1
|
Chen Y, Kong D, Wang Z, Liu J, Wang L, Dai K, Ji J, Chen W, Tang X, Wen M, Zhang X, Zhang H, Jiao C, Sun L, Wang H, Fei X, Guo H, Sun B, Tao X, Wang W, Yang J, Wang X, Xiao J. A wheat CC-NBS-LRR protein Ym1 confers WYMV resistance by recognizing viral coat protein. Nat Commun 2025; 16:3630. [PMID: 40240346 PMCID: PMC12003722 DOI: 10.1038/s41467-025-58816-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Ym1 is the most widely utilized gene for wheat yellow mosaic virus (WYMV) disease control in worldwide wheat breeding. Here, we successfully isolated the responsible gene for Ym1. It encodes a typical CC-NBS-LRR type R protein, which is specifically expressed in root and induced upon WYMV infection. Ym1-mediated WYMV resistance is likely achieved by blocking viral transmission from the root cortex into steles, thereby preventing systemic movement to aerial tissues. Ym1 CC domain is essential for triggering cell death. Ym1 specifically interacts with WYMV coat protein, and this interaction leads to nucleocytoplasmic redistribution, a process for transitioning Ym1 from an auto-inhibited to an activated state. The activation subsequently elicits hypersensitive responses and establishes WYMV resistance. Ym1 is likely introgressed from the sub-genome Xn or Xc of polyploid Aegilops species. The findings highlight an exogenous-introgressed and root-specifically expressed R gene that confers WYMV resistance by recognizing the viral component.
Collapse
Affiliation(s)
- Yiming Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Dehui Kong
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Zongkuan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Jiaqian Liu
- Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Linghan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Keli Dai
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Jialun Ji
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiong Tang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Mingxing Wen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Xu Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Huajian Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Chengzhi Jiao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Li Sun
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Haiyan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Xingru Fei
- Yandu District Agricultural Science Research Institute, Yancheng, Jiangsu, China
| | - Hong Guo
- Yandu District Agricultural Science Research Institute, Yancheng, Jiangsu, China
| | - Bingjian Sun
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Jian Yang
- Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Xiue Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China.
| | - Jin Xiao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Boschiero C, Neupane M, Yang L, Schroeder SG, Tuo W, Ma L, Baldwin RL, Van Tassell CP, Liu GE. A Pilot Detection and Associate Study of Gene Presence-Absence Variation in Holstein Cattle. Animals (Basel) 2024; 14:1921. [PMID: 38998033 PMCID: PMC11240624 DOI: 10.3390/ani14131921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Presence-absence variations (PAVs) are important structural variations, wherein a genomic segment containing one or more genes is present in some individuals but absent in others. While PAVs have been extensively studied in plants, research in cattle remains limited. This study identified PAVs in 173 Holstein bulls using whole-genome sequencing data and assessed their associations with 46 economically important traits. Out of 28,772 cattle genes (from the longest transcripts), a total of 26,979 (93.77%) core genes were identified (present in all individuals), while variable genes included 928 softcore (present in 95-99% of individuals), 494 shell (present in 5-94%), and 371 cloud genes (present in <5%). Cloud genes were enriched in functions associated with hormonal and antimicrobial activities, while shell genes were enriched in immune functions. PAV-based genome-wide association studies identified associations between gene PAVs and 16 traits including milk, fat, and protein yields, as well as traits related to health and reproduction. Associations were found on multiple chromosomes, illustrating important associations on cattle chromosomes 7 and 15, involving olfactory receptor and immune-related genes, respectively. By examining the PAVs at the population level, the results of this research provided crucial insights into the genetic structures underlying the complex traits of Holstein cattle.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Mahesh Neupane
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Liu Yang
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Steven G Schroeder
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
3
|
Castille J, Thépot D, Fouchécourt S, Dalbies-Tran R, Passet B, Daniel-Carlier N, Vilotte JL, Monget P. The paralogs' enigma of germ-cell specific genes dispensable for fertility: the case of 19 oogenesin genes†. Biol Reprod 2023; 109:408-414. [PMID: 37561421 DOI: 10.1093/biolre/ioad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
Gene knockout experiments have shown that many genes are dispensable for a given biological function. In this review, we make an assessment of male and female germ cell-specific genes dispensable for the function of reproduction in mice, the inactivation of which does not affect fertility. In particular, we describe the deletion of a 1 Mb block containing nineteen paralogous genes of the oogenesin/Pramel family specifically expressed in female and/or male germ cells, which has no consequences in both sexes. We discuss this notion of dispensability and the experiments that need to be carried out to definitively conclude that a gene is dispensable for a function.
Collapse
Affiliation(s)
- Johan Castille
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | | | | | - Bruno Passet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | - Jean-Luc Vilotte
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Philippe Monget
- PRC INRAE, CNRS, IFCE, Université de Tours, Nouzilly, France
| |
Collapse
|
4
|
Salanga CM, Salanga MC. Genotype to Phenotype: CRISPR Gene Editing Reveals Genetic Compensation as a Mechanism for Phenotypic Disjunction of Morphants and Mutants. Int J Mol Sci 2021; 22:ijms22073472. [PMID: 33801686 PMCID: PMC8036752 DOI: 10.3390/ijms22073472] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
Forward genetic screens have shown the consequences of deleterious mutations; however, they are best suited for model organisms with fast reproductive rates and large broods. Furthermore, investigators must faithfully identify changes in phenotype, even if subtle, to realize the full benefit of the screen. Reverse genetic approaches also probe genotype to phenotype relationships, except that the genetic targets are predefined. Until recently, reverse genetic approaches relied on non-genomic gene silencing or the relatively inefficient, homology-dependent gene targeting for loss-of-function generation. Fortunately, the flexibility and simplicity of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system has revolutionized reverse genetics, allowing for the precise mutagenesis of virtually any gene in any organism at will. The successful integration of insertions/deletions (INDELs) and nonsense mutations that would, at face value, produce the expected loss-of-function phenotype, have been shown to have little to no effect, even if other methods of gene silencing demonstrate robust loss-of-function consequences. The disjunction between outcomes has raised important questions about our understanding of genotype to phenotype and highlights the capacity for compensation in the central dogma. This review describes recent studies in which genomic compensation appears to be at play, discusses the possible compensation mechanisms, and considers elements important for robust gene loss-of-function studies.
Collapse
Affiliation(s)
- Cristy M. Salanga
- Office of the Vice President for Research, Northern Arizona University, Flagstaff, AZ 86011, USA;
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Matthew C. Salanga
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Correspondence:
| |
Collapse
|
5
|
Zeng P, Chen J, Meng Y, Zhou Y, Yang J, Cui Q. Defining Essentiality Score of Protein-Coding Genes and Long Noncoding RNAs. Front Genet 2018; 9:380. [PMID: 30356729 PMCID: PMC6189311 DOI: 10.3389/fgene.2018.00380] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/27/2018] [Indexed: 12/16/2022] Open
Abstract
Measuring the essentiality of genes is critically important in biology and medicine. Here we proposed a computational method, GIC (Gene Importance Calculator), which can efficiently predict the essentiality of both protein-coding genes and long noncoding RNAs (lncRNAs) based on only sequence information. For identifying the essentiality of protein-coding genes, GIC outperformed well-established computational scores. In an independent mouse lncRNA dataset, GIC also achieved an exciting performance (AUC = 0.918). In contrast, the traditional computational methods are not applicable to lncRNAs. Moreover, we explored several potential applications of GIC score. Firstly, we revealed a correlation between gene GIC score and research hotspots of genes. Moreover, GIC score can be used to evaluate whether a gene in mouse is representative for its homolog in human by dissecting its cross-species difference. This is critical for basic medicine because many basic medical studies are performed in animal models. Finally, we showed that GIC score can be used to identify candidate genes from a transcriptomics study. GIC is freely available at http://www.cuilab.cn/gic/.
Collapse
Affiliation(s)
- Pan Zeng
- School of Basic Medical Sciences, MOE Key Lab of Cardiovascular Sciences, Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Centre for Noncoding RNA Medicine, Peking University, Beijing, China
| | - Ji Chen
- School of Basic Medical Sciences, MOE Key Lab of Cardiovascular Sciences, Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Centre for Noncoding RNA Medicine, Peking University, Beijing, China
| | - Yuhong Meng
- School of Basic Medical Sciences, MOE Key Lab of Cardiovascular Sciences, Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Centre for Noncoding RNA Medicine, Peking University, Beijing, China
| | - Yuan Zhou
- School of Basic Medical Sciences, MOE Key Lab of Cardiovascular Sciences, Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Centre for Noncoding RNA Medicine, Peking University, Beijing, China
| | - Jichun Yang
- School of Basic Medical Sciences, MOE Key Lab of Cardiovascular Sciences, Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Centre for Noncoding RNA Medicine, Peking University, Beijing, China
| | - Qinghua Cui
- School of Basic Medical Sciences, MOE Key Lab of Cardiovascular Sciences, Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Centre for Noncoding RNA Medicine, Peking University, Beijing, China
| |
Collapse
|
6
|
Alzahrani M, Kuwahara H, Wang W, Gao X. Gracob: a novel graph-based constant-column biclustering method for mining growth phenotype data. Bioinformatics 2018; 33:2523-2531. [PMID: 28379298 PMCID: PMC5870648 DOI: 10.1093/bioinformatics/btx199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/03/2017] [Indexed: 11/24/2022] Open
Abstract
Motivation Growth phenotype profiling of genome-wide gene-deletion strains over stress conditions can offer a clear picture that the essentiality of genes depends on environmental conditions. Systematically identifying groups of genes from such high-throughput data that share similar patterns of conditional essentiality and dispensability under various environmental conditions can elucidate how genetic interactions of the growth phenotype are regulated in response to the environment. Results We first demonstrate that detecting such ‘co-fit’ gene groups can be cast as a less well-studied problem in biclustering, i.e. constant-column biclustering. Despite significant advances in biclustering techniques, very few were designed for mining in growth phenotype data. Here, we propose Gracob, a novel, efficient graph-based method that casts and solves the constant-column biclustering problem as a maximal clique finding problem in a multipartite graph. We compared Gracob with a large collection of widely used biclustering methods that cover different types of algorithms designed to detect different types of biclusters. Gracob showed superior performance on finding co-fit genes over all the existing methods on both a variety of synthetic data sets with a wide range of settings, and three real growth phenotype datasets for E. coli, proteobacteria and yeast. Availability and Implementation Our program is freely available for download at http://sfb.kaust.edu.sa/Pages/Software.aspx. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Majed Alzahrani
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMCE) Division, Thuwal, 23955-6900, Saudi Arabia
| | - Hiroyuki Kuwahara
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMCE) Division, Thuwal, 23955-6900, Saudi Arabia
| | - Wei Wang
- Department of Computer Science, University of California, Los Angeles, CA 90095, USA
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMCE) Division, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
7
|
Acuña-Amador L, Primot A, Cadieu E, Roulet A, Barloy-Hubler F. Genomic repeats, misassembly and reannotation: a case study with long-read resequencing of Porphyromonas gingivalis reference strains. BMC Genomics 2018; 19:54. [PMID: 29338683 PMCID: PMC5771137 DOI: 10.1186/s12864-017-4429-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/29/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Without knowledge of their genomic sequences, it is impossible to make functional models of the bacteria that make up human and animal microbiota. Unfortunately, the vast majority of publicly available genomes are only working drafts, an incompleteness that causes numerous problems and constitutes a major obstacle to genotypic and phenotypic interpretation. In this work, we began with an example from the class Bacteroidia in the phylum Bacteroidetes, which is preponderant among human orodigestive microbiota. We successfully identify the genetic loci responsible for assembly breaks and misassemblies and demonstrate the importance and usefulness of long-read sequencing and curated reannotation. RESULTS We showed that the fragmentation in Bacteroidia draft genomes assembled from massively parallel sequencing linearly correlates with genomic repeats of the same or greater size than the reads. We also demonstrated that some of these repeats, especially the long ones, correspond to misassembled loci in three reference Porphyromonas gingivalis genomes marked as circularized (thus complete or finished). We prove that even at modest coverage (30X), long-read resequencing together with PCR contiguity verification (rrn operons and an integrative and conjugative element or ICE) can be used to identify and correct the wrongly combined or assembled regions. Finally, although time-consuming and labor-intensive, consistent manual biocuration of three P. gingivalis strains allowed us to compare and correct the existing genomic annotations, resulting in a more accurate interpretation of the genomic differences among these strains. CONCLUSIONS In this study, we demonstrate the usefulness and importance of long-read sequencing in verifying published genomes (even when complete) and generating assemblies for new bacterial strains/species with high genomic plasticity. We also show that when combined with biological validation processes and diligent biocurated annotation, this strategy helps reduce the propagation of errors in shared databases, thus limiting false conclusions based on incomplete or misleading information.
Collapse
Affiliation(s)
- Luis Acuña-Amador
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Université de Rennes 1, Rennes, France.,Laboratorio de Investigación en Bacteriología Anaerobia, Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Aline Primot
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Université de Rennes 1, Rennes, France
| | - Edouard Cadieu
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Université de Rennes 1, Rennes, France
| | - Alain Roulet
- GenoToul Genome & Transcriptome (GeT-PlaGe), INRA, US1426, Castanet-Tolosan, France
| | - Frédérique Barloy-Hubler
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Université de Rennes 1, Rennes, France.
| |
Collapse
|
8
|
Power provides protection: Genetic robustness in yeast depends on the capacity to generate energy. PLoS Genet 2017; 13:e1006768. [PMID: 28493864 PMCID: PMC5444853 DOI: 10.1371/journal.pgen.1006768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/25/2017] [Accepted: 04/19/2017] [Indexed: 11/19/2022] Open
Abstract
The functional basis of genetic robustness, the ability of organisms to suppress the effects of mutations, remains incompletely understood. We exposed a set of 15 strains of Saccharomyces cerevisiae form diverse environments to increasing doses of the chemical mutagen EMS. The number of the resulting random mutations was similar for all tested strains. However, there were differences in immediate mortality after the mutagenic treatment and in defective growth of survivors. An analysis of gene expression revealed that immediate mortality was lowest in strains with lowest expression of transmembrane proteins, which are rich in thiol groups and thus vulnerable to EMS. A signal of genuine genetic robustness was detected for the other trait, the ability to grow well despite bearing non-lethal mutations. Increased tolerance of such mutations correlated with high expression of genes responsible for the oxidative energy metabolism, suggesting that the negative effect of mutations can be buffered if enough energy is available. We confirmed this finding in three additional tests of the ability to grow on (i) fermentable or non-fermentable sources of carbon, (ii) under chemical inhibition of the electron transport chain and (iii) during overexpression of its key component, cytochrome c. Our results add the capacity to generate energy as a general mechanism of genetic robustness. The ability to suppress phenotypic effects of mutations is termed genetic robustness. Its functional basis and evolutionary origin remain insufficiently understood despite decades of research. In fact, it is still largely untested whether genetic robustness is a trait of substantial, within-species variation. We used a model organism, Saccharomyces cerevisiae, to study both phenotypic signs and functional underpinnings of genetic robustness. We introduced random mutations into a set of well-characterized yeast strain. There was considerable variation in the growth rate among clones recovered after mutagenesis, which is an indication of genetic robustness. Using available data on gene expression for our strains, we found that genetic robustness was strongest among strains with enhanced expression of genes related to the energy metabolism. We reasoned that, regardless of the specific mutations, the capacity to generate metabolic energy may be a general underlying mechanism for buffering the effects of random mutations across the genome. We confirmed this hypothesis in further experiments in which we showed that genetic robustness decreases when the energy metabolism is compromised and increases when it is boosted.
Collapse
|
9
|
Abstract
The recent increase in genomic data is revealing an unexpected perspective of gene loss as a pervasive source of genetic variation that can cause adaptive phenotypic diversity. This novel perspective of gene loss is raising new fundamental questions. How relevant has gene loss been in the divergence of phyla? How do genes change from being essential to dispensable and finally to being lost? Is gene loss mostly neutral, or can it be an effective way of adaptation? These questions are addressed, and insights are discussed from genomic studies of gene loss in populations and their relevance in evolutionary biology and biomedicine.
Collapse
|
10
|
Cheng S, Karkar S, Bapteste E, Yee N, Falkowski P, Bhattacharya D. Sequence similarity network reveals the imprints of major diversification events in the evolution of microbial life. Front Ecol Evol 2014. [DOI: 10.3389/fevo.2014.00072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
11
|
Puranik S, Purohit HJ. Dependency of cellular decision making in physiology and influence of preceding growth conditions. Appl Biochem Biotechnol 2014; 174:1982-97. [PMID: 25161040 DOI: 10.1007/s12010-014-1167-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/15/2014] [Indexed: 12/27/2022]
Abstract
Events from the past growth conditions influence the course of physiology, and it gets reflected in the present cell behaviour. During this process, cells acquire a metabolic option which carries signature of the past, and it dictates the performance in the present situation. Study uses Escherichia coli as a sample organism wherein three scenarios of preceding growth conditions were created with varying nutritional status and pre-treatment strategies. This exercise leads to different seed cultures, which were subjected to growth using the four different substrates. The different seed culture behaviours were analysed by observing the respirometric rate of the seed culture and were followed by growth dynamics with different substrates. These two data sets were independently analysed by three-way ANOVA to arrive at strategic coupling of programming conditions to relate the available (respirometric rates) and executable physiology (growth kinetics).
Collapse
Affiliation(s)
- Sampada Puranik
- Environmental Genomics Division, National Environmental Engineering Research Institute, CSIR-NEERI, Nehru Marg, Nagpur, 440020, India
| | | |
Collapse
|
12
|
Abrusán G. Integration of new genes into cellular networks, and their structural maturation. Genetics 2013; 195:1407-17. [PMID: 24056411 PMCID: PMC3832282 DOI: 10.1534/genetics.113.152256] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/27/2013] [Indexed: 12/21/2022] Open
Abstract
It has been recently discovered that new genes can originate de novo from noncoding DNA, and several biological traits including expression or sequence composition form a continuum from noncoding sequences to conserved genes. In this article, using yeast genes I test whether the integration of new genes into cellular networks and their structural maturation shows such a continuum by analyzing their changes with gene age. I show that 1) The number of regulatory, protein-protein, and genetic interactions increases continuously with gene age, although with very different rates. New regulatory interactions emerge rapidly within a few million years, while the number of protein-protein and genetic interactions increases slowly, with a rate of 2-2.25 × 10(-8)/year and 4.8 × 10(-8)/year, respectively. 2) Gene essentiality evolves relatively quickly: the youngest essential genes appear in proto-genes ∼14 MY old. 3) In contrast to interactions, the secondary structure of proteins and their robustness to mutations indicate that new genes face a bottleneck in their evolution: proto-genes are characterized by high β-strand content, high aggregation propensity, and low robustness against mutations, while conserved genes are characterized by lower strand content and higher stability, most likely due to the higher probability of gene loss among young genes and accumulation of neutral mutations.
Collapse
Affiliation(s)
- György Abrusán
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged H-6701, Hungary
| |
Collapse
|
13
|
Marek A, Korona R. Restricted pleiotropy facilitates mutational erosion of major life-history traits. Evolution 2013; 67:3077-86. [PMID: 24151994 DOI: 10.1111/evo.12196] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/13/2013] [Indexed: 01/03/2023]
Abstract
Radical shifts to new natural and human made niches can make some functions unneeded and thus exposed to genetic degeneration. Here we ask not about highly specialized and rarely used functions but those relating to major life-history traits, rate of growth, and resistance to prolonged starvation. We found that in yeast each of the two traits was visibly impaired by at least several hundred individual gene deletions. There were relatively few deletions affecting negatively both traits and likely none harming one but improving the other. Functional profiles of gene deletions affecting either growth or survival were strikingly different: the first related chiefly to synthesis of macromolecules whereas the second to maintenance and recycling of cellular structures. The observed pattern of gene indispensability corresponds to that of gene induction, providing a rather rare example of agreement between the results of deletion and expression studies. We conclude that transitions to new environments in which the ability to grow at possibly fastest rate or survive under very long starvation become practically unnecessary can result in rapid erosion of these vital functions because they are coded by many genes constituting large mutational targets and because restricted pleiotropy is unlikely to constrain this process.
Collapse
Affiliation(s)
- Agnieszka Marek
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | | |
Collapse
|
14
|
Feature Identification of Compensatory Gene Pairs without Sequence Homology in Yeast. Comp Funct Genomics 2012; 2012:653174. [PMID: 22952430 PMCID: PMC3431050 DOI: 10.1155/2012/653174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/09/2012] [Accepted: 07/19/2012] [Indexed: 11/17/2022] Open
Abstract
Genetic robustness refers to a compensatory mechanism for buffering deleterious mutations or environmental variations. Gene duplication has been shown to provide such functional backups. However, the overall contribution of duplication-based buffering for genetic robustness is rather small. In this study, we investigated whether transcriptional compensation also exists among genes that share similar functions without sequence homology. A set of nonhomologous synthetic-lethal gene pairs was assessed by using a coexpression network, protein-protein interactions, and other types of genetic interactions in yeast. Our results are notably different from those of previous studies on buffering paralogs. The low expression similarity and the conditional coexpression alone do not play roles in identifying the functionally compensatory genes. Additional properties such as synthetic-lethal interaction, the ratio of shared common interacting partners, and the degree of coregulation were, at least in part, necessary to extract functional compensatory genes. Our network-based approach is applicable to select several well-documented cases of compensatory gene pairs and a set of new pairs. The results suggest that transcriptional reprogramming plays a limited role in functional compensation among nonhomologous genes. Our study aids in understanding the mechanism and features of functional compensation more in detail.
Collapse
|