed to the interaction between Cd and other metal ions. This study provides novel insights into the molecular mechanism of plant root response to Cd at an early stage. The transporters and key enzymes identified in this study are helpful for the molecular-assisted breeding of low- or high-Cd-accumulating plant resources.
Collapse
Affiliation(s)
- Xiong Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Di Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ya Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yuanyuan Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Landi Luo
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Qian Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yongping Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna 666303, China.
| |
Collapse
|
27
|
Yan Y, Yang J, Guo Y, Yang J, Wan X, Zhao C, Guo J, Chen T. Potential evaluation of different intercropping remediation modes based on remediation efficiency and economic benefits - a case study of arsenic-contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:25-33. [PMID: 33998931 DOI: 10.1080/15226514.2021.1920571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hyperaccumulator-cash crop intercropping remediation is a research hotspot for heavy metal contaminated farmland, but few studies evaluated its feasibility based on practice. Field experiments and survey statistics were conducted to obtain parameters of Pteris vittata-Citrus reticulata/Zea mays intercropping, and potential of intercropping remediation was evaluated based on remediation efficiency and economic benefits. The results showed that intercropping hyperaccumulator with cash crop (especially herbs) had a certain negative effect on remediation efficiency because of the influence on planting density and harvest times of hyperaccumulator; while trees could partly alleviate this effect. Until achieving the predetermined target, the net remediation cost of P. vittata-Z. mays was 18.2 $/g As, followed by P. vittata monoculture (13.3 $/g) and P. vittata-C. reticulata (8.6 $/g). Based on the proposed evaluation model, nealy half of the P. vittata intercropping modes had low economic benefits, insufficient to compensate the cost of sacrificing remediation efficiency. Based on the data from two soil remediation projects, when net income of cash crops intercropped with As-hyperaccumulators exceeded 5865/1607 $/hm2 (herbs/trees), the economic benefit of intercropping will be relatively obvious. Therefore, cash crops should be considered from three aspects: planting conditions, spatial allocation and economic benefits. Novelty statement: This work analyzed remediation efficiency and economic benefits of intercropping remediation. An economic benefit evaluation model was established to evaluate intercropping remediation modes. The selection principle and net income threshold of cash crops in intercropping was put forward for the first time.[Figure: see text]HighlightsThe selection principle of cash crops in intercropping remediation was put forward.An evaluation model of P. vittata intercropping remediation was established.The net cost of extracting 1.0 g of soil As in each remediation mode was proposed.Net income of herb/tree intercropped with P. vittata should exceed 5865/1607 $/hm2.
Collapse
Affiliation(s)
- Yunxian Yan
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yue Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Junxing Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Wan
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Chen Zhao
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Junmei Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Wang S, Huang DY, Zhu QH, Li BZ, Xu C, Zhu HH, Zhang Q. Agronomic traits and ionomics influence on Cd accumulation in various sorghum (Sorghum bicolor (L.) Moench) genotypes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112019. [PMID: 33639494 DOI: 10.1016/j.ecoenv.2021.112019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/18/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Cd is a common pollutant that contaminates the ecological environment of soil-crop systems and threatens food security and human health. Sorghum (Sorghum bicolor (L.) Moench) has a great potential for use as energy feedstock and Cd phytoremediation. Therefore, the identification of sorghum genotypes with high Cd accumulation is of great significance to Cd pollution remediation and production of bioenergy. A total of 126 biomass sorghum genotypes grown in a Cd-polluted field were investigated, and their agronomic traits were analyzed, including plant height, leaf number, shoot dry weight (SDW), soil and plant analyzer development (SPAD) value, and concentration of metal ions at seedling stage. Plant height was an important factor for screening potential biomass sorghum species because it presented a significant correlation with the Cd concentration in shoots and SDW (P < 0.01). The highest and lowest Cd concentration in sorghum shoots were 7.88 and 0.99 mg kg-1, respectively. The Cd concentration presented a negative and significant correlation with Mn in sorghum shoots (r = -0.303, P < 0.01), which was in agreement with the results that sorghum species with high Cd concentrations have lower Mn concentrations. In the mature stage, sorghum 12530 presented higher Cd concentration and dry weight in shoots compared with other genotypes. In summary, plant height, SDW, and concentration of Mn in sorghum shoots are critical parameters that synthetically influence the accumulation of Cd in sorghum shoots.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Dao-You Huang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Qi-Hong Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Bai-Zhong Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Chao Xu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Han-Hua Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Quan Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| |
Collapse
|
29
|
Kashiwabara T, Kitajima N, Onuma R, Fukuda N, Endo S, Terada Y, Abe T, Hokura A, Nakai I. Synchrotron micro-X-ray fluorescence imaging of arsenic in frozen-hydrated sections of a root of Pteris vittata. Metallomics 2021; 13:6164887. [PMID: 33693839 PMCID: PMC8716073 DOI: 10.1093/mtomcs/mfab009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/15/2021] [Indexed: 11/23/2022]
Abstract
We performed micro-X-ray fluorescence imaging of frozen-hydrated sections of a root of Pteris vittata for the first time, to the best of our knowledge, to reveal the mechanism of arsenic (As) uptake. The As distribution was successfully visualized in cross sections of different parts of the root, which showed that (i) the major pathway of As uptake changes from symplastic to apoplastic transport in the direction of root growth, and (ii) As and K have different mobilities around the stele before xylem loading, despite their similar distributions outside the stele in the cross sections. These data can reasonably explain As reduction, axially observed around the root tip in the direction of root growth and radially observed in the endodermis in the cross sections, as a consequence of the incorporation of As into the cells or symplast of the root. In addition, previous observations of As species in the midrib can be reconciled by ascribing a reduction capacity to the root cells, which implies that As reduction mechanisms at the cellular level may be an important control on the peculiar root-to-shoot transport of As in P. vittata.
Collapse
Affiliation(s)
- Teruhiko Kashiwabara
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushimacho, Yokosuka, Kanagawa 237-0068, Japan.,Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | | | - Ryoko Onuma
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Naoki Fukuda
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Satoshi Endo
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Yasuko Terada
- SPring-8, Japan Synchrotron Radiation Research Institute (JASRI), Sayo-cho, Hyogo 679-5198, Japan
| | - Tomoko Abe
- RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akiko Hokura
- Department of Applied Chemistry, School of Engineering, Tokyo Denki University, 5 Senju-Asahicho, Adachi, Tokyo 120-8551, Japan
| | - Izumi Nakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| |
Collapse
|
30
|
Ge J, Wang H, Lin J, Tian S, Zhao J, Lin X, Lu L. Nickel tolerance, translocation and accumulation in a Cd/Zn co-hyperaccumulator plant Sedum alfredii. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:123074. [PMID: 32768837 DOI: 10.1016/j.jhazmat.2020.123074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Multi-elements hyperaccumulators are of high scientific interest to be applied in remediation of mix-contaminated soils. Sedum alfredii is a well-known Cd/Zn co-hyperaccumulator with high Pb and Cu tolerance. This study investigated the ability of the hyperaccumulating ecotype (HE) S. alfredii to tolerate and accumulate Ni. Differed from the non-hyperaccumulating ecotype (NHE), HE plants grew healthy after 50 μM Ni exposure for 4 weeks. The HE plants translocated up to 40 % Ni to the shoots under high Ni stress and accumulated >3000 and 200 mg kg-1 Ni in roots and shoots, respectively. Micro-XRF image showed that Ni was highly restricted within the HE stem and leaf vascular bundles, especially the xylem tissues. The HE roots were of high Ni tolerance, showing much less pronounced Ni-induced phytotoxicity as compared with the NHEs. Ni-induced O2- was observed in the apoplastic part of HE root cells, but both Ni and the induced O2- were highly accumulated in the sensitive zone (root cap, meristem, and cylinder) of NHE roots. These results suggest that although low Ni mobility out of vascular tissues limits the metal accumulation in stems and leaves, HE S. alfredii is highly tolerant towards Ni stress by metal homeostasis in root cells.
Collapse
Affiliation(s)
- Jun Ge
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University, College of Environmental & Resource Science), Ministry of Education, Hangzhou, 310058, China
| | - Haixin Wang
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University, College of Environmental & Resource Science), Ministry of Education, Hangzhou, 310058, China
| | - Jiayu Lin
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University, College of Environmental & Resource Science), Ministry of Education, Hangzhou, 310058, China
| | - Shengke Tian
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University, College of Environmental & Resource Science), Ministry of Education, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Jianqi Zhao
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University, College of Environmental & Resource Science), Ministry of Education, Hangzhou, 310058, China
| | - Xianyong Lin
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University, College of Environmental & Resource Science), Ministry of Education, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Lingli Lu
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University, College of Environmental & Resource Science), Ministry of Education, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
31
|
Wang R, Hou D, Chen J, Li J, Fu Y, Wang S, Zheng W, Lu L, Tian S. Distinct rhizobacterial functional assemblies assist two Sedum alfredii ecotypes to adopt different survival strategies under lead stress. ENVIRONMENT INTERNATIONAL 2020; 143:105912. [PMID: 32650147 DOI: 10.1016/j.envint.2020.105912] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Lead (Pb) contamination presents a widespread environmental plague. Sedum alfredii is widely used for soil phytoremediation owing to its capacity to extract heavy metals, such as Pb. Although efficient Pb extraction is mediated by complex interactions between the roots and rhizospheric bacteria, the mechanism by which S. alfredii recruits microorganisms under Pb stress remains unclear. The Pb-accumulating ecotype (AE) and non-accumulating ecotype (NAE) of S. alfredii recruited different rhizobacterial communities. Under Pb stress, AE rhizosphere-enriched bacteria assembled into stable-connected clusters with higher phylogenetic and functional diversity. These microbes, e.g., Flavobacterium, could release indoleacetic acid to promote plant growth and siderophores, thereby increasing Pb availability. The NAE rhizosphere-enriched functional bacteria "desperately" assembled into highly specialized functional clusters with extremely low phylogenetic diversity. These bacteria, e.g., Pseudomonas, could enhance phosphorus solubilization and Pb precipitation, thereby reducing Pb stress and plant Pb accumulation. High niche overlap level of the rhizo-enriched species raised challenges in soil resource utilization, whereas the NAE community assembly was markedly constrained by environmental "selection effect" than that of AE rhizobacterial community. These results indicate that different ecotypes of S. alfredii recruit distinct bacterial functional assemblies to drive specific plant-soil feedbacks for different survival in Pb-contaminated soils. To cope with heavy metal stress, NAE formed a highly functional and specialized but vulnerable community and efficiently blocked heavy metal absorption by plants. However, the AE community adopted a more stable and elegant strategy to promote plant growth and the accumulation of dry matter via multiple evolutionary strategies that ensured a high yield of heavy metal phytoextraction. This for the first time provides new insights into the roles of rhizosphere microbes in plant adaptations to abiotic stresses.
Collapse
Affiliation(s)
- Runze Wang
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dandi Hou
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiuzhou Chen
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahao Li
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingyi Fu
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sen Wang
- College of Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wei Zheng
- College of Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Lingli Lu
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shengke Tian
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
32
|
Hua CY, Chen JX, Cao Y, Li HB, Chen Y, Ma LQ. Pteris vittata coupled with phosphate rock effectively reduced As and Cd uptake by water spinach from contaminated soil. CHEMOSPHERE 2020; 247:125916. [PMID: 32069716 DOI: 10.1016/j.chemosphere.2020.125916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Arsenic (As) and cadmium (Cd) are ubiquitous in the environment and they are both toxic to humans. When present in soils, they can enter food chain, thereby threatening human health. Water spinach (Ipomoea aquatica) is an important leafy vegetable, which is widely consumed in Asian countries. However, it is efficient in taking up As and Cd from soils and accumulating them in the edible parts. Therefore, it is of significance to reduce its As and Cd content, especially in contaminated soil. In this study, pot experiments were conducted to investigate the ability of As-hyperaccumulator Pteris vittata in reducing As and Cd uptake by water spinach under different phosphorus treatments. P. vittata was grown for 60 d in a contaminated-soil amended with P fertilizer (+P) or phosphate rock (+PR), followed by water spinach cultivation for another 30 d. Plant biomass, As and Cd contents in plants and soils, and soil pH were analyzed. We found that, P. vittata coupled with PR decreased the As concentration in water spinach shoots by 42%, probably due to As uptake by P. vittata. Moreover, P. vittata decreased the Cd accumulation in water spinach by 24-44%, probably due to pH increase of 0.47-0.61 after P. vittata cultivation. Taking together, the results showed that P. vittata coupled with PR decreased the As and Cd content in water spinach, which is of significance for improving food safety and protecting human health.
Collapse
Affiliation(s)
- Chen-Yu Hua
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Jiangsu, 210023, China
| | - Jun-Xiu Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Jiangsu, 210023, China
| | - Yue Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Jiangsu, 210023, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Jiangsu, 210023, China
| | - Yanshan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Jiangsu, 210023, China; School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
33
|
Sun D, Feng H, Li X, Ai H, Sun S, Chen Y, Xu G, Rathinasabapathi B, Cao Y, Ma LQ. Expression of New Pteris vittata Phosphate Transporter PvPht1;4 Reduces Arsenic Translocation from the Roots to Shoots in Tobacco Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1045-1053. [PMID: 31825207 DOI: 10.1021/acs.est.9b05486] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arsenic-hyperaccumulator Pteris vittata is efficient in As uptake, probably through phosphate transporters (Pht). Here, for the first time, we cloned a new PvPht1;4 gene from P. vittata and investigated its role in arsenate (AsV) uptake and transport in yeast and transgenic tobacco plants. On the basis of quantitative real-time polymerase chain reaction (qRT-PCR), PvPht1;4 was abundantly expressed in P. vittata fronds and roots, with its transcripts in the roots being induced by both P deficiency and As exposure. PvPht1;4 was localized to the plasma membrane, which complemented a yeast-mutant defective in P uptake and showed higher P transport affinity than PvPht1;3. Under AsV exposure, PvPht1;4 yeast transformants showed comparable tolerance as PvPht1;3, but higher As accumulation than PvPht1;2 transformants, indicating that PvPht1;4 had considerable AsV and P transport activity. However, in soil and hydroponic experiments, PvPht1;4 expressing tobacco lines accumulated 26-44 and 37-55% lower As in the shoots than wild type plants, with lower root-to-shoot As translocation. In the roots of PvPht1;4 lines, higher glutathione (GSH) contents and expression levels of GSH synthetase gene NtGSH2 were observed. In addition, the transcripts of AsIII-GSH transporter NtABCC1 in PvPht1;4 lines were upregulated. The data suggested that PvPht1;4 lines probably detoxified As by reducing AsV to AsIII, which was then complexed with GSH and stored in the root vacuoles, thereby reducing As translocation in transgenic tobacco. Given its strong AsV transport capacity, expression of PvPht1;4 provides a new molecular approach to reduce As accumulation in plant shoots.
Collapse
Affiliation(s)
- Dan Sun
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Huayuan Feng
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Xinyuan Li
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Hao Ai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River , Nanjing Agricultural University , Nanjing 210095 , China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River , Nanjing Agricultural University , Nanjing 210095 , China
| | - Yanshan Chen
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
- School of the Environment , Nanjing Normal University , Nanjing , Jiangsu 210023 , China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River , Nanjing Agricultural University , Nanjing 210095 , China
| | - Bala Rathinasabapathi
- Horticultural Sciences Department , University of Florida , Gainesville , Florida 32611 , United States
| | - Yue Cao
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Lena Q Ma
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| |
Collapse
|
34
|
Corso M, García de la Torre VS. Biomolecular approaches to understanding metal tolerance and hyperaccumulation in plants. Metallomics 2020; 12:840-859. [DOI: 10.1039/d0mt00043d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Trace metal elements are essential for plant growth but become toxic at high concentrations, while some non-essential elements, such as Cd and As, show toxicity even in traces.
Collapse
Affiliation(s)
- Massimiliano Corso
- Institut Jean-Pierre Bourgin
- Université Paris-Saclay
- INRAE
- AgroParisTech
- 78000 Versailles
| | - Vanesa S. García de la Torre
- Molecular Genetics and Physiology of Plants
- Faculty of Biology and Biotechnology
- Ruhr University Bochum
- 44801 Bochum
- Germany
| |
Collapse
|
35
|
Li M, Stragliati L, Bellini E, Ricci A, Saba A, Sanità di Toppi L, Varotto C. Evolution and functional differentiation of recently diverged phytochelatin synthase genes from Arundo donax L. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5391-5405. [PMID: 31145784 PMCID: PMC6793451 DOI: 10.1093/jxb/erz266] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 05/24/2019] [Indexed: 05/15/2023]
Abstract
Phytochelatin synthases (PCSs) play pivotal roles in the detoxification of heavy metals and metalloids in plants; however, little information on the evolution of recently duplicated PCS genes in plant species is available. Here we characterize the evolution and functional differentiation of three PCS genes from the giant reed (Arundo donax L.), a biomass/bioenergy crop with remarkable resistance to cadmium and other heavy metals. Phylogenetic reconstruction with PCS genes from fully sequenced monocotyledonous genomes indicated that the three A. donax PCSs, namely AdPCS1-3, form a monophyletic clade. The AdPCS1-3 genes were expressed at low levels in many A. donax organs and displayed different levels of cadmium-responsive expression in roots. Overexpression of AdPCS1-3 in Arabidopsis thaliana and yeast reproduced the phenotype of functional PCS genes. Mass spectrometry analyses confirmed that AdPCS1-3 are all functional enzymes, but with significant differences in the amount of the phytochelatins synthesized. Moreover, heterogeneous evolutionary rates characterized the AdPCS1-3 genes, indicative of relaxed natural selection. These results highlight the elevated functional differentiation of A. donax PCS genes from both a transcriptional and an enzymatic point of view, providing evidence of the high evolvability of PCS genes and of plant responsiveness to heavy metal stress.
Collapse
Affiliation(s)
- Mingai Li
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (TN) , Italy
| | - Luca Stragliati
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli studi di Parma, Parco Area delle Scienze, Parma, Italy
| | - Erika Bellini
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Ada Ricci
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli studi di Parma, Parco Area delle Scienze, Parma, Italy
| | - Alessandro Saba
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università di Pisa, Pisa, Italy
| | | | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (TN) , Italy
- Correspondence: or
| |
Collapse
|
36
|
Cao Y, Feng H, Sun D, Xu G, Rathinasabapathi B, Chen Y, Ma LQ. Heterologous Expression of Pteris vittata Phosphate Transporter PvPht1;3 Enhances Arsenic Translocation to and Accumulation in Tobacco Shoots. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10636-10644. [PMID: 31411864 DOI: 10.1021/acs.est.9b02082] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arsenic-hyperaccumulator Pteris vittata is efficient in As accumulation and has been used in phytoremediation of As-contaminated soils. Arsenate (AsV) is the predominant As species in aerobic soils and is taken up by plants via phosphate transporters (Pht) including P. vittata. In this work, we cloned the PvPht1;3 full length coding sequence from P. vittata and investigated its role in As accumulation by yeast and plants. PvPht1;3 complemented a yeast P uptake mutant strain and showed a stronger affinity and transport capacity to AsV than PvPht1;2. In transgenic tobacco, PvPht1;3 enhanced AsV absorption and translocation, increasing As accumulation in the shoots under both hydroponic and soil experiments. On the basis of the expression patterns via qRT-PCR, PvPht1;3 was strongly induced by P deficiency but not As exposure. To further understand its expression pattern, transgenic Arabidopsis thaliana and soybean expressing the GUS reporter gene, driven by PvPht1;3 promoter, were produced. The GUS staining showed that the reporter gene was mainly expressed in the stele cells, indicating that PvPht1;3 was expressed in stele cells and was likely involved in P/As translocation. Taken together, the data suggested that PvPht1;3 was a high-affinity AsV transporter and was probably responsible for efficient As translocation in P. vittata. Our results suggest that expressing PvPht1;3 enhances As translocation and accumulation in plants, thereby improving phytoremediation of As-contaminated soils.
Collapse
Affiliation(s)
- Yue Cao
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Huayuan Feng
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Dan Sun
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Bala Rathinasabapathi
- Horticultural Sciences Department , University of Florida , Gainesville , Florida 32611 , United States
| | - Yanshan Chen
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
- School of the Environment , Nanjing Normal University , Nanjing , Jiangsu 210023 , China
| | - Lena Q Ma
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| |
Collapse
|
37
|
Park HC, Hwang JE, Jiang Y, Kim YJ, Kim SH, Nguyen XC, Kim CY, Chung WS. Functional characterisation of two phytochelatin synthases in rice (Oryza sativa cv. Milyang 117) that respond to cadmium stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:854-861. [PMID: 30929297 PMCID: PMC6766863 DOI: 10.1111/plb.12991] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/26/2019] [Indexed: 05/20/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals and a non-essential element to all organisms, including plants; however, the genes involved in Cd resistance in plants remain poorly characterised. To identify Cd resistance genes in rice, we screened a rice cDNA expression library treated with CdCl2 using a yeast (Saccharomyces cerevisiae) mutant ycf1 strain (DTY167) and isolated two rice phytochelatin synthases (OsPCS5 and OsPCS15). The genes were strongly induced by Cd treatment and conferred increased resistance to Cd when expressed in the ycf1 mutant strain. In addition, the Cd concentration was twofold higher in yeast expressing OsPCS5 and OsPCS15 than in vector-transformed yeast, and OsPCS5 and OsPCS15 localised in the cytoplasm. Arabidopsis thaliana plants overexpressing OsPCS5/-15 paradoxically exhibited increased sensitivity to Cd, suggesting that overexpression of OsPCS5/-15 resulted in toxicity due to excess phytochelatin production in A. thaliana. These data indicate that OsPCS5 and OsPCS15 are involved in Cd tolerance, which may be related to the relative abundances of phytochelatins synthesised by these phytochelatin synthases.
Collapse
Affiliation(s)
- H. C. Park
- Division of Ecological ConservationBureau of Ecological ResearchNational Institute of EcologySeocheonRepublic of Korea
| | - J. E. Hwang
- Division of Ecological ConservationBureau of Ecological ResearchNational Institute of EcologySeocheonRepublic of Korea
| | - Y. Jiang
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Y. J. Kim
- Division of Ecological ConservationBureau of Ecological ResearchNational Institute of EcologySeocheonRepublic of Korea
| | - S. H. Kim
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - X. C. Nguyen
- Faculty of BiotechnologyVietnam National University of AgricultureHanoiVietnam
| | - C. Y. Kim
- Biological Resource CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)JeongeupRepublic of Korea
| | - W. S. Chung
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| |
Collapse
|
38
|
|
39
|
Wu Y, Li X, Chen D, Han X, Li B, Yang Y, Yang Y. Comparative expression analysis of heavy metal ATPase subfamily genes between Cd-tolerant and Cd-sensitive turnip landraces. PLANT DIVERSITY 2019; 41:275-283. [PMID: 31528787 PMCID: PMC6742492 DOI: 10.1016/j.pld.2019.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/30/2019] [Accepted: 02/25/2019] [Indexed: 05/25/2023]
Abstract
The heavy metal ATPase (HMA) subfamily is mainly involved in heavy metal (HM) tolerance and transport in plants, but an understanding of the definite roles and mechanisms of most HMA members are still limited. In the present study, we identified 14 candidate HMA genes named BrrHMA1-BrrHMA8 from the turnip genome and analyzed the phylogeny, gene structure, chromosome distribution, and conserved domains and motifs of HMAs in turnip (Brassica rapa var. rapa). According to our phylogenetic tree, the BrrHMAs are divided into a Zn/Cd/Co/Pb subclass and Cu/Ag subclass. The BrrHMA members show similar structural characteristics within subclasses. To explore the roles of BrrHMAs in turnip, we compared the gene sequences and expression patterns of the BrrHMA genes between a Cd-tolerant landrace and a Cd-sensitive landrace. Most BrrHMA genes showed similar spatial expression patterns in both Cd-tolerant and Cd-sensitive turnip landraces; some BrrHMA genes, however, were differentially expressed in specific tissue in Cd-tolerant and Cd-sensitive turnip. Specifically, BrrHMA genes in the Zn/Cd/Co/Pb subclass shared the same coding sequence but were differentially expressed in Cd-tolerant and Cd-sensitive turnip landraces under Cd stress. Our findings suggest that the stable expression and up-regulated expression of BrrHMA Zn/Cd/Co/Pb subclass genes under Cd stress may contribute to the higher Cd tolerance of turnip landraces.
Collapse
Affiliation(s)
- Yuansheng Wu
- China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Xiong Li
- China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Di Chen
- China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xi Han
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Boqun Li
- China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yonghong Yang
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Yongping Yang
- China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
40
|
Rehman K, Ijaz A, Arslan M, Afzal M. Floating treatment wetlands as biological buoyant filters for wastewater reclamation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1273-1289. [PMID: 31244322 DOI: 10.1080/15226514.2019.1633253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Floating treatment wetlands (FTWs) are an innovative product of ecological engineering that can play a promising role in wastewater treatment. It provides low-cost, eco-friendly, and sustainable solutions for the treatment of wastewater, particularly in regions with economic constraints. Generally, FTWs comprise rooted plants that grow on the surface of water with their roots extending down into the pelagic zone rather than being embedded into the sediments. This drooping structure helps develop (1) a hydraulic flow between the root network and the bottom of the treatment system and (2) a large biologically active surface area for the physical entrapment (filtration) of contaminants, as well as their biochemical transformation and degradation. Furthermore, the rooted network allows proliferation of microorganisms that form biofilms and enhance pollutant degradation while promoting plant growth. The augmentation of bacteria in FTWs has been proven to be the most effective approach for reclamation of wastewater. This article discusses the operational parameters of FTWs for maximal remediation of wastewater and highlights the importance of plant-bacteria partnerships in a typical FTW system for enhanced cleanup of wastewater. We propose that this technology is preferable over other methods that require high energy, costs, and area to install or operate machinery.
Collapse
Affiliation(s)
- Khadeeja Rehman
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Amna Ijaz
- Department of Chemistry, Michigan Technological University, Houghton, MI, USA
| | - Muhammad Arslan
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Institute for Biology V (Environmental Research), RWTH Aachen University, Aachen, Germany
| | - Muhammad Afzal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| |
Collapse
|
41
|
Elshamy MM, Heikal YM, Bonanomi G. Phytoremediation efficiency of Portulaca oleracea L. naturally growing in some industrial sites, Dakahlia District, Egypt. CHEMOSPHERE 2019; 225:678-687. [PMID: 30903843 DOI: 10.1016/j.chemosphere.2019.03.099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Phytoremediation is an economic process through exploitation of plants capacity to accumulate heavy metals in polluted habitats by their harvestable parts. In the present investigation, Portulaca oleracea was examined to estimate its role in the accumulation of Mn(II), Cu(II), Zn(II), Fe(III) and Pb(II) ions and recognize its persistence against the industrial effluent toxicity from different farmlands located beside these regions (S1:S9) in Dakahlia district, Egypt. The most recorded associate plants were; Amaranthus viridus, Malva parviflora, Chenopodium murale and Echinochloa colonum, which have high potentiality of heavy metals (HM) accumulation. The phytoremediation efficiency (bioconcentration factor (BCF), bioaccumulation factor (BF), translocation factor (TF), enrichment coefficient of shoot (ECS) and element accumulation index (EAI)) of P. oleracea were calculated. Considering the results, S7 showed the highest BCF value for Cu(II), 7.40; Fe(III), 2.06; and Zn(II), 4.33, while Mn(II), 2.06 at S1 and Pb(II), 3.89 at S3. BF and TF values were less than unity 1.0 for most of the sites. However, ECS values showed small variations among the investigated HM at the nine sites. EAI values were higher in shoots out of all the sites except S2 > EAI of roots of the same sites. Also, there was positive correlation between the soil HM concentrations in most sites. Moreover, total protein was estimated quantitatively and qualitatively. The protein profile showed 16 bands of molecular weight ranged from 30.9 to 240.6 KDa. Finally, P. oleracea can be used for decontamination of soils with heavy metals due to the high ecological amplitude and phytoremediation characteristics.
Collapse
Affiliation(s)
- Maha M Elshamy
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt.
| | - Yasmin M Heikal
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Giuliano Bonanomi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici (NA), Italy
| |
Collapse
|
42
|
da Silva EB, Mussoline WA, Wilkie AC, Ma LQ. Arsenic removal and biomass reduction of As-hyperaccumulator Pteris vittata: Coupling ethanol extraction with anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:205-211. [PMID: 30798231 DOI: 10.1016/j.scitotenv.2019.02.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/10/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Improper disposal of arsenic-rich biomass and the lack of efficient methods to treat it may cause contamination in the environment. We developed an efficient method for arsenic (As) removal and biomass reduction of As-rich biomass of the As-hyperaccumulator Pteris vittata by coupling ethanol extraction with anaerobic digestion. This study assessed As partitioning among the three phases (gas, liquid and solid) after anaerobic digestion of P. vittata biomass. Biomass with and without As was first extracted with ethanol. Ethanol extraction removed ~93% As, with remaining As concentration at 197 mg kg-1. The extracted biomass was then digested at 35 °C under anaerobic conditions for 35 d. Arsenic in the digested biomass was reduced by 89%, with remaining As concentration at 60 mg kg-1. In addition, anaerobic digestion reduced the biomass by 64-71% and decreased the volatile solids content from 94 to 15-18%. Methane production was 145 and 160 LNCH4/kgVS after 35 d for As-rich and control biomass, respectively. As a final step, As concentration in anaerobic digestate supernatant was reduced to 0.26 mg L-1 by As-Mg precipitation. Overall, coupling ethanol extraction with anaerobic digestion decreased As concentration in P. vittata biomass from 2665 to 60 mg kg-1, or by 98%. At this level (<100 mg As kg-1), P. vittata biomass can be considered a safe material based on USEPA regulations. Effective As removal from P. vittata biomass prior to disposal improves the phytoremediation process and lowers biomass transport and landfill disposal costs.
Collapse
Affiliation(s)
- Evandro B da Silva
- Soil and Water Sciences Department, University of Florida-IFAS, Gainesville, FL 32611, United States
| | - Wendy A Mussoline
- Soil and Water Sciences Department, University of Florida-IFAS, Gainesville, FL 32611, United States
| | - Ann C Wilkie
- Soil and Water Sciences Department, University of Florida-IFAS, Gainesville, FL 32611, United States.
| | - Lena Q Ma
- Soil and Water Sciences Department, University of Florida-IFAS, Gainesville, FL 32611, United States; Research Center for Soil Contamination and Environment Remediation, Southwest Forestry University, Yunnan 650224, China
| |
Collapse
|
43
|
Kashiwabara T, Tanoi K, Kitajima N, Hokura A, Abe T, Nakanishi T, Nakai I. Comparative in vivo Imaging of Arsenic and Phosphorus in Pteris vittata Gametophyte by Synchrotron μ-XRF and Radioactive Tracer Techniques. CHEM LETT 2019. [DOI: 10.1246/cl.180996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Teruhiko Kashiwabara
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushimacho, Yokosuka, Kanagawa 237-0061, Japan
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Keitaro Tanoi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | - Akiko Hokura
- Department of Applied Chemistry, School of Engineering, Tokyo Denki University, 5 Senju-Asahicho, Adachi, Tokyo 120-8551, Japan
| | - Tomoko Abe
- RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoko Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Izumi Nakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| |
Collapse
|
44
|
Shi W, Zhang Y, Chen S, Polle A, Rennenberg H, Luo ZB. Physiological and molecular mechanisms of heavy metal accumulation in nonmycorrhizal versus mycorrhizal plants. PLANT, CELL & ENVIRONMENT 2019; 42:1087-1103. [PMID: 30375657 DOI: 10.1111/pce.13471] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Uptake, translocation, detoxification, and sequestration of heavy metals (HMs) are key processes in plants to deal with excess amounts of HM. Under natural conditions, plant roots often establish ecto- and/or arbuscular-mycorrhizae with their fungal partners, thereby altering HM accumulation in host plants. This review considers the progress in understanding the physiological and molecular mechanisms involved in HM accumulation in nonmycorrhizal versus mycorrhizal plants. In nonmycorrhizal plants, HM ions in the cells can be detoxified with the aid of several chelators. Furthermore, HMs can be sequestered in cell walls, vacuoles, and the Golgi apparatus of plants. The uptake and translocation of HMs are mediated by members of ZIPs, NRAMPs, and HMAs, and HM detoxification and sequestration are mainly modulated by members of ABCs and MTPs in nonmycorrhizal plants. Mycorrhizal-induced changes in HM accumulation in plants are mainly due to HM sequestration by fungal partners and improvements in the nutritional and antioxidative status of host plants. Furthermore, mycorrhizal fungi can trigger the differential expression of genes involved in HM accumulation in both partners. Understanding the molecular mechanisms that underlie HM accumulation in mycorrhizal plants is crucial for the utilization of fungi and their host plants to remediate HM-contaminated soils.
Collapse
Affiliation(s)
- Wenguang Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yuhong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Göttingen, Germany
| | - Heinz Rennenberg
- Institute for Forest Sciences, University of Freiburg, 79110, Freiburg, Germany
| | - Zhi-Bin Luo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
45
|
Changes in rhizosphere bacterial communities during remediation of heavy metal-accumulating plants around the Xikuangshan mine in southern China. Sci Rep 2019; 9:1947. [PMID: 30760787 PMCID: PMC6374380 DOI: 10.1038/s41598-018-38360-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/27/2018] [Indexed: 11/08/2022] Open
Abstract
Mining and smelting activities are the major sources of antimony (Sb) contamination. The soil around Xikuangshan (XKS), one of the largest Sb mines in the world, has been contaminated with high concentrations of Sb and other associated metals, and has attracted extensive scholarly attention. Phytoremediation is considered a promising method for removing heavy metals, and the diversity and structure of rhizosphere microorganisms may change during the phytoremediation process. The rhizosphere microbiome is involved in soil energy transfer, nutrient cycling, and resistance and detoxification of metal elements. Thus, changes in this microbiome are worthy of investigation using high-throughput sequencing techniques. Our study in Changlongjie and Lianmeng around XKS revealed that microbial diversity indices in the rhizospheres of Broussonetia papyrifera and Ligustrum lucidum were significantly higher than in bulk soil, indicating that plants affect microbial communities. Additionally, most of the bacteria that were enriched in the rhizosphere belonged to the Proteobacteria, Acidobacteria, Actinobacteria, and Bacteroidetes. In Changlongjie and Lianmeng, the diversity and abundance of the microbial community in the B. papyrifera rhizosphere were higher than in L. lucidum. In parallel, the soil pH of the B. papyrifera rhizosphere increased significantly in acidic soil and decreased significantly in near-neutral soil. Redundancy analyses indicated that pH was likely the main factor affecting the overall bacterial community compositions, followed by moisture content, Sb, arsenic (As), and chromium (Cr).
Collapse
|
46
|
Cevher-Keskin B, Yıldızhan Y, Yüksel B, Dalyan E, Memon AR. Characterization of differentially expressed genes to Cu stress in Brassica nigra by Arabidopsis genome arrays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:299-311. [PMID: 30397750 DOI: 10.1007/s11356-018-3577-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
Phytoremediation is an efficient and promising cleanup technology to extract or inactivate heavy metals and several organic and inorganic pollutants from soil and water. In this study, different Brassica nigra L. ecotypes, including Diyarbakır, collected from mining areas were exposed to different concentrations of copper and harvested after 72 h of Cu stress for the assessment of phytoremediation capacity. The Diyarbakır ecotype was called as "metallophyte" because of surviving at 500 μM Cu. To better understand Cu stress mechanism, ArabidopsisATH1 genome array was used to compare the gene expression in root and shoot tissues of B. nigra under 25 μM Cu. The response to Cu was much stronger in roots (88 genes showing increased or decreased mRNA levels) than in leaf tissues (24 responding genes). These genes were classified into the metal transport and accumulation-related genes, signal transduction and metabolism-related genes, and transport facilitation genes. Glutathione pathway-related genes (γ-ECS, PC, etc.) mRNAs were identified as differentially expressed in root and shoot tissues. QRT-PCR validation experiments showed that γ-ECS and PC expression was upregulated in the shoot and leaf tissues of the 100 μM Cu-subjected B. nigra-tolerant ecotype. This is the first study showing global expression profiles in response to Cu stress in B. nigra by Arabidopsis genome array. This work presented herein provides a well-illustrated insight into the global gene expression to Cu stress response in plants, and identified genes from microarray data will serve as molecular tools for the phytoremediation applications in the future.
Collapse
Affiliation(s)
- Birsen Cevher-Keskin
- The Scientific and Technological Research Council of Turkey (TUBITAK); Marmara Research Center; Genetic Engineering and Biotechnology Institute; Plant Molecular Biology and Genetics Laboratory, 21, 41470, Gebze, Kocaeli, Turkey.
| | - Yasemin Yıldızhan
- The Scientific and Technological Research Council of Turkey (TUBITAK); Marmara Research Center; Genetic Engineering and Biotechnology Institute; Plant Molecular Biology and Genetics Laboratory, 21, 41470, Gebze, Kocaeli, Turkey
| | - Bayram Yüksel
- The Scientific and Technological Research Council of Turkey (TUBITAK); Marmara Research Center; Genetic Engineering and Biotechnology Institute; Plant Molecular Biology and Genetics Laboratory, 21, 41470, Gebze, Kocaeli, Turkey
| | - Eda Dalyan
- Faculty of Science, Department of Botany, Istanbul University, Istanbul, Turkey
| | - Abdul Razaque Memon
- Faculty of Science and Arts, Department of Molecular Biology and Genetics, Uşak University, 1 Eylül Campus, Uşak, Turkey
| |
Collapse
|
47
|
Hazaimeh M, Almansoory AF, Mutalib SA, Kanaan B. Effects of plant density on the bioremediation of soils contaminated with polyaromatic hydrocarbons. EMERGING CONTAMINANTS 2019; 5:123-127. [DOI: 10.1016/j.emcon.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
48
|
Zhao H, Wei Y, Wang J, Chai T. Isolation and expression analysis of cadmium-induced genes from Cd/Mn hyperaccumulator Phytolacca americana in response to high Cd exposure. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:15-24. [PMID: 30183121 DOI: 10.1111/plb.12908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
Phytolacca americana is recognised as a hyperaccumulator that accumulates cadmium (Cd) and manganese (Mn). Although most studies have provided abundant physiological evidence, little is known about the molecular mechanisms of Cd accumulation in P. americana. In this study, Cd-induced genes were isolated using suppression subtractive hybridisation (SSH) library construction, and gene expression patterns under Cd stress were quantified using real-time quantitative PCR. The functions of PaGST, PaMT and PaFe-SOD were confirmed in transformant yeast. Reactive oxygen species (ROS) formation and cell death in root tips were detected, and SOD and POD activities in leaf tissue were also analysed. There were about 447 expressed sequence tags (ESTs) identified and confirmed. GO analysis showed those genes were mainly involved in metabolism, cell stress and defence, transcription and translation, signal transduction, transport, energy and ion transport, which formed the basis for a molecular understanding of P. americana Cd tolerance mechanisms. Cd also stimulated ROS formation and modified the antioxidant systems. Taken together, our results indicate that ROS formation and Cd-induced gene expression favour P. americana tolerance by activating the defence system and permitting subsequent adaptation to Cd toxicity.
Collapse
Affiliation(s)
- H Zhao
- College of Life Science & Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Y Wei
- College of Life Science & Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - J Wang
- College of Life Science & Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - T Chai
- Department of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
49
|
Wu K, Li J, Luo J, Liu Y, Song Y, Liu N, Rafiq MT, Li T. Effects of elevated CO 2 and endophytic bacterium on photosynthetic characteristics and cadmium accumulation in Sedum alfredii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:357-366. [PMID: 29940447 DOI: 10.1016/j.scitotenv.2018.06.131] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Elevated CO2 and use of endophytic microorganisms have been considered as efficient and novel ways to improve phytoextraction efficiency. However, the interactive effects of elevated CO2 and endophytes on hyperaccumulator is poorly understood. In this study, a hydroponics experiment was conducted to investigate the combined effect of elevated CO2 (eCO2) and inoculation with endophyte SaMR12 (ES) on the photosynthetic characteristics and cadmium (Cd) accumulation in hyperaccumulator Sedum alfredii. The results showed that eCO2 × ES interaction promoted the growth of S. alfredii, shoot and root biomass net increment were increased by 264.7 and 392.3%, respectively, as compared with plants grown in ambient CO2 (aCO2). The interaction of eCO2 and ES significantly (P < 0.05) increased chlorophyll content (53.2%), Pn (111.6%), Pnmax (59.8%), AQY (65.1%), and Lsp (28.8%), but reduced Gs, Tr, Rd, and Lcp. Increased photosynthetic efficiency was associated with higher activities of rubisco, Ca2+-ATPase, and Mg2+-ATPase, and linked with over-expression of two photosystem related genes (SaPsbS and SaLhcb2). PS II activities were significantly (P < 0.05) enhanced with Fv/Fm and Φ(II) increased by 12.3 and 13.0%, respectively, compared with plants grown in aCO2. In addition, the net uptake of Cd in the shoot and root tissue of S. alfredii grown in eCO2 × ES treatment was increased by 260.7 and 434.9%, respectively, due to increased expression of SaHMA2 and SaCAX2 Cd transporter genes. Our results suggest that eCO2 × ES can promote the growth of S. alfredii due to increased photosynthetic efficiency, and improve Cd accumulation and showed considerable potential of improving the phytoextraction ability of Cd by S. alfredii.
Collapse
Affiliation(s)
- Keren Wu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinxing Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuankun Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuchao Song
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nanlin Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Tariq Rafiq
- Department of Environmental Science International Islamic University Islamabad, Pakistan
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
50
|
Tai Y, Yang Y, Li Z, Yang Y, Wang J, Zhuang P, Zou B. Phytoextraction of 55-year-old wastewater-irrigated soil in a Zn-Pb mine district: effect of plant species and chelators. ENVIRONMENTAL TECHNOLOGY 2018; 39:2138-2150. [PMID: 28678620 DOI: 10.1080/09593330.2017.1351493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Untreated water from mining sites spreads heavy metal contamination. The present study assessed the phytoextraction performance of heavy metal-accumulating plants and the effects of chemical chelators on cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) removal from paddy fields that have been continuously irrigated with mining wastewater from mines for 55 years. Outdoor pot experiments showed that the total Pb, Zn, and Cd content was lower in the rhizosphere soil of Amaranthus hypochondriacus than in that of Sedum alfredii, Solanum nigrum, and Sorghum bicolor. The aboveground biomass (dry weight) and relative growth rate of A. hypochondriacus were significantly higher than that of the other three species (P < .05). However, the total metal accumulation was significantly higher in the A. hypochondriacus system than in the other plants' system (P < .05). The increase in shoot biomass of A. hypochondriacus depended mostly on the chelator type [ethylenediaminetetraacetic acid (EDTA), malate, oxalate, and citrate] and their application frequency. Single application of EDTA significantly increased the shoot biomass of A. hypochondriacus and total metal removal loading from soil (P < .05). In conclusion, A. hypochondriacus may be effective for in situ phytoremediation of heavy metal-contaminated farmland soil and EDTA can accelerate the phytoextraction effect.
Collapse
Affiliation(s)
- YiPing Tai
- a Research Center of Hydrobiology , Jinan University , Guangzhou , People's Republic of China
| | - YuFen Yang
- a Research Center of Hydrobiology , Jinan University , Guangzhou , People's Republic of China
| | - ZhiAn Li
- b Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou , People's Republic of China
| | - Yang Yang
- a Research Center of Hydrobiology , Jinan University , Guangzhou , People's Republic of China
| | - JiaXi Wang
- a Research Center of Hydrobiology , Jinan University , Guangzhou , People's Republic of China
| | - Ping Zhuang
- b Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou , People's Republic of China
| | - Bi Zou
- b Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou , People's Republic of China
| |
Collapse
|