1
|
Thomson R, Le C, Wang L, Batstone DJ, Zhou Y, Oehmen A. Higher order volatile fatty acid metabolism and atypical polyhydroxyalkanoate production in fermentation-enhanced biological phosphorus removal. WATER RESEARCH 2025; 280:123503. [PMID: 40121909 DOI: 10.1016/j.watres.2025.123503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Enhanced biological phosphorus removal (EBPR) is an established wastewater treatment process, but its wider implementation has been limited by factors like high temperature and low carbon availability. Fermentation-enhanced EBPR (F-EBPR) processes have shown promise in addressing these limitations, but the underlying mechanisms are not fully understood. This study investigates the metabolism of higher order (C4-5) volatile fatty acids (VFAs) in F-EBPR systems using a combination of carbon isotope labelling and shotgun metagenomic sequencing analyses. Results show that butyrate (HBu) uptake leads to the formation of both typical (C4-5) and atypical (C6+) polyhydroxyalkanoates (PHAs) through a combination ofβ-oxidation and standard condensation pathways, while the putative role of HBu oxidisers were identified relative to substrate composition in F-EBPR processes. Metagenomic analysis reveals the presence of genes required for higher order VFA metabolism in both polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs). This study also highlights the limitations of current models in describing F-EBPR processes and emphasises the need for improved models that account for higher order VFA metabolism and microbial community dynamics.
Collapse
Affiliation(s)
- R Thomson
- School of Chemical Engineering, University of Queensland, St Lucia QLD 4072, Australia
| | - C Le
- Asian School of the Environment, Nanyang Technological University, 637141, Singapore
| | - L Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201600, PR China
| | - D J Batstone
- Australian Centre for Water and Environmental Biotechnology, University of Queensland, St Lucia QLD 4072, Australia
| | - Y Zhou
- Advanced Environmental Biotechnology Center, Nanyang Technological University, 637141, Singapore.
| | - A Oehmen
- School of Chemical Engineering, University of Queensland, St Lucia QLD 4072, Australia.
| |
Collapse
|
2
|
He H, Jer NW, Hu Q, Zhang Z, Sun S, Xu G, Yang S, Zheng S, Wu F, Wu Q, Chen GQ. Engineering Halomonas bluephagenesis for pilot production of terpolymers containing 3-hydroxybutyrate, 4-hydroxybutyrate and 3-hydroxyvalerate from glucose. Metab Eng 2025; 90:117-128. [PMID: 40081465 DOI: 10.1016/j.ymben.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/11/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Microbial poly(3-hydroxybutyrate-co-4-hydroxybutyrate-co-3-hydroxyvalerate), abbreviated as P(3HB-4HB-3HV) or P34HBHV, is a flexible polyhydroxyalkanoate (PHA) material ranging from softness to elasticity depending on the ratios of various monomers. Halomonas bluephagenesis, as the chassis of the next generation industrial biotechnology (NGIB) able to grow contamination free under open unsterile conditions. The resulting recombinants of H. bluephagenesis became capable of efficiently synthesizing P34HBHV utilizing glucose as the sole carbon source. Engineered H. bluephagenesis H1 (encoding ogdA, sucD, 4hbD, orfZ, scpA and scpB in chromosomes) transformed with a plasmid containing PHA synthesis genes phaC and phaA and its derivative H29 produced up to 92 % P(3HB-co-8.85 %4HB-co-8.47 %3HV) and 72 % P(3HB-co-13.21 %4HB-co-11.97 %3HV) in cell dry weight (CDW), respectively, in shake flasks. In bioreactor cultivation, H. bluephagenesis H39 constructed by integrating the 4hbD, phaC and phaA genes into the genome of H. bluephagenesis H1 achieved 95 g/L CDW with 69 % P(3HB-co-10.49 %4HB-co-3.54 %3HV), while H. bluephagenesis H43, further optimized with lpxM deletion, reached 73 g/L CDW with 78 % P(3HB-co-10.35 %4HB-co-4.54 %3HV) in a 100 L bioreactor. For the first time, H. bluephagenesis was successfully engineered to generate stable and hyperproductive derivative strains for pilot production of P(3HB-4HB-3HV) with customizable monomer ratios from glucose as the sole carbon source.
Collapse
Affiliation(s)
- Hongtao He
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ng Wuh Jer
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, Beijing, 101309, China
| | - Qitiao Hu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhongnan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Simian Sun
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Geyuan Xu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shimao Yang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shuang Zheng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fuqing Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; MOE Key Lab of Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Wang MR, Zhang Y, Li ZJ. Genomic insights into Marinobacterium sediminicola CGMCC 1.7287 T: A polyhydroxyalkanoate-producing bacterium isolated from marine sediment. Mar Genomics 2025; 80:101180. [PMID: 39993876 DOI: 10.1016/j.margen.2025.101180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
Polyhydroxyalkanoate (PHA) is a promising polyester with superior properties including biodegradability, biocompatibility, and biorenewability. Marinobacterium sediminicola CGMCC 1.7287T, isolated from marine sediment in the East China Sea, has been found capable of producing PHA using volatile fatty acids as cost-effective substrates. Here, we report the genomic characteristics of M. sediminicola CGMCC 1.7287T, which possesses a circular chromosome of 3,554,135 bp with a GC content of 56.10 %. Gene annotation analysis revealed that the bacterium harbors enzymes involved in volatile fatty acids utilization, PHA synthesis, and ectoine accumulation. The presence of genes associated with ectoine synthesis suggests that this bacterium has stress resistance and cellular protection mechanism to adapt to saline environments. The genomic features provide important references for further genetic engineering of marine bacteria to effectively utilize volatile fatty acids for PHA production and enhance stress tolerance through ectoine accumulation.
Collapse
Affiliation(s)
- Meng-Ru Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuke Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zheng-Jun Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Sam G, Chen S, Rehm BHA. Functionalisation of polyhydroxybutyrate for diagnostic uses. N Biotechnol 2025; 85:9-15. [PMID: 39549939 DOI: 10.1016/j.nbt.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Abstract
Polyhydroxybutyrate (PHB) is a biodegradable and biocompatible biopolyester, naturally produced and self-assembled as spherical inclusions inside bacteria. These PHB particles contain a hydrophobic PHB core covalently coated with PHB synthase (PhaC), which serves as an anchoring linker for foreign proteins of interest. Protein engineering of PhaC enables the display of biologically active protein functions on the surface of PHB particles suitable for different applications. Many biomolecules, such as e.g. antigens, enzymes, fluorescent proteins were immobilized to PHB particles and exhibited superior functionalities when compared to their respective soluble counterparts. Recently, PHB particles have been successfully applied for various diagnostics applications. This mini review provides an overview of the unique design space of PHB particles towards the development of safe and cost-effective diagnostic tools, and highlights the important research progresses of manufacturing PHB particles-based diagnostics.
Collapse
Affiliation(s)
- Gayathri Sam
- Centre for Cell Factories and Biopolymers (CCFB), Institute for Biomedicine and Glycomics, Griffith University (Nathan Campus), QLD 4111, Australia
| | - Shuxiong Chen
- Centre for Cell Factories and Biopolymers (CCFB), Institute for Biomedicine and Glycomics, Griffith University (Nathan Campus), QLD 4111, Australia.
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Institute for Biomedicine and Glycomics, Griffith University (Nathan Campus), QLD 4111, Australia; Menzies Health Institute Queensland (MHIQ), Griffith University (Gold Coast Campus), QLD 4215, Australia.
| |
Collapse
|
5
|
Yang J, Wang J, Yu X, Chen T, Yin J, Tang X. Enhanced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from volatile fatty acids by Halomonas sp. YJ01 with 2-methylcitrate cycle. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123902. [PMID: 39729712 DOI: 10.1016/j.jenvman.2024.123902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/06/2024] [Accepted: 12/24/2024] [Indexed: 12/29/2024]
Abstract
Volatile fatty acids (VFAs) are suitable substrates for synthesizing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), wherein propionate is a precursor of PHBV biosynthesis; however, high concentrations are toxic to bacteria. Therefore, VFAs with suitable ratio are needed. Here, with the ratio of acetate: propionate: butyrate being 1:4:2, the maximum PHBV content and the 3HV content were 46.77 wt% and 19.24 mol%, respectively, by Halomonas sp. YJ01. The optimal C/P and C/N ratios for PHBV synthesis were controlled at 800-1000 and 70-90. The carbon source uptake by the strain at higher C/N ratios was mainly used to synthesize PHBV. The metabolic pathway for PHBV biosynthesis with mixed VFAs showed that the 2-methylcitrate cycle (2-MCC) pathway converted propionyl-CoA to pyruvate, which reduced the toxicity of propionate to the strain. Moreover, the strain utilized acetate and butyrate without producing pyruvate, which did not affect the detoxification of the 2-MCC pathway. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) results showed that when the 2-MCC pathway was inhibited, phaC expression decreased 2.74-fold, and the expression of prpB and prpC was down-regulated 2-fold and 6.88-fold, respectively; therefore, propionate toxicity exposure resulted in a significant decrease in PHBV content.
Collapse
Affiliation(s)
- Jincan Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Jing Wang
- Zhejiang Institute of Hydraulics & Estuary, Hangzhou, 310017, PR China
| | - Xiaoqin Yu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Ting Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Jun Yin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, PR China.
| | - Xiujuan Tang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, PR China.
| |
Collapse
|
6
|
Guo R, Cen X, Ni BJ, Zheng M. Bioplastic polyhydroxyalkanoate conversion in waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122866. [PMID: 39405858 DOI: 10.1016/j.jenvman.2024.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
Polyhydroxyalkanoates (PHA) have been proposed as a promising solution for plastic pollution due to their biodegradability and diverse applications. To promote PHA as a competitive commercial product, an attractive alternative is to produce and recover PHA in the use of mixed cultures such as waste activated sludge from wastewater treatment plants. PHA can accumulate in sludge with a potential range of 40%-65% g PHA/g VSS. However, wider challenges with PHA production efficiency, stability, and economic viability still persist for PHA application. This work provides an overview of the current understanding and status of PHA bioconversion in waste sludge with particular attention given to metabolic pathways, operation modes, factors affecting the process, and applications. Challenges and future prospectives for PHA bioconversion in sludge are discussed.
Collapse
Affiliation(s)
- Rui Guo
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia; Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xiaotong Cen
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Bing-Jie Ni
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
7
|
Zheng Z, Wang Z, Zhang X, Zheng C, Xu B, Zhang J, Zhang C, Bie S, Peng F, Wu Y, Wang H, Zhang S, Lv L. Novel genomic and phenotypic traits of polyhydroxyalkanoate-producing bacterium ZZQ-149, the type strain of Halomonas qinghailakensis. BMC Microbiol 2024; 24:372. [PMID: 39342120 PMCID: PMC11438105 DOI: 10.1186/s12866-024-03532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Polyhydroxyalkanoates (PHAs) are optimal potential materials for industrial and medical uses, characterized by exceptional sustainability, biodegradability, and biocompatibility. These are primarily from various bacteria and archaea. Bacterial strains with effective PHA formation capabilities and minimal production cost form the foundation for PHA production. Detailed genomic analysis of these PHA-generating bacteria is vital to understand their PHA production pathways and enhance their synthesis capability. RESULTS ZZQ-149, a halophilic, PHA-producing bacterium, was isolated from the sediment of China's Qinghai Lake. Here, we decoded the full genome of ZZQ-149 using Single Molecule Real Time (SMRT) technology based on PacBio RS II platform, coupled with Illumina sequencing platforms. Physiological, chemotaxonomic traits, and phylogenetic analysis based on 16 S rRNA gene and single copy core genes of ninety-nine Halomonas type strains identified ZZQ-149 as the type strain of Halomonas qinghailakensis. Furthermore, a low average nucleotide identity (ANI, < 95%) delineated the genetic differences between ZZQ-149 and other Halomonas species. The ZZQ-149 genome, with a DNA G + C content of 52%, comprises a chromosome (3, 798, 069 bps) and a plasmid (6, 107 bps). The latter encodes the toxin-antitoxin system, BrnT/BrnA. Through comprehensive genome sequencing and analysis, we identified multiple PHA-synthesizing enzymes and an unprecedented combination of eight PHA-synthesizing pathways in ZZQ-149. CONCLUSIONS Being a halophilic, PHA-producing bacterium, ZZQ-149 exhibits potential as a high PHA producer for engineered bacteria via genome editing while ensuring low-cost PHA production through continuous, unsterilized fermentation.
Collapse
Affiliation(s)
- Ziqiang Zheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China.
- Wuhan Qianmo Bio-agriculture Technology Co., Ltd., Medicine Garden, Miaoshan Development Zone, Jiangxia District, Wuhan, 430299, China.
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| | - Zuoqian Wang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Xuerui Zhang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Chaofan Zheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Bichao Xu
- Center for Instrumental Analysis and Metrology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jushuang Zhang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Chengjun Zhang
- Division of Animal Infectious Disease, Huazhong Agricultural University, Wuhan, 430070, China
| | - Siwei Bie
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Fang Peng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yuzhen Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hongxun Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shu Zhang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Liang Lv
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| |
Collapse
|
8
|
Martín-González D, de la Fuente Tagarro C, De Lucas A, Bordel S, Santos-Beneit F. Genetic Modifications in Bacteria for the Degradation of Synthetic Polymers: A Review. Int J Mol Sci 2024; 25:5536. [PMID: 38791573 PMCID: PMC11121894 DOI: 10.3390/ijms25105536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Synthetic polymers, commonly known as plastics, are currently present in all aspects of our lives. Although they are useful, they present the problem of what to do with them after their lifespan. There are currently mechanical and chemical methods to treat plastics, but these are methods that, among other disadvantages, can be expensive in terms of energy or produce polluting gases. A more environmentally friendly alternative is recycling, although this practice is not widespread. Based on the practice of the so-called circular economy, many studies are focused on the biodegradation of these polymers by enzymes. Using enzymes is a harmless method that can also generate substances with high added value. Novel and enhanced plastic-degrading enzymes have been obtained by modifying the amino acid sequence of existing ones, especially on their active site, using a wide variety of genetic approaches. Currently, many studies focus on the common aim of achieving strains with greater hydrolytic activity toward a different range of plastic polymers. Although in most cases the depolymerization rate is improved, more research is required to develop effective biodegradation strategies for plastic recycling or upcycling. This review focuses on a compilation and discussion of the most important research outcomes carried out on microbial biotechnology to degrade and recycle plastics.
Collapse
Affiliation(s)
- Diego Martín-González
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; (D.M.-G.); (A.D.L.); (S.B.)
| | - Carlos de la Fuente Tagarro
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; (D.M.-G.); (A.D.L.); (S.B.)
| | - Andrea De Lucas
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; (D.M.-G.); (A.D.L.); (S.B.)
| | - Sergio Bordel
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Fernando Santos-Beneit
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
| |
Collapse
|
9
|
Mai J, Kockler K, Parisi E, Chan CM, Pratt S, Laycock B. Synthesis and physical properties of polyhydroxyalkanoate (PHA)-based block copolymers: A review. Int J Biol Macromol 2024; 263:130204. [PMID: 38365154 DOI: 10.1016/j.ijbiomac.2024.130204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/15/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are a group of natural polyesters that are synthesised by microorganisms. In general, their thermoplasticity and (in some forms) their elasticity makes them attractive alternatives to petrochemical-derived polymers. However, the high crystallinity of some PHAs - such as poly(3-hydroxybutyrate) (P3HB) - results in brittleness and a narrow processing window for applications such as packaging. The production of copolymeric PHA materials is one approach to improving the mechanical and thermal properties of PHAs. Another solution is the manufacture of PHA-based block copolymers. The incorporation of different polymer and copolymer blocks coupled to PHA, and the resulting tailorable microstructure of these block copolymers, can result in a step-change improvement in PHA-based material properties. A range of production strategies for PHA-based block copolymers has been reported in the literature, including biological production and chemical synthesis. Biological production is typically less controllable, with products of a broad molecular weight and compositional distribution, unless finely controlled using genetically modified organisms. By contrast, chemical synthesis delivers relatively controllable block structures and narrowly defined compositions. This paper reviews current knowledge in the areas of the production and properties of PHA-based block copolymers, and highlights knowledge gaps and future potential areas of research.
Collapse
Affiliation(s)
- Jingjing Mai
- Fujian Normal University, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fuzhou, Fujian 350000, China
| | - Katrin Kockler
- The University of Queensland, School of Chemical Engineering, St Lucia, Brisbane, Queensland 4072, Australia
| | - Emily Parisi
- Parisi Technologies, LLC Portland, Oregon, United States
| | - Clement Matthew Chan
- The University of Queensland, School of Chemical Engineering, St Lucia, Brisbane, Queensland 4072, Australia
| | - Steven Pratt
- The University of Queensland, School of Chemical Engineering, St Lucia, Brisbane, Queensland 4072, Australia
| | - Bronwyn Laycock
- The University of Queensland, School of Chemical Engineering, St Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
10
|
Park H, He H, Yan X, Liu X, Scrutton NS, Chen GQ. PHA is not just a bioplastic! Biotechnol Adv 2024; 71:108320. [PMID: 38272380 DOI: 10.1016/j.biotechadv.2024.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Polyhydroxyalkanoates (PHA) have evolved into versatile biopolymers, transcending their origins as mere bioplastics. This extensive review delves into the multifaceted landscape of PHA applications, shedding light on the diverse industries that have harnessed their potential. PHA has proven to be an invaluable eco-conscious option for packaging materials, finding use in films foams, paper coatings and even straws. In the textile industry, PHA offers a sustainable alternative, while its application as a carbon source for denitrification in wastewater treatment showcases its versatility in environmental remediation. In addition, PHA has made notable contributions to the medical and consumer sectors, with various roles ranging from 3D printing, tissue engineering implants, and cell growth matrices to drug delivery carriers, and cosmetic products. Through metabolic engineering efforts, PHA can be fine-tuned to align with the specific requirements of each industry, enabling the customization of material properties such as ductility, elasticity, thermal conductivity, and transparency. To unleash PHA's full potential, bridging the gap between research and commercial viability is paramount. Successful PHA production scale-up hinges on establishing direct supply chains to specific application domains, including packaging, food and beverage materials, medical devices, and agriculture. This review underscores that PHA's future rests on ongoing exploration across these industries and more, paving the way for PHA to supplant conventional plastics and foster a circular economy.
Collapse
Affiliation(s)
- Helen Park
- School of Life Sciences, Tsinghua University, Beijing 100084, China; EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M1 7DN, UK
| | - Hongtao He
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Yan
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, Beijing 101309, China
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M1 7DN, UK
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; MOE Key Lab of Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Morlino MS, Serna García R, Savio F, Zampieri G, Morosinotto T, Treu L, Campanaro S. Cupriavidus necator as a platform for polyhydroxyalkanoate production: An overview of strains, metabolism, and modeling approaches. Biotechnol Adv 2023; 69:108264. [PMID: 37775073 DOI: 10.1016/j.biotechadv.2023.108264] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Cupriavidus necator is a bacterium with a high phenotypic diversity and versatile metabolic capabilities. It has been extensively studied as a model hydrogen oxidizer, as well as a producer of polyhydroxyalkanoates (PHA), plastic-like biopolymers with a high potential to substitute petroleum-based materials. Thanks to its adaptability to diverse metabolic lifestyles and to the ability to accumulate large amounts of PHA, C. necator is employed in many biotechnological processes, with particular focus on PHA production from waste carbon sources. The large availability of genomic information has enabled a characterization of C. necator's metabolism, leading to the establishment of metabolic models which are used to devise and optimize culture conditions and genetic engineering approaches. In this work, the characteristics of available C. necator strains and genomes are reviewed, underlining how a thorough comprehension of the genetic variability of C. necator is lacking and it could be instrumental for wider application of this microorganism. The metabolic paradigms of C. necator and how they are connected to PHA production and accumulation are described, also recapitulating the variety of carbon substrates used for PHA accumulation, highlighting the most promising strategies to increase the yield. Finally, the review describes and critically analyzes currently available genome-scale metabolic models and reduced metabolic network applications commonly employed in the optimization of PHA production. Overall, it appears that the capacity of C. necator of performing CO2 bioconversion to PHA is still underexplored, both in biotechnological applications and in metabolic modeling. However, the accurate characterization of this organism and the efforts in using it for gas fermentation can help tackle this challenging perspective in the future.
Collapse
Affiliation(s)
- Maria Silvia Morlino
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Rebecca Serna García
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Filippo Savio
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Guido Zampieri
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Tomas Morosinotto
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Laura Treu
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy.
| | - Stefano Campanaro
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| |
Collapse
|
12
|
Aghaali Z, Naghavi MR. Biotechnological Approaches for Enhancing Polyhydroxyalkanoates (PHAs) Production: Current and Future Perspectives. Curr Microbiol 2023; 80:345. [PMID: 37731015 DOI: 10.1007/s00284-023-03452-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/19/2023] [Indexed: 09/22/2023]
Abstract
The benefits of biotechnology are not limited to genetic engineering, but it also displays its great impact on industrial uses of crops (e.g., biodegradable plastics). Polyhydroxyalkanoates (PHAs) make a diverse class of bio-based and biodegradable polymers naturally synthesized by numerous microorganisms. However, several C3 and C4 plants have also been genetically engineered to produce PHAs. The highest production yield of PHAs was obtained with a well-known C3 plant, Arabidopsis thaliana, upto 40% of the dry weight of the leaf. This review summarizes all biotechnological mechanisms that have been adopted with the goal of increasing PHAs production in bacteria and plant species alike. Moreover, the possibility of using some methods that have not been applied in bioplastic science are discussed with special attention to plants. These include producing PHAs in transgenic hairy roots and cell suspension cultures, making transformed bacteria and plants via transposons, constructing an engineered metabolon, and overexpressing of phaP and the ABC operon concurrently. Taken together, that biotechnology will be highly beneficial for reducing plastic pollution through the implementation of biotechnological strategies is taken for granted.
Collapse
Affiliation(s)
- Zahra Aghaali
- Department of Genetic and Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
13
|
Goswami L, Kushwaha A, Napathorn SC, Kim BS. Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives. Int J Biol Macromol 2023; 247:125743. [PMID: 37423435 DOI: 10.1016/j.ijbiomac.2023.125743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Microbial polyhydroxyalkanoates (PHA) are encouraging biodegradable polymers, which may ease the environmental problems caused by petroleum-derived plastics. However, there is a growing waste removal problem and the high price of pure feedstocks for PHA biosynthesis. This has directed to the forthcoming requirement to upgrade waste streams from various industries as feedstocks for PHA production. This review covers the state-of-the-art progress in utilizing low-cost carbon substrates, effective upstream and downstream processes, and waste stream recycling to sustain entire process circularity. This review also enlightens the use of various batch, fed-batch, continuous, and semi-continuous bioreactor systems with flexible results to enhance the productivity and simultaneously cost reduction. The life-cycle and techno-economic analyses, advanced tools and strategies for microbial PHA biosynthesis, and numerous factors affecting PHA commercialization were also covered. The review includes the ongoing and upcoming strategies viz. metabolic engineering, synthetic biology, morphology engineering, and automation to expand PHA diversity, diminish production costs, and improve PHA production with an objective of "zero-waste" and "circular bioeconomy" for a sustainable future.
Collapse
Affiliation(s)
- Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
14
|
Mai J, Pratt S, Laycock B, Chan CM. Synthesis and Characterisation of Poly(3-hydroxybutyrate- co-3-hydroxyvalerate)- b-poly(3-hydroxybutyrate- co-3-hydroxyvalerate) Multi-Block Copolymers Produced Using Diisocyanate Chemistry. Polymers (Basel) 2023; 15:3257. [PMID: 37571152 PMCID: PMC10422281 DOI: 10.3390/polym15153257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Bacterially derived polyhydroxyalkanoates (PHAs) are attractive alternatives to commodity petroleum-derived plastics. The most common forms of the short chain length (scl-) PHAs, including poly(3-hydroxybutyrate) (P3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), are currently limited in application because they are relatively stiff and brittle. The synthesis of PHA-b-PHA block copolymers could enhance the physical properties of PHAs. Therefore, this work explores the synthesis of PHBV-b-PHBV using relatively high molecular weight hydroxy-functionalised PHBV starting materials, coupled using facile diisocyanate chemistry, delivering industrially relevant high-molecular-weight block copolymeric products. A two-step synthesis approach was compared with a one-step approach, both of which resulted in successful block copolymer production. However, the two-step synthesis was shown to be less effective in building molecular weight. Both synthetic approaches were affected by additional isocyanate reactions resulting in the formation of by-products such as allophanate and likely biuret groups, which delivered partial cross-linking and higher molecular weights in the resulting multi-block products, identified for the first time as likely and significant by-products in such reactions, affecting the product performance.
Collapse
Affiliation(s)
| | | | - Bronwyn Laycock
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia; (J.M.); (S.P.)
| | - Clement Matthew Chan
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia; (J.M.); (S.P.)
| |
Collapse
|
15
|
Zhang Z, Lin Y, Wu S, Li X, Cheng JJ, Yang C. Effect of composition of volatile fatty acids on yield of polyhydroxyalkanoates and mechanisms of bioconversion from activated sludge. BIORESOURCE TECHNOLOGY 2023:129445. [PMID: 37399967 DOI: 10.1016/j.biortech.2023.129445] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Polyhydroxyalkanoates (PHA) is green biodegradable natural polymer. Here PHA production from volatile fatty acids (VFAs) was investigated in sequential batch reactors inoculated with activated sludge. Single or mixed VFAs ranging from acetate to valerate were evaluated, and the dominant VFA concentration was 2 times of that of the others in the tests. Results showed that mixed substrates achieved about 1.6 times higher yield of PHA production than single substrate. The butyrate-dominated substrates maximized PHA content at 72.08% of VSS, and the valerate-dominated substrates were followed with PHA content at 61.57%. Metabolic flux analysis showed the presence of valerate in the substrates caused a more robust PHA production. There was at least 20% of 3-hydroxyvalerate in the polymer. Hydrogenophaga and Comamonas were the main PHA producers. As VFAs could be produced in anaerobic digestion of organic wastes, the methods and data here could be referred for efficient green bioconversion of PHA.
Collapse
Affiliation(s)
- Ziying Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xiang Li
- Hunan Urban and Rural Environmental Construction Co., Ltd, Changsha, Hunan 410118, China
| | - Jay J Cheng
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
16
|
Dong H, Yang X, Shi J, Xiao C, Zhang Y. Exploring the Feasibility of Cell-Free Synthesis as a Platform for Polyhydroxyalkanoate (PHA) Production: Opportunities and Challenges. Polymers (Basel) 2023; 15:polym15102333. [PMID: 37242908 DOI: 10.3390/polym15102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
The extensive utilization of traditional petroleum-based plastics has resulted in significant damage to the natural environment and ecological systems, highlighting the urgent need for sustainable alternatives. Polyhydroxyalkanoates (PHAs) have emerged as promising bioplastics that can compete with petroleum-based plastics. However, their production technology currently faces several challenges, primarily focused on high costs. Cell-free biotechnologies have shown significant potential for PHA production; however, despite recent progress, several challenges still need to be overcome. In this review, we focus on the status of cell-free PHA synthesis and compare it with microbial cell-based PHA synthesis in terms of advantages and drawbacks. Finally, we present prospects for the development of cell-free PHA synthesis.
Collapse
Affiliation(s)
- Huaming Dong
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xue Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jingjing Shi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Chunqiao Xiao
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yanfei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
17
|
Che L, Jin W, Zhou X, Han W, Chen Y, Chen C, Jiang G. Current status and future perspectives on the biological production of polyhydroxyalkanoates. ASIA-PAC J CHEM ENG 2023. [DOI: 10.1002/apj.2899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Lin Che
- School of Environment, Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin China
- Shenzhen Engineering Laboratory of Microalgae Bioenergy Harbin Institute of Technology (Shenzhen), 518055 Shenzhen China
| | - Wenbiao Jin
- School of Environment, Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin China
- Shenzhen Engineering Laboratory of Microalgae Bioenergy Harbin Institute of Technology (Shenzhen), 518055 Shenzhen China
| | - Xu Zhou
- School of Environment, Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin China
- Shenzhen Engineering Laboratory of Microalgae Bioenergy Harbin Institute of Technology (Shenzhen), 518055 Shenzhen China
| | - Wei Han
- School of Environment, Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin China
- Shenzhen Engineering Laboratory of Microalgae Bioenergy Harbin Institute of Technology (Shenzhen), 518055 Shenzhen China
| | - Yidi Chen
- School of Environment, Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin China
| | - Chuan Chen
- School of Environment, Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment, 150090 Harbin China
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering University of Wollongong Wollongong NSW 2522 Australia
| |
Collapse
|
18
|
Li HF, Tian L, Lian G, Fan LH, Li ZJ. Engineering Vibrio alginolyticus as a novel chassis for PHB production from starch. Front Bioeng Biotechnol 2023; 11:1130368. [PMID: 36824353 PMCID: PMC9941669 DOI: 10.3389/fbioe.2023.1130368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Vibrio alginolyticus LHF01 was engineered to efficiently produce poly-3-hydroxybutyrate (PHB) from starch in this study. Firstly, the ability of Vibrio alginolyticus LHF01 to directly accumulate PHB using soluble starch as the carbon source was explored, and the highest PHB titer of 2.06 g/L was obtained in 18 h shake flask cultivation. Then, with the analysis of genomic information of V. alginolyticus LHF01, the PHB synthesis operon and amylase genes were identified. Subsequently, the effects of overexpressing PHB synthesis operon and amylase on PHB production were studied. Especially, with the co-expression of PHB synthesis operon and amylase, the starch consumption rate was improved and the PHB titer was more than doubled. The addition of 20 g/L insoluble corn starch could be exhausted in 6-7 h cultivation, and the PHB titer was 4.32 g/L. To the best of our knowledge, V. alginolyticus was firstly engineered to produce PHB with the direct utilization of starch, and this stain can be considered as a novel host to produce PHB using starch as the raw material.
Collapse
Affiliation(s)
- Hong-Fei Li
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, China,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China,Qingyuan Innovation Laboratory, Quanzhou, China
| | - Linyue Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Guoli Lian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Li-Hai Fan
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, China,Qingyuan Innovation Laboratory, Quanzhou, China,*Correspondence: Li-Hai Fan, ; Zheng-Jun Li,
| | - Zheng-Jun Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China,*Correspondence: Li-Hai Fan, ; Zheng-Jun Li,
| |
Collapse
|
19
|
Al-Khairy D, Fu W, Alzahmi AS, Twizere JC, Amin SA, Salehi-Ashtiani K, Mystikou A. Closing the Gap between Bio-Based and Petroleum-Based Plastic through Bioengineering. Microorganisms 2022; 10:microorganisms10122320. [PMID: 36557574 PMCID: PMC9787566 DOI: 10.3390/microorganisms10122320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Bioplastics, which are plastic materials produced from renewable bio-based feedstocks, have been investigated for their potential as an attractive alternative to petroleum-based plastics. Despite the harmful effects of plastic accumulation in the environment, bioplastic production is still underdeveloped. Recent advances in strain development, genome sequencing, and editing technologies have accelerated research efforts toward bioplastic production and helped to advance its goal of replacing conventional plastics. In this review, we highlight bioengineering approaches, new advancements, and related challenges in the bioproduction and biodegradation of plastics. We cover different types of polymers, including polylactic acid (PLA) and polyhydroxyalkanoates (PHAs and PHBs) produced by bacterial, microalgal, and plant species naturally as well as through genetic engineering. Moreover, we provide detailed information on pathways that produce PHAs and PHBs in bacteria. Lastly, we present the prospect of using large-scale genome engineering to enhance strains and develop microalgae as a sustainable production platform.
Collapse
Affiliation(s)
- Dina Al-Khairy
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Weiqi Fu
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Department of Marine Science, Ocean College, Zhejiang University & Donghai Laboratory, Zhoushan 316021, China
| | - Amnah Salem Alzahmi
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), Institute Abu Dhabi, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Jean-Claude Twizere
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Laboratory of Viral Interactomes Networks, Unit of Molecular Biology of Diseases, Interdisciplinary Cluster for Applied Genoproteomics (GIGA Institute), University of Liège, 4000 Liège, Belgium
| | - Shady A. Amin
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), Institute Abu Dhabi, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Kourosh Salehi-Ashtiani
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), Institute Abu Dhabi, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Correspondence: (K.S.-A.); (A.M.)
| | - Alexandra Mystikou
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), Institute Abu Dhabi, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Correspondence: (K.S.-A.); (A.M.)
| |
Collapse
|
20
|
Co-Culture of Halotolerant Bacteria to Produce Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Using Sewage Wastewater Substrate. Polymers (Basel) 2022; 14:polym14224963. [PMID: 36433088 PMCID: PMC9699070 DOI: 10.3390/polym14224963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
The focus of the current study was the use of sewage wastewater to obtain PHA from a co-culture to produce a sustainable polymer. Two halotolerant bacteria, Bacillus halotolerans 14SM (MZ801771) and Bacillus aryabhattai WK31 (MT453992), were grown in a consortium to produce PHA. Sewage wastewater (SWW) was used to produce PHA, and glucose was used as a reference substrate to compare the growth and PHA production parameters. Both bacterial strains produced PHA in monoculture, but a copolymer was obtained when the co-cultures were used. The co-culture accumulated a maximum of 54% after 24 h of incubation in 10% SWW. The intracellular granules indicated the presence of nucleation sites for granule initiation. The average granule size was recorded to be 231 nm; micrographs also indicated the presence of extracellular polymers and granule-associated proteins. Fourier transform infrared spectroscopy (FTIR) analysis of the polymer produced by the consortium showed a significant peak at 1731 cm-1, representing the C=O group. FTIR also presented peaks in the region of 2800 cm-1 to 2900 cm-1, indicating C-C stretching. Proton nuclear magnetic resonance (1HNMR) of the pure polymer indicated chemical shifts resulting from the proton of hydroxy valerate and hydroxybutyrate, confirming the production of poly(3-hydroxybutyrate-co-3-hydroxy valerate) (P3HBV). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay showed that the copolymer was biocompatible, even at a high concentration of 5000 µg mL-1. The results of this study show that bacterial strains WK31 and 14SM can be used to synthesize a copolymer of butyrate and valerate using the volatile fatty acids present in the SWW, such as propionic acid or pentanoic acid. P3HBV can also be used to provide an extracellular matrix for cell-line growth without causing any cytotoxic effects.
Collapse
|
21
|
Tan B, Zheng Y, Yan H, Liu Y, Li ZJ. Metabolic engineering of Halomonas bluephagenesis to metabolize xylose for poly-3-hydroxybutyrate production. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Ali SS, Elsamahy T, Abdelkarim EA, Al-Tohamy R, Kornaros M, Ruiz HA, Zhao T, Li F, Sun J. Biowastes for biodegradable bioplastics production and end-of-life scenarios in circular bioeconomy and biorefinery concept. BIORESOURCE TECHNOLOGY 2022; 363:127869. [PMID: 36064080 DOI: 10.1016/j.biortech.2022.127869] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Due to global urbanization, industrialization, and economic development, biowastes generation represents negative consequences on the environment and human health. The use of generated biowastes as a feedstock for biodegradable bioplastic production has opened a new avenue for environmental sustainability from the circular (bio)economy standpoint. Biodegradable bioplastic production can contribute to the sustainability pillars (environmental, economic, and social). Furthermore, bioenergy, biomass, and biopolymers production after recycling of biodegradable bioplastic can help to maintain the energy-environment balance. Several types of biodegradable bioplastic, such as starch-based, polyhydroxyalkanoates, polylactic acid, and polybutylene adipate terephthalate, can achieve this aim. In this review, an overview of the main biowastes valorization routes and the main biodegradable bioplastic types of production, application, and biodegradability are discussed to achieve the transition to the circular economy. Additionally, end-of-life scenarios (up-cycle and down-cycle) are reviewed to attain the maximum environmental, social, and economic benefit from biodegradable bioplastic products under biorefinery concept.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Esraa A Abdelkarim
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, Patras 26504, Greece
| | - Héctor A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Tong Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Fanghua Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
23
|
Enuh BM, Nural Yaman B, Tarzi C, Aytar Çelik P, Mutlu MB, Angione C. Whole-genome sequencing and genome-scale metabolic modeling of Chromohalobacter canadensis 85B to explore its salt tolerance and biotechnological use. Microbiologyopen 2022; 11:e1328. [PMID: 36314754 PMCID: PMC9597258 DOI: 10.1002/mbo3.1328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
Abstract
Salt tolerant organisms are increasingly being used for the industrial production of high-value biomolecules due to their better adaptability compared to mesophiles. Chromohalobacter canadensis is one of the early halophiles to show promising biotechnology potential, which has not been explored to date. Advanced high throughput technologies such as whole-genome sequencing allow in-depth insight into the potential of organisms while at the frontiers of systems biology. At the same time, genome-scale metabolic models (GEMs) enable phenotype predictions through a mechanistic representation of metabolism. Here, we sequence and analyze the genome of C. canadensis 85B, and we use it to reconstruct a GEM. We then analyze the GEM using flux balance analysis and validate it against literature data on C. canadensis. We show that C. canadensis 85B is a metabolically versatile organism with many features for stress and osmotic adaptation. Pathways to produce ectoine and polyhydroxybutyrates were also predicted. The GEM reveals the ability to grow on several carbon sources in a minimal medium and reproduce osmoadaptation phenotypes. Overall, this study reveals insights from the genome of C. canadensis 85B, providing genomic data and a draft GEM that will serve as the first steps towards a better understanding of its metabolism, for novel applications in industrial biotechnology.
Collapse
Affiliation(s)
- Blaise Manga Enuh
- Biotechnology and Biosafety Department, Graduate and Natural Applied ScienceEskişehir Osmangazi UniversityEskişehirTurkey
| | - Belma Nural Yaman
- Biotechnology and Biosafety Department, Graduate and Natural Applied ScienceEskişehir Osmangazi UniversityEskişehirTurkey
- Department of Biomedical Engineering, Faculty of Engineering and ArchitectureEskişehir Osmangazi UniversityEskişehirTurkey
| | - Chaimaa Tarzi
- School of Computing, Engineering & Digital TechnologiesTeesside UniversityMiddlesbroughUK
| | - Pınar Aytar Çelik
- Biotechnology and Biosafety Department, Graduate and Natural Applied ScienceEskişehir Osmangazi UniversityEskişehirTurkey
- Environmental Protection and Control ProgramEskişehir Osmangazi UniversityEskişehirTurkey
| | - Mehmet Burçin Mutlu
- Department of Biology, Faculty of ScienceEskisehir Technical UniversityEskisehirTurkey
| | - Claudio Angione
- School of Computing, Engineering & Digital TechnologiesTeesside UniversityMiddlesbroughUK
- Centre for Digital InnovationTeesside UniversityMiddlesbroughUK
- National Horizons CentreTeesside UniversityDarlingtonUK
| |
Collapse
|
24
|
Biopolymer production in microbiology by application of metabolic engineering. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03820-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Mai J, Chan CM, Colwell J, Pratt S, Laycock B. Characterisation of end groups of hydroxy-functionalised scl-PHAs prepared by transesterification using ethylene glycol. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Polyhydroxyalkanoates Composites and Blends: Improved Properties and New Applications. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6070206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Composites of Polyhydroxyalkanoates (PHAs) have been proven to have enhanced properties in comparison to the pure form of these polyesters. Depending on what polymer or material is added to PHAs, the enhancement of different properties is observed. Since PHAs are explored for usage in diverse fields, understanding what blends affect what properties would guide further investigations towards application. This article reviews works that have been carried out with composite variation for application in several fields. Some properties of PHAs are highlighted and composite variation for their modulations are explored.
Collapse
|
27
|
Xu M, Chang Y, Zhang Y, Wang W, Hong J, Zhao J, Lu X, Tan D. Development and Application of Transcription Terminators for Polyhydroxylkanoates Production in Halophilic Halomonas bluephagenesis TD01. Front Microbiol 2022; 13:941306. [PMID: 35832813 PMCID: PMC9271916 DOI: 10.3389/fmicb.2022.941306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Halomonas bluephagenesis TD01 is one of the ideal chassis for low-cost industrial production based on “Next Generation Industrial Biotechnology,” yet the limited genetically regulatory parts such as transcriptional terminators, which are crucial for tuned regulations on gene expression, have hampered the engineering and applications of the strain. In this study, a series of intrinsic Rho-independent terminators were developed by either genome mining or rational design, and seven of them proved to exhibit higher efficiencies than the canonical strong T7 terminator, among which three terminators displayed high efficiencies over 90%. A preliminary modeling on the sequence-efficiency relationship of the terminators suggested that the poly U sequence regularity, the length and GC content of the stem, and the number and the size of hairpin loops remarkably affected the termination efficiency (TE). The rational and de novo designs of novel synthetic terminators based on the sequence-efficiency relationship and the “main contributor” engineering strategy proved to be effective, and fine-tuned polyhydroxylkanoates production was also achieved by the regulation of these native or synthetic terminators with different efficiencies. Furthermore, a perfectly positive correlation between the promoter activity and the TE was revealed in our study. The study enriches our knowledge of transcriptional termination via its sequence–strength relationship and enables the precise regulation of gene expression and PHA synthesis by intrinsic terminators, contributing to the extensive applications of H. bluephagenesis TD01 in the low-cost production of various chemicals.
Collapse
|
28
|
A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications. Catalysts 2022. [DOI: 10.3390/catal12030319] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Polyhydroxyalkanoates, or PHAs, belong to a class of biopolyesters where the biodegradable PHA polymer is accumulated by microorganisms as intracellular granules known as carbonosomes. Microorganisms can accumulate PHA using a wide variety of substrates under specific inorganic nutrient limiting conditions, with many of the carbon-containing substrates coming from waste or low-value sources. PHAs are universally thermoplastic, with PHB and PHB copolymers having similar characteristics to conventional fossil-based polymers such as polypropylene. PHA properties are dependent on the composition of its monomers, meaning PHAs can have a diverse range of properties and, thus, functionalities within this biopolyester family. This diversity in functionality results in a wide array of applications in sectors such as food-packaging and biomedical industries. In order for PHAs to compete with the conventional plastic industry in terms of applications and economics, the scale of PHA production needs to grow from its current low base. Similar to all new polymers, PHAs need continuous technological developments in their production and material science developments to grow their market opportunities. The setup of end-of-life management (biodegradability, recyclability) system infrastructure is also critical to ensure that PHA and other biobased biodegradable polymers can be marketed with maximum benefits to society. The biobased nature and the biodegradability of PHAs mean they can be a key polymer in the materials sector of the future. The worldwide scale of plastic waste pollution demands a reformation of the current polymer industry, or humankind will face the consequences of having plastic in every step of the food chain and beyond. This review will discuss the aforementioned points in more detail, hoping to provide information that sheds light on how PHAs can be polymers of the future.
Collapse
|
29
|
Gómez-Gast N, López Cuellar MDR, Vergara-Porras B, Vieyra H. Biopackaging Potential Alternatives: Bioplastic Composites of Polyhydroxyalkanoates and Vegetal Fibers. Polymers (Basel) 2022; 14:1114. [PMID: 35335445 PMCID: PMC8950292 DOI: 10.3390/polym14061114] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
Abstract
Initiatives to reduce plastic waste are currently under development worldwide. As a part of it, the European Union and private and public organizations in several countries are designing and implementing regulations for single-use plastics. For example, by 2030, plastic packaging and food containers must be reusable or recyclable. In another approach, researchers are developing biopolymers using biodegradable thermoplastics, such as polyhydroxyalkanoates (PHAs), to replace fossil derivatives. However, their production capacity, high production costs, and poor mechanical properties hinder the usability of these biopolymers. To overcome these limitations, biomaterials reinforced with natural fibers are acquiring more relevance as the world of bioplastics production is increasing. This review presents an overview of PHA-vegetal fiber composites, the effects of the fiber type, and the production method's impact on the mechanical, thermal, barrier properties, and biodegradability, all relevant for biopackaging. To acknowledge the behaviors and trends of the biomaterials reinforcement field, we searched for granted patents focusing on bio-packaging applications and gained insight into current industry developments and contributions.
Collapse
Affiliation(s)
- Natalia Gómez-Gast
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Carretera Lago de Guadalupe 3.5, Colonia Margarita Maza de Juárez, Atizapán de Zaragoza 52926, Mexico; (N.G.-G.); (B.V.-P.)
| | - Ma Del Rocío López Cuellar
- Cuerpo Académico de Biotecnología Agroalimentaria (CABA), Institute of Food and Agricultural Sciences (ICAp), Autonomous University of Hidalgo State (UAEH), Av. Universidad Km. 1, Ex-Hda. De Aquetzalpa AP 32, Tulancingo de Bravo 43600, Mexico;
| | - Berenice Vergara-Porras
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Carretera Lago de Guadalupe 3.5, Colonia Margarita Maza de Juárez, Atizapán de Zaragoza 52926, Mexico; (N.G.-G.); (B.V.-P.)
| | - Horacio Vieyra
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Eduardo Monroy Cardenas 2000, San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
| |
Collapse
|
30
|
Zhang X, Liu XY, Yang H, Chen JN, Lin Y, Han SY, Cao Q, Zeng HS, Ye JW. A Polyhydroxyalkanoates-Based Carrier Platform of Bioactive Substances for Therapeutic Applications. Front Bioeng Biotechnol 2022; 9:798724. [PMID: 35071207 PMCID: PMC8767415 DOI: 10.3389/fbioe.2021.798724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Bioactive substances (BAS), such as small molecule drugs, proteins, RNA, cells, etc., play a vital role in many therapeutic applications, especially in tissue repair and regeneration. However, the therapeutic effect is still a challenge due to the uncontrollable release and instable physico-chemical properties of bioactive components. To address this, many biodegradable carrier systems of micro-nano structures have been rapidly developed based on different biocompatible polymers including polyhydroxyalkanoates (PHA), the microbial synthesized polyesters, to provide load protection and controlled-release of BAS. We herein highlight the developments of PHA-based carrier systems in recent therapeutic studies, and give an overview of its prospective applications in various disease treatments. Specifically, the biosynthesis and material properties of diverse PHA polymers, designs and fabrication of micro- and nano-structure PHA particles, as well as therapeutic studies based on PHA particles, are summarized to give a comprehensive landscape of PHA-based BAS carriers and applications thereof. Moreover, recent efforts focusing on novel-type BAS nano-carriers, the functionalized self-assembled PHA granules in vivo, was discussed in this review, proposing the underlying innovations of designs and fabrications of PHA-based BAS carriers powered by synthetic biology. This review outlines a promising and applicable BAS carrier platform of novelty based on PHA particles for different medical uses.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
- Tsinghua-Peking Center of Life Sciences, Beijing, China
| | - Xin-Yi Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Hao Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jiang-Nan Chen
- Tsinghua-Peking Center of Life Sciences, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuang-Yan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Qian Cao
- China Manned Space Agency, Beijing, China
| | - Han-Shi Zeng
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
31
|
Li M, Ma Y, Zhang X, Zhang L, Chen X, Ye JW, Chen GQ. Tailor-Made Polyhydroxyalkanoates by Reconstructing Pseudomonas Entomophila. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102766. [PMID: 34322928 DOI: 10.1002/adma.202102766] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/29/2021] [Indexed: 06/13/2023]
Abstract
Microbial polyhydroxyalkanoates (PHA) containing short- and medium/long-chain-length monomers, abbreviated as SCL-co-MCL/LCL PHAs, generate suitable thermal and mechanical properties. However, SCL-co-MCL/LCL PHAs with carbon chain longer than nine are difficult to synthesize due to the low specificity of PHA synthase PhaC and the lack of either SCL- or MCL/LCL monomer precursor fluxes. This study succeeds in reprogramming a β-oxidation weakened Pseudomonas entomophila containing synthesis pathways of SCL 3-hydroxybutyryl-CoA (3HB) from glucose and MCL/LCL 3-hydroxyalkanoyl-CoA from fatty acids with carbon chain lengths from 9 to 18, respectively, that are polymerized under a low specificity PhaC61-3 to form P(3HB-co-MCL/LCL 3HA) copolymers. Through rational flux-tuning approaches, the optimized recombinant P. entomophila accumulates 55 wt% poly-3-hydroxybutyrate in 8.4 g L-1 cell dry weight. Combined with weakened β-oxidation, a series of novel P(3HB-co-MCL/LCL 3HA) copolymers with over 60 wt% PHA in 9 g L-1 cell dry weight have been synthesized for the first time. P. entomophila has become a high-performing platform to generate tailor-made new SCL-co-MCL/LCL PHAs.
Collapse
Affiliation(s)
- Mengyi Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yueyuan Ma
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xu Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lizhan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinyu Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center of Life Sciences, Tsinghua University, Beijing, 100084, China
- MOE Key Lab of Industrial Biocatalysts, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
32
|
Oliveira-Filho ER, Gomez JGC, Taciro MK, Silva LF. Burkholderia sacchari (synonym Paraburkholderia sacchari): An industrial and versatile bacterial chassis for sustainable biosynthesis of polyhydroxyalkanoates and other bioproducts. BIORESOURCE TECHNOLOGY 2021; 337:125472. [PMID: 34320752 DOI: 10.1016/j.biortech.2021.125472] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
This is the first review presenting and discussing Burkholderia sacchari as a bacterial chassis. B. sacchari is a distinguished polyhydroxyalkanoates producer strain, with low biological risk, reaching high biopolymer yields from sucrose (0.29 g/g), and xylose (0.38 g/g). It has great potential for integration into a biorefinery using residues from biomass, achieving 146 g/L cell dry weight containing 72% polyhydroxyalkanoates. Xylitol (about 70 g/L) and xylonic acid [about 390 g/L, productivity 7.7 g/(L.h)] are produced by the wild-type B. sacchari. Recombinants were constructed to allow the production and monomer composition control of diverse tailor-made polyhydroxyalkanoates, and some applications have been tested. 3-hydroxyvalerate and 3-hydroxyhexanoate yields from substrate reached 80% and 50%, respectively. The genome-scale reconstruction of its metabolic network, associated with the improvement of tools for genetic modification, and metabolic fluxes understanding by future research, will consolidate its potential as a bioproduction chassis.
Collapse
Affiliation(s)
| | | | - Marilda Keico Taciro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Luiziana Ferreira Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| |
Collapse
|
33
|
Bhola S, Arora K, Kulshrestha S, Mehariya S, Bhatia RK, Kaur P, Kumar P. Established and Emerging Producers of PHA: Redefining the Possibility. Appl Biochem Biotechnol 2021; 193:3812-3854. [PMID: 34347250 DOI: 10.1007/s12010-021-03626-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/12/2021] [Indexed: 12/25/2022]
Abstract
The polyhydroxyalkanoate was discovered almost around a century ago. Still, all the efforts to replace the traditional non-biodegradable plastic with much more environmentally friendly alternative are not enough. While the petroleum-based plastic is like a parasite, taking over the planet rapidly and without any feasible cure, its perennial presence has made the ocean a floating island of life-threatening debris and has flooded the landfills with toxic towering mountains. It demands for an immediate solution; most resembling answer would be the polyhydroxyalkanoates. The production cost is yet one of the significant challenges that various corporate is facing to replace the petroleum-based plastic. To deal with the economic constrain better strain, better practices, and a better market can be adopted for superior results. It demands for systems for polyhydroxyalkanoate production namely bacteria, yeast, microalgae, and transgenic plants. Solely strains affect more than 40% of overall production cost, playing a significant role in both upstream and downstream processes. The highly modifiable nature of the biopolymer provides the opportunity to replace the petroleum plastic in almost all sectors from food packaging to medical industry. The review will highlight the recent advancements and techno-economic analysis of current commercial models of polyhydroxyalkanoate production. Bio-compatibility and the biodegradability perks to be utilized highly efficient in the medical applications gives ample reason to tilt the scale in the favor of the polyhydroxyalkanoate as the new conventional and sustainable plastic.
Collapse
Affiliation(s)
- Shivam Bhola
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Kanika Arora
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | | | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Parneet Kaur
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| |
Collapse
|
34
|
Genome-Wide Metabolic Reconstruction of the Synthesis of Polyhydroxyalkanoates from Sugars and Fatty Acids by Burkholderia Sensu Lato Species. Microorganisms 2021; 9:microorganisms9061290. [PMID: 34204835 PMCID: PMC8231600 DOI: 10.3390/microorganisms9061290] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Burkholderia sensu lato (s.l.) species have a versatile metabolism. The aims of this review are the genomic reconstruction of the metabolic pathways involved in the synthesis of polyhydroxyalkanoates (PHAs) by Burkholderia s.l. genera, and the characterization of the PHA synthases and the pha genes organization. The reports of the PHA synthesis from different substrates by Burkholderia s.l. strains were reviewed. Genome-guided metabolic reconstruction involving the conversion of sugars and fatty acids into PHAs by 37 Burkholderia s.l. species was performed. Sugars are metabolized via the Entner-Doudoroff (ED), pentose-phosphate (PP), and lower Embden-Meyerhoff-Parnas (EMP) pathways, which produce reducing power through NAD(P)H synthesis and PHA precursors. Fatty acid substrates are metabolized via β-oxidation and de novo synthesis of fatty acids into PHAs. The analysis of 194 Burkholderia s.l. genomes revealed that all strains have the phaC, phaA, and phaB genes for PHA synthesis, wherein the phaC gene is generally present in ≥2 copies. PHA synthases were classified into four phylogenetic groups belonging to class I II and III PHA synthases and one outlier group. The reconstruction of PHAs synthesis revealed a high level of gene redundancy probably reflecting complex regulatory layers that provide fine tuning according to diverse substrates and physiological conditions.
Collapse
|
35
|
Qiao J, Tan X, Ren H, Wu Z, Hu X, Wang X. Construction of an Escherichia coli Strain Lacking Fimbriae by Deleting 64 Genes and Its Application for Efficient Production of Poly(3-Hydroxybutyrate) and l-Threonine. Appl Environ Microbiol 2021; 87:e0038121. [PMID: 33863704 PMCID: PMC8174762 DOI: 10.1128/aem.00381-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/03/2021] [Indexed: 12/28/2022] Open
Abstract
Escherichia coli contains 12 chaperone-usher operons for biosynthesis and assembly of various fimbriae. In this study, each of the 12 operons was deleted in E. coli MG1655, and the resulting 12 deletion mutants all grew better than the wild type, especially in the nutrient-deficient M9 medium. When the plasmid pBHR68 containing the key genes for polyhydroxyalkanoate production was introduced into these 12 mutants, each mutant synthesized more polyhydroxyalkanoate than the wild-type control. These results indicate that the fimbria removal in E. coli benefits cell growth and polyhydroxyalkanoate production. Therefore, all 12 chaperone-usher operons, including 64 genes, were deleted in MG1655, resulting in the fimbria-lacking strain WQM026. WQM026 grew better than MG1655, and no fimbria structures were observed on the surface of WQM026 cells. Transcriptomic analysis showed that in WQM026 cells, the genes related to glucose consumption, glycolysis, flagellar synthesis, and biosynthetic pathways of some key amino acids were upregulated, while the tricarboxylic acid cycle-related genes were downregulated. When pBHR68 was introduced into WQM026, huge amounts of poly-3-hydroxybutyrate were produced; when the plasmid pFW01-thrA*BC-rhtC, containing the key genes for l-threonine biosynthesis and transport, was transferred into WQM026, more l-threonine was synthesized than with the control. These results suggest that this fimbria-lacking E. coli WQM026 is a good host for efficient production of polyhydroxyalkanoate and l-threonine and has the potential to be developed into a valuable chassis microorganism. IMPORTANCE In this study, we investigated the interaction between the biosynthesis and assembly of fimbriae and intracellular metabolic networks in E. coli. We found that eliminating fimbriae could effectively improve the production of polyhydroxyalkanoate and l-threonine in E. coli MG1655. These results contribute to understanding the necessity of fimbriae and the advantages of fimbria removal for industrial microorganisms. The knowledge gathered from this study may be applied to the development of superior chassis microorganisms.
Collapse
Affiliation(s)
- Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Hongyu Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Zheng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu Province, China
| |
Collapse
|
36
|
Sindhu R, Madhavan A, Arun KB, Pugazhendhi A, Reshmy R, Awasthi MK, Sirohi R, Tarafdar A, Pandey A, Binod P. Metabolic circuits and gene regulators in polyhydroxyalkanoate producing organisms: Intervention strategies for enhanced production. BIORESOURCE TECHNOLOGY 2021; 327:124791. [PMID: 33579565 DOI: 10.1016/j.biortech.2021.124791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Worldwide worries upsurge concerning environmental pollutions triggered by the accumulation of plastic wastes. Biopolymers are promising candidates for resolving these difficulties by replacing non-biodegradable plastics. Among biopolymers, polyhydroxyalkanoates (PHAs), are natural polymers that are synthesized and accumulated in a range of microorganisms, are considered as promising biopolymers since they have biocompatibility, biodegradability, and other physico-chemical properties comparable to those of synthetic plastics. Consequently, considerable research have been attempted to advance a better understanding of mechanisms related to the metabolic synthesis and characteristics of PHAs and to develop native and recombinant microorganisms that can proficiently produce PHAs comprising desired monomers with high titer and productivity for industrial applications. Recent developments in metabolic engineering and synthetic biology applied to enhance PHA synthesis include, promoter engineering, ribosome-binding site (RBS) engineering, development of synthetic constructs etc. This review gives a brief overview of metabolic routes and regulators of PHA production and its intervention strategies.
Collapse
Affiliation(s)
- Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, Kerala, India
| | - K B Arun
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, Kerala, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China
| | - Ranjna Sirohi
- Department of Post Harvest Process and Food Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263 145, India
| | - Ayon Tarafdar
- Divison of Livestock Production and Management, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India.
| |
Collapse
|
37
|
Qiao J, Tan X, Huang D, Li H, Wang Z, Ren H, Hu X, Wang X. Construction and Application of an Escherichia coli Strain Lacking 62 Genes Responsible for the Biosynthesis of Enterobacterial Common Antigen and Flagella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4153-4163. [PMID: 33787256 DOI: 10.1021/acs.jafc.1c00453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The biosynthesis of the enterobacterial common antigen and flagella in Escherichia coli consumes lots of substrates and energy. In this study, 12 genes responsible for the biosynthesis of the enterobacterial common antigen were deleted in E. coli MG1655, resulting in WQM021. WQM021 grew better than MG1655 in both rich LB medium and minimum M9 medium. Compared with MG1655, WQM021 showed higher membrane permeability and higher production efficiency for recombinant proteins, polyhydroxyalkanoate, and l-threonine. Transcriptome analysis revealed that genes relevant to glucose consumption, glycolysis, and flagellar synthesis were significantly upregulated in WQM021. Therefore, 50 genes responsible for flagellar biosynthesis were further deleted in WQM021, resulting in WQM022. WQM022 grew better and could synthesize more polyhydroxyalkanoate and l-threonine than WQM021. The results demonstrate that the productivity of E. coli can be efficiently improved when the enterobacterial common antigen and flagella are eliminated. This strategy has guiding significance in the optimization of other industrial products and microorganisms.
Collapse
Affiliation(s)
- Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Danyang Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hedan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongyu Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
38
|
Ganesh Saratale R, Cho SK, Dattatraya Saratale G, Kadam AA, Ghodake GS, Kumar M, Naresh Bharagava R, Kumar G, Su Kim D, Mulla SI, Seung Shin H. A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. BIORESOURCE TECHNOLOGY 2021; 325:124685. [PMID: 33508681 DOI: 10.1016/j.biortech.2021.124685] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Polyhydroxyalkanoates (PHA) are appealing as an important alternative to replace synthetic plastics owing to its comparable physicochemical properties to that of synthetic plastics, and biodegradable and biocompatible nature. This review gives an inclusive overview of the current research activities dealing with PHA production by utilizing different waste fluxes generated from food, milk and sugar processing industries. Valorization of these waste fluxes makes the process cost effective and practically applicable. Recent advances in the approaches adopted for waste treatment, fermentation strategies, and genetic engineering can give insights to the researchers for future direction of waste to bioplastics production. Lastly, synthesis and application of PHA-nanocomposites, research and development challenges, future perspectives for sustainable and cost-effective PHB production are also discussed. In addition, the review addresses the useful information about the opportunities and confines associated with the sustainable PHA production using different waste streams and their evaluation for commercial implementation within a biorefinery.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyonggido 10326, Republic of Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea.
| | - Avinash A Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Gajanan S Ghodake
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyonggido 10326, Republic of Korea
| | - Manu Kumar
- Department of Life Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | - Ram Naresh Bharagava
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, U.P., India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Dong Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Sikandar I Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore 560 064, India
| | - Han Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| |
Collapse
|
39
|
Tools for the discovery of biopolymer producing cysteine relays. Biophys Rev 2021; 13:247-258. [PMID: 33927786 DOI: 10.1007/s12551-021-00792-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/02/2021] [Indexed: 12/30/2022] Open
Abstract
Cysteine relays, where a protein or small molecule is transferred multiple times via transthiolation, are central to the production of biological polymers. Enzymes that utilise relay mechanisms display broad substrate specificity and are readily engineered to produce new polymers. In this review, I discuss recent advances in the discovery, engineering and biophysical characterisation of cysteine relays. I will focus on eukaryotic ubiquitin (Ub) cascades and prokaryotic polyhydroxyalkanoate (PHA) synthesis. These evolutionarily distinct processes employ similar chemistry and are readily modified for biotechnological applications. Both processes have been studied intensively for decades, yet recent studies suggest we do not fully understand their mechanistic diversity or plasticity. I will discuss the important role that activity-based probes (ABPs) and other chemical tools have had in identifying and delineating Ub cysteine-relays and the potential for ABPs to be applied to PHA synthases. Finally, I will offer a personal perspective on the potential of engineering cysteine-relays for non-native polymer production.
Collapse
|
40
|
Chotchindakun K, Pathom-Aree W, Dumri K, Ruangsuriya J, Pumas C, Pekkoh J. Low Crystallinity of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Bioproduction by Hot Spring Cyanobacterium Cyanosarcina sp. AARL T020. PLANTS 2021; 10:plants10030503. [PMID: 33800467 PMCID: PMC7999023 DOI: 10.3390/plants10030503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 11/20/2022]
Abstract
The poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) derived from cyanobacteria is an environmentally friendly biodegradable polymer. The low yield of PHBV’s production is the main hindrance to its sustainable production, and the manipulation of PHBV production processes could potentially overcome this obstacle. The present research investigated evolutionarily divergent cyanobacteria obtained from local environments of Thailand. Among the strains tested, Cyanosarcina sp. AARL T020, a hot spring cyanobacterium, showed a high rate of PHBV accumulation with a fascinating 3-hydroxyvalerate mole fraction. A two-stage cultivation strategy with sole organic carbon supplementation was successful in maximizing cyanobacterial PHBV production. The use of an optimized medium in the first stage of cultivation provided a 4.9-fold increase in biomass production. Subsequently, the addition of levulinic acid in the second stage of cultivation can induce significant biomass and PHBV production. With this strategy, the final biomass production and PHBV productivity were increased by 6.5 and 73.2 fold, respectively. The GC-MS, FTIR, and NMR analyses confirmed that the obtained PHBV consisted of two subunits of 3-hydroxyvaryrate and 3-hydroxybutyrate. Interestingly, the cyanobacterial PHBV contained a very high 3-hydroxyvalerate mole fraction (94%) exhibiting a low degree of crystallinity and expanding in processability window, which could be applied to polymers for desirable advanced applications.
Collapse
Affiliation(s)
- Kittipat Chotchindakun
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.C.); (W.P.-A.); (C.P.)
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.C.); (W.P.-A.); (C.P.)
| | - Kanchana Dumri
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Jetsada Ruangsuriya
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Functional Food Research Unit, Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.C.); (W.P.-A.); (C.P.)
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.C.); (W.P.-A.); (C.P.)
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-5394-1949
| |
Collapse
|
41
|
Kee SH, Chiongson JBV, Saludes JP, Vigneswari S, Ramakrishna S, Bhubalan K. Bioconversion of agro-industry sourced biowaste into biomaterials via microbial factories - A viable domain of circular economy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116311. [PMID: 33383425 DOI: 10.1016/j.envpol.2020.116311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/25/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Global increase in demand for food supply has resulted in surplus generation of wastes. What was once considered wastes, has now become a resource. Studies were carried out on the conversion of biowastes into wealth using methods such as extraction, incineration and microbial intervention. Agro-industry biowastes are promising sources of carbon for microbial fermentation to be transformed into value-added products. In the era of circular economy, the goal is to establish an economic system which aims to eliminate waste and ensure continual use of resources in a close-loop cycle. Biowaste collection is technically and economically practicable, hence it serves as a renewable carbon feedstock. Biowastes are commonly biotransformed into value-added materials such as bioethanol, bioplastics, biofuels, biohydrogen, biobutanol and biogas. This review reveals the recent developments on microbial transformation of biowastes into biotechnologically important products. This approach addresses measures taken globally to valorize waste to achieve low carbon economy. The sustainable use of these renewable resources is a positive approach towards waste management and promoting circular economy.
Collapse
Affiliation(s)
- Seng Hon Kee
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Justin Brian V Chiongson
- Department of Chemistry, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City, Philippines
| | - Jonel P Saludes
- Department of Chemistry, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City, Philippines; Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City, Philippines; Balik Scientist Program, Philippine Council for Health Research and Development, Department of Science and Technology, Taguig, Philippines
| | - Sevakumaran Vigneswari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore, 117581, Singapore
| | - Kesaven Bhubalan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, 11700, Penang, Malaysia.
| |
Collapse
|
42
|
Tan D, Wang Y, Tong Y, Chen GQ. Grand Challenges for Industrializing Polyhydroxyalkanoates (PHAs). Trends Biotechnol 2021; 39:953-963. [PMID: 33431229 DOI: 10.1016/j.tibtech.2020.11.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are a diverse family of sustainable bioplastics synthesized by various bacteria, but their high production cost and unstable material properties make them challenging to use in commercial applications. Current industrial biotechnology (CIB) employs conventional microbial chassis, leading to high production costs. However, next-generation industrial biotechnology (NGIB) approaches, based on fast-growing and contamination-resistant extremophilic Halomonas spp., allow stable continuous processing and thus economical production of PHAs with stable properties. Halomonas spp. designed and constructed using synthetic biology not only produce low-cost intracellular PHAs but also secrete extracellular soluble products for improved process economics. Next-generation industrial biotechnology is expected to reduce the bioproduction cost and process complexity, leading to successful commercial production of PHAs.
Collapse
Affiliation(s)
- Dan Tan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ying Wang
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yi Tong
- National Engineering Research Center for Corn Deep Processing, COFCO, Changchun 130033, Jilin, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; MOE Key Lab on Industrial Biocatalyst, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
43
|
Mongili B, Abdel Azim A, Fraterrigo Garofalo S, Batuecas E, Re A, Bocchini S, Fino D. Novel insights in dimethyl carbonate-based extraction of polyhydroxybutyrate (PHB). BIOTECHNOLOGY FOR BIOFUELS 2021; 14:13. [PMID: 33413601 PMCID: PMC7792028 DOI: 10.1186/s13068-020-01849-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/03/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plastic plays a crucial role in everyday life of human living, nevertheless it represents an undeniable source of land and water pollution. Polyhydroxybutyrate (PHB) is a bio-based and biodegradable polyester, which can be naturally produced by microorganisms capable of converting and accumulating carbon as intracellular granules. Hence, PHB-producing strains stand out as an alternative source to fossil-derived counterparts. However, the extraction strategy affects the recovery efficiency and the quality of PHB. In this study, PHB was produced by a genetically modified Escherichia coli strain and successively extracted using dimethyl carbonate (DMC) and ethanol as alternative solvent and polishing agent to chloroform and hexane. Eventually, a Life Cycle Assessment (LCA) study was performed for evaluating the environmental and health impact of using DMC. RESULTS Extraction yield and purity of PHB obtained via DMC, were quantified, and compared with those obtained via chloroform-based extraction. PHB yield values from DMC-based extraction were similar to or higher than those achieved by using chloroform (≥ 67%). To optimize the performance of extraction via DMC, different experimental conditions were tested, varying the biomass state (dry or wet) and the mixing time, in presence or in absence of a paper filter. Among 60, 90, 120 min, the mid-value allowed to achieve high extraction yield, both for dry and wet biomass. Physical and molecular dependence on the biomass state and solvent/antisolvent choice was established. The comparative LCA analysis promoted the application of DMC/ethanol rather than chloroform/hexane, as the best choice in terms of health prevention. However, an elevated impact score was achieved by DMC in the environmental-like categories in contrast with a minor contribution by its counterpart. CONCLUSION The multifaceted exploration of DMC-based PHB extraction herein reported extends the knowledge of the variables affecting PHB purification process. This work offers novel and valuable insights into PHB extraction process, including environmental aspects not discussed so far. The findings of our research question the DMC as a green solvent, though also the choice of the antisolvent can influence the impact on the examined categories.
Collapse
Affiliation(s)
- Beatrice Mongili
- Department of Science and Applied Technology (DISAT), Polytechnic University of Turin, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Annalisa Abdel Azim
- Centre for Sustainable Future Technology (CSFT), Italian Institute of Technology, Via Livorno 60, 10144, Turin, Italy.
| | - Silvia Fraterrigo Garofalo
- Department of Science and Applied Technology (DISAT), Polytechnic University of Turin, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Esperanza Batuecas
- Thermal and Fluid Engineering Department, Carlos III University of Madrid, Avenida de la Universidad 30, 28911, Leganés, Madrid, Spain
| | - Angela Re
- Centre for Sustainable Future Technology (CSFT), Italian Institute of Technology, Via Livorno 60, 10144, Turin, Italy
| | - Sergio Bocchini
- Centre for Sustainable Future Technology (CSFT), Italian Institute of Technology, Via Livorno 60, 10144, Turin, Italy
| | - Debora Fino
- Department of Science and Applied Technology (DISAT), Polytechnic University of Turin, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| |
Collapse
|
44
|
Kasirajan L, Maupin-Furlow JA. Halophilic archaea and their potential to generate renewable fuels and chemicals. Biotechnol Bioeng 2020; 118:1066-1090. [PMID: 33241850 DOI: 10.1002/bit.27639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022]
Abstract
Lignocellulosic biofuels and chemicals have great potential to reduce our dependence on fossil fuels and mitigate air pollution by cutting down on greenhouse gas emissions. Chemical, thermal, and enzymatic processes are used to release the sugars from the lignocellulosic biomass for conversion to biofuels. These processes often operate at extreme pH conditions, high salt concentrations, and/or high temperature. These harsh treatments add to the cost of the biofuels, as most known biocatalysts do not operate under these conditions. To increase the economic feasibility of biofuel production, microorganisms that thrive in extreme conditions are considered as ideal resources to generate biofuels and value-added products. Halophilic archaea (haloarchaea) are isolated from hypersaline ecosystems with high salt concentrations approaching saturation (1.5-5 M salt concentration) including environments with extremes in pH and/or temperature. The unique traits of haloarchaea and their enzymes that enable them to sustain catalytic activity in these environments make them attractive resources for use in bioconversion processes that must occur across a wide range of industrial conditions. Biocatalysts (enzymes) derived from haloarchaea occupy a unique niche in organic solvent, salt-based, and detergent industries. This review focuses on the use of haloarchaea and their enzymes to develop and improve biofuel production. The review also highlights how haloarchaea produce value-added products, such as antibiotics, carotenoids, and bioplastic precursors, and can do so using feedstocks considered "too salty" for most microbial processes including wastes from the olive-mill, shell fish, and biodiesel industries.
Collapse
Affiliation(s)
- Lakshmi Kasirajan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA.,Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Coimbatore, India
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA.,Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
45
|
George DM, Vincent AS, Mackey HR. An overview of anoxygenic phototrophic bacteria and their applications in environmental biotechnology for sustainable Resource recovery. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00563. [PMID: 33304839 PMCID: PMC7714679 DOI: 10.1016/j.btre.2020.e00563] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/12/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Anoxygenic phototrophic bacteria (APB) are a phylogenetically diverse group of organisms that can harness solar energy for their growth and metabolism. These bacteria vary broadly in terms of their metabolism as well as the composition of their photosynthetic apparatus. Unlike oxygenic phototrophic bacteria such as algae and cyanobacteria, APB can use both organic and inorganic electron donors for light-dependent fixation of carbon dioxide without generating oxygen. Their versatile metabolism, ability to adapt in extreme conditions, low maintenance cost and high biomass yield make APB ideal for wastewater treatment, resource recovery and in the production of high value substances. This review highlights the advantages of APB over algae and cyanobacteria, and their applications in photo-bioelectrochemical systems, production of poly-β-hydroxyalkanoates, single-cell protein, biofertilizers and pigments. The ecology of ABP, their distinguishing factors, various physiochemical parameters governing the production of high-value substances and future directions of APB utilization are also discussed.
Collapse
Key Words
- ALA, 5-Aminolevulinic acid
- APB, Anoxygenic phototrophic bacteria
- Anoxygenic phototrophic bacteria (APB)
- BChl, Bacteriochlorophyll
- BES, Bioelectrochemical systems
- BPV, Biophotovoltaic
- BPh, Bacteriopheophytin
- Bacteriochlorophyll (BChl)
- Chl, Chlorophyll
- CoQ10, Coenzyme Q10
- DET, Direct electron transfer
- DNA, Deoxyribonucleic acid
- DO, Dissolved oxygen
- DXP, 1 deoxy-d-xylulose 5-phosphate
- FPP, Farnesyl pyrophosphate
- Fe-S, Iron-Sulfur
- GNSB, Green non sulfur bacteria
- GSB, Green sulfur bacteria
- IPP, Isopentenyl pyrophosphate isomerase
- LED, light emitting diode
- LH2, light-harvesting component II
- MFC, Microbial fuel cell
- MVA, Mevalonate
- PH3B, Poly-3-hydroxybutyrate
- PHA, Poly-β-hydroxyalkanoates
- PHB, Poly-β-hydroxybutyrate
- PNSB, Purple non sulfur bacteria
- PPB, Purple phototrophic bacteria
- PSB, Purple sulfur bacteria
- Pheo-Q, Pheophytin-Quinone
- Photo-BES, Photosynthetic bioelectrochemical systems
- Photo-MFC, Photo microbial fuel cell
- Poly-β-hydroxyalkanoates (PHA)
- Purple phototrophic bacteria (PPB)
- Resource recovery
- RuBisCO, Ribulose-1,5-biphosphate carboxylase/oxygenase
- SCP, Single-cell protein
- SOB, Sulfide oxidizing bacteria
- SRB, Sulfate reducing bacteria
- Single-cell proteins (SCP)
Collapse
Affiliation(s)
- Drishya M. George
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Annette S. Vincent
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Biological Sciences Program, Carnegie Mellon University in Qatar, Qatar
| | - Hamish R. Mackey
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
46
|
Medeiros Garcia Alcântara J, Distante F, Storti G, Moscatelli D, Morbidelli M, Sponchioni M. Current trends in the production of biodegradable bioplastics: The case of polyhydroxyalkanoates. Biotechnol Adv 2020; 42:107582. [DOI: 10.1016/j.biotechadv.2020.107582] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022]
|
47
|
Zhang X, Lin Y, Wu Q, Wang Y, Chen GQ. Synthetic Biology and Genome-Editing Tools for Improving PHA Metabolic Engineering. Trends Biotechnol 2020; 38:689-700. [DOI: 10.1016/j.tibtech.2019.10.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022]
|
48
|
Model-based operational optimisation of a microbial bioprocess converting terephthalic acid to biomass. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Chek MF, Kim SY, Mori T, Tan HT, Sudesh K, Hakoshima T. Asymmetric Open-Closed Dimer Mechanism of Polyhydroxyalkanoate Synthase PhaC. iScience 2020; 23:101084. [PMID: 32388399 PMCID: PMC7214940 DOI: 10.1016/j.isci.2020.101084] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
Abstract
Biodegradable polyester polyhydroxyalkanoate (PHA) is a promising bioplastic material for industrial use as a replacement for petroleum-based plastics. PHA synthase PhaC forms an active dimer to polymerize acyl moieties from the substrate acyl-coenzyme A (CoA) into PHA polymers. Here we present the crystal structure of the catalytic domain of PhaC from Chromobacterium sp. USM2, bound to CoA. The structure reveals an asymmetric dimer, in which one protomer adopts an open conformation bound to CoA, whereas the other adopts a closed conformation in a CoA-free form. The open conformation is stabilized by the asymmetric dimerization and enables PhaC to accommodate CoA and also to create the product egress path. The bound CoA molecule has its β-mercaptoethanolamine moiety extended into the active site with the terminal SH group close to active center Cys291, enabling formation of the reaction intermediate by acylation of Cys291. Crystal structure of PhaCCs-CAT bound to coenzyme A A unique asymmetric open-closed dimer Restructuring of the CAP subdomain provides a cleft toward the active site The cleft enables the substrate entry and the product egress
Collapse
Affiliation(s)
- Min Fey Chek
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Sun-Yong Kim
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tomoyuki Mori
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hua Tiang Tan
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Toshio Hakoshima
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
50
|
Mitra R, Xu T, Xiang H, Han J. Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microb Cell Fact 2020; 19:86. [PMID: 32264891 PMCID: PMC7137286 DOI: 10.1186/s12934-020-01342-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/26/2020] [Indexed: 11/17/2022] Open
Abstract
Plastic pollution is a severe threat to our environment which necessitates implementation of bioplastics to realize sustainable development for a green world. Polyhydroxyalkanoates (PHA) represent one of the potential candidates for these bioplastics. However, a major challenge faced by PHA is the high production cost which limits its commercial application. Halophiles are considered to be a promising cell factory for PHA synthesis due to its several unique characteristics including high salinity requirement preventing microbial contamination, high intracellular osmotic pressure allowing easy cell lysis for PHA recovery, and capability to utilize wide spectrum of low-cost substrates. Optimization of fermentation parameters has made it plausible to achieve large-scale production at low cost by using halophiles. Further deeper insights into halophiles have revealed the existence of diversified and even novel PHA synthetic pathways within different halophilic species that greatly affects PHA type. Thus, precise metabolic engineering of halophiles with the help of advanced tools and strategies have led to more efficient microbial cell factory for PHA production. This review is an endeavour to summarize the various research achievements in these areas which will help the readers to understand the current developments as well as the future efforts in PHA research.
Collapse
Affiliation(s)
- Ruchira Mitra
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,International College, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Tong Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. .,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. .,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|