1
|
Mohan MD, Latifi N, Flick R, Simmons CA, Young EWK. Interrogating Matrix Stiffness and Metabolomics in Pancreatic Ductal Carcinoma Using an Openable Microfluidic Tumor-on-a-Chip. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38606850 DOI: 10.1021/acsami.4c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense fibrotic stroma that contributes to aggressive tumor biology and therapeutic resistance. Current in vitro PDAC models lack sufficient optical and physical access for fibrous network visualization, in situ mechanical stiffness measurement, and metabolomic profiling. Here, we describe an openable multilayer microfluidic PDAC-on-a-chip platform that consists of pancreatic tumor cells (PTCs) and pancreatic stellate cells (PSCs) embedded in a 3D collagen matrix that mimics the stroma. Our system allows fibrous network visualization via reflected light confocal (RLC) microscopy, in situ mechanical stiffness testing using atomic force microscopy (AFM), and compartmentalized hydrogel extraction for PSC metabolomic profiling via mass spectrometry (MS) analysis. In comparing cocultures of gel-embedded PSCs and PTCs with PSC-only monocultures, RLC microscopy identified a significant decrease in pore size and corresponding increase in fiber density. In situ AFM indicated significant increases in stiffness, and hallmark characteristics of PSC activation were observed using fluorescence microscopy. PSCs in coculture also demonstrated localized fiber alignment and densification as well as increased collagen production. Finally, an untargeted MS study putatively identified metabolic contributions consistent with in vivo PDAC studies. Taken together, this platform can potentially advance our understanding of tumor-stromal interactions toward the discovery of novel therapies.
Collapse
Affiliation(s)
- Michael D Mohan
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3E2, Canada
| | - Neda Latifi
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, 14th Floor, Toronto, Ontario M5G 1M1, Canada
- Department of Medical Engineering, University of South Florida, 4202 E. Fowler Avenue, ENG 030, Tampa, Florida 33620, United States
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Craig A Simmons
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3E2, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, 14th Floor, Toronto, Ontario M5G 1M1, Canada
| | - Edmond W K Young
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|
2
|
Hadavi D, Tosheva I, Siegel TP, Cuypers E, Honing M. Technological advances for analyzing the content of organ-on-a-chip by mass spectrometry. Front Bioeng Biotechnol 2023; 11:1197760. [PMID: 37284240 PMCID: PMC10239923 DOI: 10.3389/fbioe.2023.1197760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Three-dimensional (3D) cell cultures, including organ-on-a-chip (OOC) devices, offer the possibility to mimic human physiology conditions better than 2D models. The organ-on-a-chip devices have a wide range of applications, including mechanical studies, functional validation, and toxicology investigations. Despite many advances in this field, the major challenge with the use of organ-on-a-chips relies on the lack of online analysis methods preventing the real-time observation of cultured cells. Mass spectrometry is a promising analytical technique for real-time analysis of cell excretes from organ-on-a-chip models. This is due to its high sensitivity, selectivity, and ability to tentatively identify a large variety of unknown compounds, ranging from metabolites, lipids, and peptides to proteins. However, the hyphenation of organ-on-a-chip with MS is largely hampered by the nature of the media used, and the presence of nonvolatile buffers. This in turn stalls the straightforward and online connection of organ-on-a-chip outlet to MS. To overcome this challenge, multiple advances have been made to pre-treat samples right after organ-on-a-chip and just before MS. In this review, we summarised these technological advances and exhaustively evaluated their benefits and shortcomings for successful hyphenation of organ-on-a-chip with MS.
Collapse
|
3
|
Thomas DP, Zhang J, Nguyen NT, Ta HT. Microfluidic Gut-on-a-Chip: Fundamentals and Challenges. BIOSENSORS 2023; 13:bios13010136. [PMID: 36671971 PMCID: PMC9856111 DOI: 10.3390/bios13010136] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 06/03/2023]
Abstract
The human gut is responsible for food digestion and absorption. Recently, growing evidence has shown its vital role in the proper functioning of other organs. Advances in microfluidic technologies have made a significant impact on the biomedical field. Specifically, organ-on-a-chip technology (OoC), which has become a popular substitute for animal models, is capable of imitating complex systems in vitro and has been used to study pathology and pharmacology. Over the past decade, reviews published focused more on the applications and prospects of gut-on-a-chip (GOC) technology, but the challenges and solutions to these limitations were often overlooked. In this review, we cover the physiology of the human gut and review the engineering approaches of GOC. Fundamentals of GOC models including materials and fabrication, cell types, stimuli and gut microbiota are thoroughly reviewed. We discuss the present GOC model applications, challenges, possible solutions and prospects for the GOC models and technology.
Collapse
Affiliation(s)
- Dimple Palanilkunnathil Thomas
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Jun Zhang
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
4
|
Nahle Z. A proof-of-concept study poised to remodel the drug development process: Liver-Chip solutions for lead optimization and predictive toxicology. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:1053588. [PMID: 36590153 PMCID: PMC9800902 DOI: 10.3389/fmedt.2022.1053588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
|
5
|
Pesticide Detection in Vegetable Crops Using Enzyme Inhibition Methods: a Comprehensive Review. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02254-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Lagowala DA, Kwon S, Sidhaye VK, Kim DH. Human microphysiological models of airway and alveolar epithelia. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1072-L1088. [PMID: 34612064 PMCID: PMC8715018 DOI: 10.1152/ajplung.00103.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 11/22/2022] Open
Abstract
Human organ-on-a-chip models are powerful tools for preclinical research that can be used to study the mechanisms of disease and evaluate new targets for therapeutic intervention. Lung-on-a-chip models have been one of the most well-characterized designs in this field and can be altered to evaluate various types of respiratory disease and to assess treatment candidates prior to clinical testing. These systems are capable of overcoming the flaws of conventional two-dimensional (2-D) cell culture and in vivo animal testing due to their ability to accurately recapitulate the in vivo microenvironment of human tissue with tunable material properties, microfluidic integration, delivery of precise mechanical and biochemical cues, and designs with organ-specific architecture. In this review, we first describe an overview of currently available lung-on-a-chip designs. We then present how recent innovations in human stem cell biology, tissue engineering, and microfabrication can be used to create more predictive human lung-on-a-chip models for studying respiratory disease. Finally, we discuss the current challenges and future directions of lung-on-a-chip designs for in vitro disease modeling with a particular focus on immune and multiorgan interactions.
Collapse
Affiliation(s)
- Dave Anuj Lagowala
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Seoyoung Kwon
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Venkataramana K Sidhaye
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
7
|
Molloy A, Harrison J, McGrath JS, Owen Z, Smith C, Liu X, Li X, Cox JAG. Microfluidics as a Novel Technique for Tuberculosis: From Diagnostics to Drug Discovery. Microorganisms 2021; 9:microorganisms9112330. [PMID: 34835455 PMCID: PMC8618277 DOI: 10.3390/microorganisms9112330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022] Open
Abstract
Tuberculosis (TB) remains a global healthcare crisis, with an estimated 5.8 million new cases and 1.5 million deaths in 2020. TB is caused by infection with the major human pathogen Mycobacterium tuberculosis, which is difficult to rapidly diagnose and treat. There is an urgent need for new methods of diagnosis, sufficient in vitro models that capably mimic all physiological conditions of the infection, and high-throughput drug screening platforms. Microfluidic-based techniques provide single-cell analysis which reduces experimental time and the cost of reagents, and have been extremely useful for gaining insight into monitoring microorganisms. This review outlines the field of microfluidics and discusses the use of this novel technique so far in M. tuberculosis diagnostics, research methods, and drug discovery platforms. The practices of microfluidics have promising future applications for diagnosing and treating TB.
Collapse
Affiliation(s)
- Antonia Molloy
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (A.M.); (J.H.)
| | - James Harrison
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (A.M.); (J.H.)
| | - John S. McGrath
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Zachary Owen
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Clive Smith
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Xin Liu
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Xin Li
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Jonathan A. G. Cox
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (A.M.); (J.H.)
- Correspondence: ; Tel.: +44-121-204-5011
| |
Collapse
|
8
|
Garcia-Gutierrez E, Cotter PD. Relevance of organ(s)-on-a-chip systems to the investigation of food-gut microbiota-host interactions. Crit Rev Microbiol 2021; 48:463-488. [PMID: 34591726 DOI: 10.1080/1040841x.2021.1979933] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ever greater understanding of the composition and function of the gut microbiome has provided new opportunities with respect to understanding and treating human disease. However, the models employed for in vitro and in vivo animal studies do not always provide the required insights. As a result, one such alternative in vitro cell culture based system, organ-on-a-chip technology, has recently attracted attention as a means of obtaining data that is representative of responses in humans. Organ-on-a-chip systems are designed to mimic the interactions of different tissue elements that were missing from traditional two-dimensional tissue culture. While they do not traditionally include a microbiota component, organ-on-a-chip systems provide a potentially valuable means of characterising the interactions between the microbiome and human tissues with a view to providing even greater accuracy. From a dietary perspective, these microbiota-organ-on-a-chip combinations can help researchers to predict how the consumption of specific foods and ingredients can impact on human health and disease. We provide an overview of the relevance and interactions of the gut microbiota and the diet in human health, we summarise the components involved in the organ-on-a-chip systems, how these systems have been employed for microbiota based studies and their potential relevance to study the interplay between food-gut microbiota-host interactions.
Collapse
Affiliation(s)
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,VistaMilk SFI Research Centre, Moorepark, Ireland
| |
Collapse
|
9
|
Fedorenko D, Bartkevics V. Recent Applications of Nano-Liquid Chromatography in Food Safety and Environmental Monitoring: A Review. Crit Rev Anal Chem 2021; 53:98-122. [PMID: 34392753 DOI: 10.1080/10408347.2021.1938968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In recent years, a trend toward instrument miniaturization has led to the development of new and sophisticated analytical systems, such as nano-liquid chromatography (nano-LC), which has enabled improvements of sensitivity, as well as chromatographic resolution. The growing interest in nano-LC methodology has resulted in a variety of innovative and promising applications. In this article, we review the applications of nano-LC separation methods coupled with mass spectrometry in the analysis of food and environmental samples. An assessment of sample preparation methods and analytical performance are provided, along with comparison to other, more established analytical techniques. Three main groups of compounds that are crucial for food safety assessment are considered in this review: pharmaceuticals (including antibiotics), pesticides, and mycotoxins. Recent practical applications of the nano-LC method in the determination of these compounds are discussed. Furthermore, we also focus on methods for the determination of various environmental contaminants using nano-LC methods. Future perspectives for the development of nano-LC methods are discussed.
Collapse
Affiliation(s)
- Deniss Fedorenko
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia.,University of Latvia, Faculty of Chemistry, Riga, Latvia
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia.,University of Latvia, Faculty of Chemistry, Riga, Latvia
| |
Collapse
|
10
|
Urban RD, Fischer TG, Charvat A, Wink K, Krafft B, Ohla S, Zeitler K, Abel B, Belder D. On-chip mass spectrometric analysis in non-polar solvents by liquid beam infrared matrix-assisted laser dispersion/ionization. Anal Bioanal Chem 2021; 413:1561-1570. [PMID: 33479818 PMCID: PMC7921053 DOI: 10.1007/s00216-020-03115-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022]
Abstract
By the on-chip integration of a droplet generator in front of an emitter tip, droplets of non-polar solvents are generated in a free jet of an aqueous matrix. When an IR laser irradiates this free liquid jet consisting of water as the continuous phase and the non-polar solvent as the dispersed droplet phase, the solutes in the droplets are ionized. This ionization at atmospheric pressure enables the mass spectrometric analysis of non-polar compounds with the aid of a surrounding aqueous matrix that absorbs IR light. This works both for non-polar solvents such as n-heptane and for water non-miscible solvents like chloroform. In a proof of concept study, this approach is applied to monitor a photooxidation of N-phenyl-1,2,3,4-tetrahydroisoquinoline. By using water as an infrared absorbing matrix, analytes, dissolved in non-polar solvents from reactions carried out on a microchip, can be desorbed and ionized for investigation by mass spectrometry.
Collapse
Affiliation(s)
- Raphael D Urban
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Tillmann G Fischer
- Institut für Organische Chemie, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Ales Charvat
- Leibniz-Institut für Oberflächenmodifizierung e.V., Abteilung Funktionale Oberflächen, Permoserstr. 15, 04318, Leipzig, Germany
| | - Konstantin Wink
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Benjamin Krafft
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Stefan Ohla
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Kirsten Zeitler
- Institut für Organische Chemie, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Bernd Abel
- Leibniz-Institut für Oberflächenmodifizierung e.V., Abteilung Funktionale Oberflächen, Permoserstr. 15, 04318, Leipzig, Germany
| | - Detlev Belder
- Institut für Analytische Chemie, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany.
| |
Collapse
|
11
|
Passive controlled flow for Parkinson's disease neuronal cell culture in 3D microfluidic devices. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.ooc.2020.100005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Ashammakhi N, Nasiri R, Barros NRD, Tebon P, Thakor J, Goudie M, Shamloo A, Martin MG, Khademhosseini A. Gut-on-a-chip: Current progress and future opportunities. Biomaterials 2020; 255:120196. [PMID: 32623181 PMCID: PMC7396314 DOI: 10.1016/j.biomaterials.2020.120196] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/11/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022]
Abstract
Organ-on-a-chip technology tries to mimic the complexity of native tissues in vitro. Important progress has recently been made in using this technology to study the gut with and without microbiota. These in vitro models can serve as an alternative to animal models for studying physiology, pathology, and pharmacology. While these models have greater physiological relevance than two-dimensional (2D) cell systems in vitro, endocrine and immunological functions in gut-on-a-chip models are still poorly represented. Furthermore, the construction of complex models, in which different cell types and structures interact, remains a challenge. Generally, gut-on-a-chip models have the potential to advance our understanding of the basic interactions found within the gut and lay the foundation for future applications in understanding pathophysiology, developing drugs, and personalizing medical treatments.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA.
| | - Rohollah Nasiri
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA; Department of Mechanical Engineering, Sharif University of Technology, Tehran 11365-11155, Iran
| | - Natan Roberto de Barros
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA.
| | - Peyton Tebon
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA
| | - Jai Thakor
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA
| | - Marcus Goudie
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11365-11155, Iran
| | - Martin G Martin
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA; Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Schilly KM, Gunawardhana SM, Wijesinghe MB, Lunte SM. Biological applications of microchip electrophoresis with amperometric detection: in vivo monitoring and cell analysis. Anal Bioanal Chem 2020; 412:6101-6119. [PMID: 32347360 PMCID: PMC8130646 DOI: 10.1007/s00216-020-02647-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 01/01/2023]
Abstract
Microchip electrophoresis with amperometric detection (ME-EC) is a useful tool for the determination of redox active compounds in complex biological samples. In this review, a brief background on the principles of ME-EC is provided, including substrate types, electrode materials, and electrode configurations. Several different detection approaches are described, including dual-channel systems for dual-electrode detection and electrochemistry coupled with fluorescence and chemiluminescence. The application of ME-EC to the determination of catecholamines, adenosine and its metabolites, and reactive nitrogen and oxygen species in microdialysis samples and cell lysates is also detailed. Lastly, approaches for coupling of ME-EC with microdialysis sampling to create separation-based sensors that can be used for near real-time monitoring of drug metabolism and neurotransmitters in freely roaming animals are provided. Graphical abstract.
Collapse
Affiliation(s)
- Kelci M Schilly
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Shamal M Gunawardhana
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Manjula B Wijesinghe
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Susan M Lunte
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA.
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA.
- Department of Pharmaceutical Chemistry, University of Kansas, 2010 Becker Drive, Lawrence, KS, 66045, USA.
| |
Collapse
|
14
|
Miklós G, Angeli C, Ambrus Á, Nagy A, Kardos V, Zentai A, Kerekes K, Farkas Z, Jóźwiak Á, Bartók T. Detection of Aflatoxins in Different Matrices and Food-Chain Positions. Front Microbiol 2020; 11:1916. [PMID: 32983001 PMCID: PMC7480073 DOI: 10.3389/fmicb.2020.01916] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Aflatoxins, produced mainly by filamentous fungi Aspergillus flavus and Aspergillus parasiticus, are one of the most carcinogenic compounds that have adverse health effects on both humans and animals consuming contaminated food and feed, respectively. Aflatoxin B1 (AFB1) and aflatoxin B2 (AFB2) as well as aflatoxin G1(AFG1) and aflatoxin G2 (AFG2) occur in the contaminated foods and feed. In the case of dairy ruminants, after the consumption of feed contaminated with aflatoxins, aflatoxin metabolites [aflatoxin M1 (AFM1) and aflatoxin M2 (AFM2)] may appear in milk. Because of the health risk and the official maximum limits of aflatoxins, there is a need for application of fast and accurate testing methods. At present, there are several analytical methods applied in practice for determination of aflatoxins. The aim of this review is to provide a guide that summarizes worldwide aflatoxin regulations and analytical methods for determination of aflatoxins in different food and feed matrices, that helps in the decision to choose the most appropriate method that meets the practical requirements of fast and sensitive control of their contamination. Analytical options are outlined from the simplest and fastest methods with the smallest instrument requirements, through separation methods, to the latest hyphenated techniques.
Collapse
Affiliation(s)
- Gabriella Miklós
- Székesfehérvár Regional Food Chain Laboratory, National Food Chain Safety Office, Székesfehérvár, Hungary
| | | | - Árpád Ambrus
- University of Debrecen Doctoral School of Nutrition and Food Sciences, Debrecen, Hungary
| | - Attila Nagy
- Food Chain Safety Laboratory Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Valéria Kardos
- Food Chain Safety Laboratory Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Andrea Zentai
- System Management and Supervision Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Kata Kerekes
- System Management and Supervision Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Zsuzsa Farkas
- Digital Food Institute, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Ákos Jóźwiak
- Digital Food Institute, University of Veterinary Medicine Budapest, Budapest, Hungary
| | | |
Collapse
|
15
|
Cao J, Wang M, Yu H, She Y, Cao Z, Ye J, Abd El-Aty AM, Hacımüftüoğlu A, Wang J, Lao S. An Overview on the Mechanisms and Applications of Enzyme Inhibition-Based Methods for Determination of Organophosphate and Carbamate Pesticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7298-7315. [PMID: 32551623 DOI: 10.1021/acs.jafc.0c01962] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Acetylcholinesterase inactivating compounds, such as organophosphate (OP) and carbamate (CM) pesticides, are widely used in agriculture to ensure sustainable production of food and feed. As a consequence of their applications, they would result in neurotoxicity, even death. In this essence, the development of enzyme inhibition methods still shows great significance as rapid detection techniques for on-site large-scale screening of OPs and CMs. Initially, mechanisms and applications of various enzyme-inhibition-based methods and devices, including optical colorimetric assay, fluorometric assays, electrochemical biosensors, rapid test card, and microfluidic device, are highlighted in the present overview. Further, to enhance the enzyme sensitivity for detection; alternative enzyme sources or high yield enrichment methods (such as abzyme, artificial enzyme, and recombinant enzyme), as well as enzyme reactivation and identification, are also addressed in this comprehensive overview.
Collapse
Affiliation(s)
- Jing Cao
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - Miao Wang
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - He Yu
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - Yongxin She
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - Zhen Cao
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - Jiaming Ye
- Yangtze Delta Region Institute of Tsinghua University, 314006, Jiaxing, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Jing Wang
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, 53003, Nanning, China
| | - Shuibing Lao
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, 53003, Nanning, China
| |
Collapse
|
16
|
Vavricka CJ, Hasunuma T, Kondo A. Dynamic Metabolomics for Engineering Biology: Accelerating Learning Cycles for Bioproduction. Trends Biotechnol 2020; 38:68-82. [DOI: 10.1016/j.tibtech.2019.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022]
|
17
|
Fernández R, Garate J, Tolentino-Cortez T, Herraiz A, Lombardero L, Ducrocq F, Rodríguez-Puertas R, Trifilieff P, Astigarraga E, Barreda-Gómez G, Fernández JA. Microarray and Mass Spectrometry-Based Methodology for Lipid Profiling of Tissues and Cell Cultures. Anal Chem 2019; 91:15967-15973. [PMID: 31751120 DOI: 10.1021/acs.analchem.9b04529] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The recent developments in mass spectrometry have revealed the importance of lipids as biomarkers in the context of different diseases and as indicators of the cell's homeostasis. However, further advances are required to unveil the complex relationships between lipid classes and lipid species with proteins. Here, we present a new methodology that combines microarrays with mass spectrometry to obtain the lipid fingerprint of samples of a different nature in a standardized and fast way, with minimal sample consumption. As a proof of concept, we use the methodology to obtain the lipid fingerprint of 20 rat tissues and to create a lipid library for tissue classification. Then, we combine those results with immunohistochemistry and enzymatic assays to unveil the relationship between some lipid species and two enzymes. Finally, we demonstrate the performance of the methodology to explore changes in lipid composition of the nucleus accumbens from mice subjected to two lipid diets.
Collapse
Affiliation(s)
- Roberto Fernández
- Research Department , IMG Pharma Biotech S.L., BIC Bizkaia (612), 48160 - Derio , Spain
| | | | | | - Ainara Herraiz
- Research Department , IMG Pharma Biotech S.L., BIC Bizkaia (612), 48160 - Derio , Spain
| | | | - Fabien Ducrocq
- University of Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286 , F-33000 , Bordeaux , France
| | - Rafael Rodríguez-Puertas
- Neurodegenerative Diseases , Biocruces Bizkaia Health Research Institute , 48903 Barakaldo , Spain
| | - Pierre Trifilieff
- University of Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286 , F-33000 , Bordeaux , France
| | - Egoitz Astigarraga
- Research Department , IMG Pharma Biotech S.L., BIC Bizkaia (612), 48160 - Derio , Spain
| | - Gabriel Barreda-Gómez
- Research Department , IMG Pharma Biotech S.L., BIC Bizkaia (612), 48160 - Derio , Spain
| | | |
Collapse
|
18
|
Elpa DP, Prabhu GRD, Wu SP, Tay KS, Urban PL. Automation of mass spectrometric detection of analytes and related workflows: A review. Talanta 2019; 208:120304. [PMID: 31816721 DOI: 10.1016/j.talanta.2019.120304] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
The developments in mass spectrometry (MS) in the past few decades reveal the power and versatility of this technology. MS methods are utilized in routine analyses as well as research activities involving a broad range of analytes (elements and molecules) and countless matrices. However, manual MS analysis is gradually becoming a thing of the past. In this article, the available MS automation strategies are critically evaluated. Automation of analytical workflows culminating with MS detection encompasses involvement of automated operations in any of the steps related to sample handling/treatment before MS detection, sample introduction, MS data acquisition, and MS data processing. Automated MS workflows help to overcome the intrinsic limitations of MS methodology regarding reproducibility, throughput, and the expertise required to operate MS instruments. Such workflows often comprise automated off-line and on-line steps such as sampling, extraction, derivatization, and separation. The most common instrumental tools include autosamplers, multi-axis robots, flow injection systems, and lab-on-a-chip. Prototyping customized automated MS systems is a way to introduce non-standard automated features to MS workflows. The review highlights the enabling role of automated MS procedures in various sectors of academic research and industry. Examples include applications of automated MS workflows in bioscience, environmental studies, and exploration of the outer space.
Collapse
Affiliation(s)
- Decibel P Elpa
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Rd., Hsinchu, 300, Taiwan; Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Gurpur Rakesh D Prabhu
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Rd., Hsinchu, 300, Taiwan; Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Shu-Pao Wu
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Rd., Hsinchu, 300, Taiwan.
| | - Kheng Soo Tay
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan.
| |
Collapse
|
19
|
Santbergen MJ, van der Zande M, Bouwmeester H, Nielen MW. Online and in situ analysis of organs-on-a-chip. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Gao D, Jin F, Zhou M, Jiang Y. Recent advances in single cell manipulation and biochemical analysis on microfluidics. Analyst 2019; 144:766-781. [PMID: 30298867 DOI: 10.1039/c8an01186a] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Single cell analysis has become of great interest with unprecedented capabilities for the systematic investigation of cell-to-cell variation in large populations. Rapid and multi-parametric analysis of intercellular biomolecules at the single-cell level is imperative for the improvement of early disease diagnosis and personalized medicine. However, the small size of cells and the low concentration levels of target biomolecules are critical challenges for single cell analysis. In recent years, microfluidic platforms capable of handling small-volume fluid have been demonstrated to be powerful tools for single cell analysis. In addition, microfluidic techniques allow for precise control of the localized microenvironment, which yield more accurate outcomes. Many different microfluidic techniques have been greatly improved for highly efficient single-cell manipulation and highly sensitive detection over the past few decades. To date, microfluidics-based single cell analysis has become the hot research topic in this field. In this review, we particularly highlight the advances in this field during the past three years in the following three aspects: (1) microfluidic single cell manipulation based on microwells, micropatterns, droplets, traps and flow cytometric methods; (2) detection methods based on fluorescence, mass spectrometry, electrochemical, and polymerase chain reaction-based analysis; (3) applications in the fields of small molecule detection, protein analysis, multidrug resistance analysis, and single cell sequencing with droplet microfluidics. We also discuss future research opportunities by focusing on key performances of throughput, multiparametric target detection and data processing.
Collapse
Affiliation(s)
- Dan Gao
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China.
| | | | | | | |
Collapse
|
21
|
Piendl SK, Raddatz CR, Hartner NT, Thoben C, Warias R, Zimmermann S, Belder D. 2D in Seconds: Coupling of Chip-HPLC with Ion Mobility Spectrometry. Anal Chem 2019; 91:7613-7620. [DOI: 10.1021/acs.analchem.9b00302] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sebastian K. Piendl
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Christian-Robert Raddatz
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstrasse 9A, 30167 Hannover, Germany
| | - Nora T. Hartner
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Christian Thoben
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstrasse 9A, 30167 Hannover, Germany
| | - Rico Warias
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Stefan Zimmermann
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstrasse 9A, 30167 Hannover, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
22
|
Kane KIW, Moreno EL, Hachi S, Walter M, Jarazo J, Oliveira MAP, Hankemeier T, Vulto P, Schwamborn JC, Thoma M, Fleming RMT. Automated microfluidic cell culture of stem cell derived dopaminergic neurons. Sci Rep 2019; 9:1796. [PMID: 30741972 PMCID: PMC6370836 DOI: 10.1038/s41598-018-34828-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 10/12/2018] [Indexed: 12/22/2022] Open
Abstract
Parkinson’s disease is a slowly progressive neurodegenerative disease characterised by dysfunction and death of selectively vulnerable midbrain dopaminergic neurons and the development of human in vitro cellular models of the disease is a major challenge in Parkinson’s disease research. We constructed an automated cell culture platform optimised for long-term maintenance and monitoring of different cells in three dimensional microfluidic cell culture devices. The system can be flexibly adapted to various experimental protocols and features time-lapse imaging microscopy for quality control and electrophysiology monitoring to assess cellular activity. Using this system, we continuously monitored the differentiation of Parkinson’s disease patient derived human neuroepithelial stem cells into midbrain specific dopaminergic neurons. Calcium imaging confirmed the electrophysiological activity of differentiated neurons and immunostaining confirmed the efficiency of the differentiation protocol. This system is the first example of an automated Organ-on-a-Chip culture and has the potential to enable a versatile array of in vitro experiments for patient-specific disease modelling.
Collapse
Affiliation(s)
- Khalid I W Kane
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 avenue des Hauts-Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Edinson Lucumi Moreno
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 avenue des Hauts-Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg.,Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Siham Hachi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 avenue des Hauts-Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Moriz Walter
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Stuttgart, Germany
| | - Javier Jarazo
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 avenue des Hauts-Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Miguel A P Oliveira
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 avenue des Hauts-Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Thomas Hankemeier
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Paul Vulto
- Mimetas B.V, PO Box 11002, 2301EA, Leiden, The Netherlands
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 avenue des Hauts-Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Martin Thoma
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Stuttgart, Germany
| | - Ronan M T Fleming
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 avenue des Hauts-Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg. .,Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| |
Collapse
|
23
|
Saar KL, Peter Q, Müller T, Challa PK, Herling TW, Knowles TPJ. Rapid two-dimensional characterisation of proteins in solution. MICROSYSTEMS & NANOENGINEERING 2019; 5:33. [PMID: 31636924 PMCID: PMC6799820 DOI: 10.1038/s41378-019-0072-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/25/2019] [Accepted: 03/21/2019] [Indexed: 05/20/2023]
Abstract
Microfluidic platforms provide an excellent basis for working with heterogeneous samples and separating biomolecular components at high throughput, with high recovery rates and by using only very small sample volumes. To date, several micron scale platforms with preparative capabilities have been demonstrated. Here we describe and demonstrate a microfluidic device that brings preparative and analytical operations together onto a single chip and thereby allows the acquisition of multidimensional information. We achieve this objective by using a free-flow electrophoretic separation approach that directs fractions of sample into an on-chip analysis unit, where the fractions are characterised through a microfluidic diffusional sizing process. This combined approach therefore allows simultaneously quantifying the sizes and the charges of components in heterogenous mixtures. We illustrate the power of the platform by describing the size distribution of a mixture comprising components which are close in size and cannot be identified as individual components using state-of-the-art solution sizing techniques on their own. Furthermore, we show that the platform can be used for two-dimensional fingerprinting of heterogeneous protein mixtures within tens of seconds, opening up a possibility to obtain multiparameter data on biomolecular systems on a minute timescale.
Collapse
Affiliation(s)
- Kadi L. Saar
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Quentin Peter
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Ave, Cambridge, CB3 0HE UK
| | | | - Pavan K. Challa
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Ave, Cambridge, CB3 0HE UK
| | - Therese W. Herling
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Ave, Cambridge, CB3 0HE UK
| |
Collapse
|
24
|
Bodénès P, Wang HY, Lee TH, Chen HY, Wang CY. Microfluidic techniques for enhancing biofuel and biorefinery industry based on microalgae. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:33. [PMID: 30815031 PMCID: PMC6376642 DOI: 10.1186/s13068-019-1369-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/03/2019] [Indexed: 05/03/2023]
Abstract
This review presents a critical assessment of emerging microfluidic technologies for the application on biological productions of biofuels and other chemicals from microalgae. Comparisons of cell culture designs for the screening of microalgae strains and growth conditions are provided with three categories: mechanical traps, droplets, or microchambers. Emerging technologies for the in situ characterization of microalgae features and metabolites are also presented and evaluated. Biomass and secondary metabolite productivities obtained at microscale are compared with the values obtained at bulk scale to assess the feasibility of optimizing large-scale operations using microfluidic platforms. The recent studies in microsystems for microalgae pretreatment, fractionation and extraction of metabolites are also reviewed. Finally, comments toward future developments (high-pressure/-temperature process; solvent-resistant devices; omics analysis, including genome/epigenome, proteome, and metabolome; biofilm reactors) of microfluidic techniques for microalgae applications are provided.
Collapse
Affiliation(s)
- Pierre Bodénès
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsiang-Yu Wang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Nuclear Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Tsung-Hua Lee
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Yu Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Yen Wang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
25
|
Zhang S, Chen X. CO2 laser ablation of microchannel on PMMA substrate for Koch fractal micromixer. JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING 2019; 41:45. [DOI: 10.1007/s40430-018-1551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/20/2018] [Indexed: 01/12/2025]
|
26
|
Štěpánová S, Kašička V. Recent developments and applications of capillary and microchip electrophoresis in proteomics and peptidomics (2015-mid 2018). J Sep Sci 2018; 42:398-414. [DOI: 10.1002/jssc.201801090] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry; The Czech Academy of Sciences; Prague 6 Czechia
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry; The Czech Academy of Sciences; Prague 6 Czechia
| |
Collapse
|
27
|
Ashammakhi N, Wesseling-Perry K, Hasan A, Elkhammas E, Zhang YS. Kidney-on-a-chip: untapped opportunities. Kidney Int 2018; 94:1073-1086. [PMID: 30366681 DOI: 10.1016/j.kint.2018.06.034] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 06/11/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
The organs-on-a-chip technology has shown strong promise in mimicking the complexity of native tissues in vitro and ex vivo, and recently significant advances have been made in applying this technology to studies of the kidney and its diseases. Individual components of the nephron, including the glomerulus, proximal tubule, and distal tubule/medullary collecting duct, have been successfully mimicked using organs-on-a-chip technology and yielding strong promises in advancing the field of ex vivo drug toxicity testing and augmenting renal replacement therapies. Although these models show promise over 2-dimensional cell systems in recapitulating important nephron features in vitro, nephron functions, such as tubular secretion, intracellular metabolism, and renin and vitamin D production, as well as prostaglandin synthesis are still poorly recapitulated in on-chip models. Moreover, construction of multiple-renal-components-on-a-chip models, in which various structures and cells of the renal system interact with each other, has remained a challenge. Overall, on-chip models show promise in advancing models of normal and pathological renal physiology, in predicting nephrotoxicity, and in advancing treatment of chronic kidney diseases.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Division of Plastic Surgery, Department of Surgery, Oulu University Hospital, Oulu, Finland; Biotechnology Research Center, Libyan Authority for Research, Science and Technology, Tripoli, Libya.
| | - Katherine Wesseling-Perry
- Division of Nephrology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar.
| | - Elmahdi Elkhammas
- Division of Transplantation Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Comprehensive Transplant Center, Columbus, Ohio, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| |
Collapse
|
28
|
Crabtree GW, Gogos JA. Role of Endogenous Metabolite Alterations in Neuropsychiatric Disease. ACS Chem Neurosci 2018; 9:2101-2113. [PMID: 30044078 DOI: 10.1021/acschemneuro.8b00145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The potential role in neuropsychiatric disease risk arising from alterations and derangements of endogenous small-molecule metabolites remains understudied. Alterations of endogenous metabolite concentrations can arise in multiple ways. Marked derangements of single endogenous small-molecule metabolites are found in a large group of rare genetic human diseases termed "inborn errors of metabolism", many of which are associated with prominent neuropsychiatric symptomology. Whether such metabolites act neuroactively to directly lead to distinct neural dysfunction has been frequently hypothesized but rarely demonstrated unequivocally. Here we discuss this disease concept in the context of our recent findings demonstrating that neural dysfunction arising from accumulation of the schizophrenia-associated metabolite l-proline is due to its structural mimicry of the neurotransmitter GABA that leads to alterations in GABA-ergic short-term synaptic plasticity. For cases in which a similar direct action upon neurotransmitter binding sites is suspected, we lay out a systematic approach that can be extended to assessing the potential disruptive action of such candidate disease metabolites. To address the potentially important and broader role in neuropsychiatric disease, we also consider whether the more subtle yet more ubiquitous variations in endogenous metabolites arising from natural allelic variation may likewise contribute to disease risk but in a more complex and nuanced manner.
Collapse
Affiliation(s)
- Gregg W. Crabtree
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, New York 10032, United States
- Zuckerman Mind Brain Behavior Institute, New York, New York 10025, United States
| | - Joseph A. Gogos
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, New York 10032, United States
- Zuckerman Mind Brain Behavior Institute, New York, New York 10025, United States
- Department of Neuroscience, Columbia University Medical Center, New York, New York 10032, United States
| |
Collapse
|
29
|
Sheathless coupling of microchip electrophoresis to ESI-MS utilising an integrated photo polymerised membrane for electric contacting. Anal Bioanal Chem 2018; 410:5741-5750. [PMID: 29974150 DOI: 10.1007/s00216-018-1226-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/12/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
Abstract
In this article, we present a novel approach for the sheathless coupling of microchip electrophoresis (MCE) with electrospray mass spectrometry (ESI-MS). The key element is an ion-conductive hydrogel membrane, placed between the separation channel and an adjacent microfluidic supporting channel, contacted via platinum electrodes. This solves the persistent challenge in hyphenation of mass spectrometry to chip electrophoresis, to ensure a reliable electrical connection at the end of the electrophoresis channel without sacrificing separation performance and sensitivity. Stable electric contacting is achieved via a Y-shaped supporting channel structure, separated from the main channel by a photo polymerised, ion permeable hydrogel membrane. Thus, the potential gradient required for performing electrophoretic separations can be generated while simultaneously preventing gas formation due to electrolysis. In contrast to conventional make-up or sheathflow approaches, sample dilution is also avoided. Rapid prototyping allowed the study of different chip-based approaches, i.e. sheathless, open sheathflow and electrode support channel designs, for coupling MCE to ESI-MS. The performance was evaluated with fluorescence microscopy and mass spectrometric detection. The obtained results revealed that the detection sensitivity obtained in such Y-channel chips with integrated hydrogel membranes was superior because sample dilution or loss was prevented. Furthermore, band broadening is reduced compared to similar open structures without a membrane.
Collapse
|
30
|
Zhu MZ, Chen GL, Wu JL, Li N, Liu ZH, Guo MQ. Recent development in mass spectrometry and its hyphenated techniques for the analysis of medicinal plants. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:365-374. [PMID: 29687660 DOI: 10.1002/pca.2763] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 05/24/2023]
Abstract
INTRODUCTION Medicinal plants are gaining increasing attention worldwide due to their empirical therapeutic efficacy and being a huge natural compound pool for new drug discovery and development. The efficacy, safety and quality of medicinal plants are the main concerns, which are highly dependent on the comprehensive analysis of chemical components in the medicinal plants. With the advances in mass spectrometry (MS) techniques, comprehensive analysis and fast identification of complex phytochemical components have become feasible, and may meet the needs, for the analysis of medicinal plants. OBJECTIVE Our aim is to provide an overview on the latest developments in MS and its hyphenated technique and their applications for the comprehensive analysis of medicinal plants. METHODOLOGY Application of various MS and its hyphenated techniques for the analysis of medicinal plants, including but not limited to one-dimensional chromatography, multiple-dimensional chromatography coupled to MS, ambient ionisation MS, and mass spectral database, have been reviewed and compared in this work. RESULTS Recent advancs in MS and its hyphenated techniques have made MS one of the most powerful tools for the analysis of complex extracts from medicinal plants due to its excellent separation and identification ability, high sensitivity and resolution, and wide detection dynamic range. CONCLUSION To achieve high-throughput or multi-dimensional analysis of medicinal plants, the state-of-the-art MS and its hyphenated techniques have played, and will continue to play a great role in being the major platform for their further research in order to obtain insight into both their empirical therapeutic efficacy and quality control.
Collapse
Affiliation(s)
- Ming-Zhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, P. R. China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P. R. China
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Gui-Lin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P. R. China
- The Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Jian-Lin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Na Li
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Zhong-Hua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, P. R. China
| | - Ming-Quan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P. R. China
- The Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, P. R. China
| |
Collapse
|
31
|
Korany MA, Mahgoub H, Haggag RS, Ragab MAA, Elmallah OA. Green chemistry: Analytical and chromatography. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1373672] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mohamed A. Korany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Hoda Mahgoub
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Rim S. Haggag
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Alexandria, El-Messalah, Alexandria, Egypt
- Department of Analytical and Pharmaceutical Chemistry, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Somouha, Alexandria, Egypt
| | - Marwa A. A. Ragab
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Osama A. Elmallah
- SPIMACO MISR for Pharmaceutical Industries, Borg El-Arab, Alexandria, Egypt
| |
Collapse
|
32
|
Bush J, Maulbetsch W, Lepoitevin M, Wiener B, Mihovilovic Skanata M, Moon W, Pruitt C, Stein D. The nanopore mass spectrometer. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:113307. [PMID: 29195372 PMCID: PMC5707180 DOI: 10.1063/1.4986043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/20/2017] [Indexed: 05/14/2023]
Abstract
We report the design of a mass spectrometer featuring an ion source that delivers ions directly into high vacuum from liquid inside a capillary with a sub-micrometer-diameter tip. The surface tension of water and formamide is sufficient to maintain a stable interface with high vacuum at the tip, and the gas load from the interface is negligible, even during electrospray. These conditions lifted the usual requirement of a differentially pumped system. The absence of a background gas also opened up the possibility of designing ion optics to collect and focus ions in order to achieve high overall transmission and detection efficiencies. We describe the operation and performance of the instrument and present mass spectra from solutions of salt ions and DNA bases in formamide and salt ions in water. The spectra show singly charged solute ions clustered with a small number of solvent molecules.
Collapse
Affiliation(s)
- Joseph Bush
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| | - William Maulbetsch
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| | - Mathilde Lepoitevin
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| | - Benjamin Wiener
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| | | | - Wooyoung Moon
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| | - Cole Pruitt
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| | - Derek Stein
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
33
|
Jiang M, Severson KA, Love JC, Madden H, Swann P, Zang L, Braatz RD. Opportunities and challenges of real-time release testing in biopharmaceutical manufacturing. Biotechnol Bioeng 2017; 114:2445-2456. [DOI: 10.1002/bit.26383] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/18/2017] [Accepted: 07/10/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Mo Jiang
- Massachusetts Institute of Technology; Department of Chemical Engineering; Cambridge Massachusetts
| | - Kristen A. Severson
- Massachusetts Institute of Technology; Department of Chemical Engineering; Cambridge Massachusetts
| | - John Christopher Love
- Massachusetts Institute of Technology; Department of Chemical Engineering; Cambridge Massachusetts
| | | | | | - Li Zang
- Biogen; Cambridge Massachusetts
| | - Richard D. Braatz
- Massachusetts Institute of Technology; Department of Chemical Engineering; Cambridge Massachusetts
| |
Collapse
|
34
|
|
35
|
Pedde RD, Li H, Borchers CH, Akbari M. Microfluidic-Mass Spectrometry Interfaces for Translational Proteomics. Trends Biotechnol 2017; 35:954-970. [PMID: 28755975 DOI: 10.1016/j.tibtech.2017.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/05/2017] [Accepted: 06/09/2017] [Indexed: 12/29/2022]
Abstract
Interfacing mass spectrometry (MS) with microfluidic chips (μchip-MS) holds considerable potential to transform a clinician's toolbox, providing translatable methods for the early detection, diagnosis, monitoring, and treatment of noncommunicable diseases by streamlining and integrating laborious sample preparation workflows on high-throughput, user-friendly platforms. Overcoming the limitations of competitive immunoassays - currently the gold standard in clinical proteomics - μchip-MS can provide unprecedented access to complex proteomic assays having high sensitivity and specificity, but without the labor, costs, and complexities associated with conventional MS sample processing. This review surveys recent μchip-MS systems for clinical applications and examines their emerging role in streamlining the development and translation of MS-based proteomic assays by alleviating many of the challenges that currently inhibit widespread clinical adoption.
Collapse
Affiliation(s)
- R Daniel Pedde
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada; University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, 3101-4464 Markham St., Victoria, BC, V8Z 7X8, Canada
| | - Huiyan Li
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, 3101-4464 Markham St., Victoria, BC, V8Z 7X8, Canada
| | - Christoph H Borchers
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, 3101-4464 Markham St., Victoria, BC, V8Z 7X8, Canada; Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Suite 720, Montreal, QC, H4A 3T2, Canada; Proteomics Centre, Jewish General Hospital, McGill University, 3755 Cote-Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada.
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada; Centre for Biomedical Research (CBR), University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada; Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
36
|
Sesen M, Alan T, Neild A. Droplet control technologies for microfluidic high throughput screening (μHTS). LAB ON A CHIP 2017. [PMID: 28631799 DOI: 10.1039/c7lc00005g] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The transition from micro well plate and robotics based high throughput screening (HTS) to chip based screening has already started. This transition promises reduced droplet volumes thereby decreasing the amount of fluids used in these studies. Moreover, it significantly boosts throughput allowing screening to keep pace with the overwhelming number of molecular targets being discovered. In this review, we analyse state-of-the-art droplet control technologies that exhibit potential to be used in this new generation of screening devices. Since these systems are enclosed and usually planar, even some of the straightforward methods used in traditional HTS such as pipetting and reading can prove challenging to replicate in microfluidic high throughput screening (μHTS). We critically review the technologies developed for this purpose in depth, describing the underlying physics and discussing the future outlooks.
Collapse
Affiliation(s)
- Muhsincan Sesen
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | | | | |
Collapse
|
37
|
Schulze S, Pahl M, Stolz F, Appun J, Abel B, Schneider C, Belder D. Liquid Beam Desorption Mass Spectrometry for the Investigation of Continuous Flow Reactions in Microfluidic Chips. Anal Chem 2017; 89:6175-6181. [PMID: 28489359 DOI: 10.1021/acs.analchem.7b01026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we present the combination of microfluidic chips and mass spectrometry employing laser-induced liquid beam ionization/desorption. The developed system was evaluated with respect to stable beam generation and laser parameters as well as solvent compatibility. The device was exemplarily applied to study a vinylogous Mannich reaction performed in continuous flow on chip. Fast processes can be observed with this technique which in the future could be beneficial for studying intermediates or contribute to the elucidation of reaction mechanisms.
Collapse
Affiliation(s)
- Sandra Schulze
- Institute of Analytical Chemistry, University Leipzig , Linnéstraße 3, 04103 Leipzig, Germany
| | - Maik Pahl
- Institute of Analytical Chemistry, University Leipzig , Linnéstraße 3, 04103 Leipzig, Germany
| | - Ferdinand Stolz
- Wilhelm-Ostwald-Institute of Physical and Theoretical Chemistry, University Leipzig , Linnéstraße 3, 04103 Leipzig, Germany.,Leibniz Institute of Surface Modification (IOM) , Permoserstraße 15, 04318 Leipzig, Germany
| | - Johannes Appun
- Institute of Organic Chemistry, University Leipzig , Johannisallee 29, 04103 Leipzig, Germany
| | - Bernd Abel
- Wilhelm-Ostwald-Institute of Physical and Theoretical Chemistry, University Leipzig , Linnéstraße 3, 04103 Leipzig, Germany.,Leibniz Institute of Surface Modification (IOM) , Permoserstraße 15, 04318 Leipzig, Germany
| | - Christoph Schneider
- Institute of Organic Chemistry, University Leipzig , Johannisallee 29, 04103 Leipzig, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, University Leipzig , Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
38
|
Abstract
The preclinical research process is a cycle of idea generation, experimentation, and reporting of results. The biomedical research community relies on the reproducibility of published discoveries to create new lines of research and to translate research findings into therapeutic applications. Since 2012, when scientists from Amgen reported that they were able to reproduce only 6 of 53 "landmark" preclinical studies, the biomedical research community began discussing the scale of the reproducibility problem and developing initiatives to address critical challenges. Global Biological Standards Institute (GBSI) released the "Case for Standards" in 2013, one of the first comprehensive reports to address the rising concern of irreproducible biomedical research. Further attention was drawn to issues that limit scientific self-correction, including reporting and publication bias, underpowered studies, lack of open access to methods and data, and lack of clearly defined standards and guidelines in areas such as reagent validation. To evaluate the progress made towards reproducibility since 2013, GBSI identified and examined initiatives designed to advance quality and reproducibility. Through this process, we identified key roles for funders, journals, researchers and other stakeholders and recommended actions for future progress. This paper describes our findings and conclusions.
Collapse
Affiliation(s)
| | | | - Rosann Wisman
- Global Biological Standards Institute, Washington, DC, 20036, USA
| |
Collapse
|
39
|
Karouia F, Peyvan K, Pohorille A. Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth. Biotechnol Adv 2017; 35:905-932. [PMID: 28433608 DOI: 10.1016/j.biotechadv.2017.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 12/18/2022]
Abstract
Space biotechnology is a nascent field aimed at applying tools of modern biology to advance our goals in space exploration. These advances rely on our ability to exploit in situ high throughput techniques for amplification and sequencing DNA, and measuring levels of RNA transcripts, proteins and metabolites in a cell. These techniques, collectively known as "omics" techniques have already revolutionized terrestrial biology. A number of on-going efforts are aimed at developing instruments to carry out "omics" research in space, in particular on board the International Space Station and small satellites. For space applications these instruments require substantial and creative reengineering that includes automation, miniaturization and ensuring that the device is resistant to conditions in space and works independently of the direction of the gravity vector. Different paths taken to meet these requirements for different "omics" instruments are the subjects of this review. The advantages and disadvantages of these instruments and technological solutions and their level of readiness for deployment in space are discussed. Considering that effects of space environments on terrestrial organisms appear to be global, it is argued that high throughput instruments are essential to advance (1) biomedical and physiological studies to control and reduce space-related stressors on living systems, (2) application of biology to life support and in situ resource utilization, (3) planetary protection, and (4) basic research about the limits on life in space. It is also argued that carrying out measurements in situ provides considerable advantages over the traditional space biology paradigm that relies on post-flight data analysis.
Collapse
Affiliation(s)
- Fathi Karouia
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS239-4, Moffett Field, CA 94035, USA; NASA Ames Research Center, Flight Systems Implementation Branch, Moffett Field, CA 94035, USA.
| | | | - Andrew Pohorille
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS239-4, Moffett Field, CA 94035, USA.
| |
Collapse
|
40
|
|
41
|
Popescu L, Robu AC, Zamfir AD. Sustainable Nanosystem Development for Mass Spectrometry. SUSTAINABLE NANOSYSTEMS DEVELOPMENT, PROPERTIES, AND APPLICATIONS 2017. [DOI: 10.4018/978-1-5225-0492-4.ch014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nowadays, considerable efforts are invested into development of sustainable nanosystems as front end technology for either Electrospray Ionization (ESI) or Matrix-Assisted Laser Desorption/Ionization (MALDI) mass spectrometry (MS). Since their first introduction in MS, nanofluidics demonstrated a high potential to discover novel biopolymer species. These systems confirmed the unique ability to offer structural elucidation of molecular species, which often represent valuable biomarkers of severe diseases. In view of these major advantages of nanofluidics-MS, this chapter reviews the strategies, which allowed a successful development of nanotechnology for MS and the applications in biological and clinical research. The first part will be dedicated to the principles and technical developments of advanced nanosystems for electrospray and MALDI MS. The second part will highlight the most important applications in clinical proteomics and glycomics. Finally, this chapter will emphasize that advanced nanosystems-MS has real perspectives to become a routine method for early diagnosis of severe pathologies.
Collapse
Affiliation(s)
- Laurentiu Popescu
- West University of Timişoara, Romania & Research and Development National Institute for Electrochemistry and Condensed Matter (INCEMC) Timişoara, Romania
| | - Adrian C. Robu
- West University of Timişoara, Romania & Research and Development National Institute for Electrochemistry and Condensed Matter (INCEMC) Timişoara, Romania
| | - Alina D. Zamfir
- Research and Development National Institute for Electrochemistry and Condensed Matter (INCEMC) Timişoara, Romania & Aurel Vlaicu University of Arad, Romania
| |
Collapse
|
42
|
Tsao CW. Polymer Microfluidics: Simple, Low-Cost Fabrication Process Bridging Academic Lab Research to Commercialized Production. MICROMACHINES 2016; 7:mi7120225. [PMID: 30404397 PMCID: PMC6189853 DOI: 10.3390/mi7120225] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/26/2016] [Accepted: 12/07/2016] [Indexed: 12/23/2022]
Abstract
Using polymer materials to fabricate microfluidic devices provides simple, cost effective, and disposal advantages for both lab-on-a-chip (LOC) devices and micro total analysis systems (μTAS). Polydimethylsiloxane (PDMS) elastomer and thermoplastics are the two major polymer materials used in microfluidics. The fabrication of PDMS and thermoplastic microfluidic device can be categorized as front-end polymer microchannel fabrication and post-end microfluidic bonding procedures, respectively. PDMS and thermoplastic materials each have unique advantages and their use is indispensable in polymer microfluidics. Therefore, the proper selection of polymer microfabrication is necessary for the successful application of microfluidics. In this paper, we give a short overview of polymer microfabrication methods for microfluidics and discuss current challenges and future opportunities for research in polymer microfluidics fabrication. We summarize standard approaches, as well as state-of-art polymer microfluidic fabrication methods. Currently, the polymer microfluidic device is at the stage of technology transition from research labs to commercial production. Thus, critical consideration is also required with respect to the commercialization aspects of fabricating polymer microfluidics. This article provides easy-to-understand illustrations and targets to assist the research community in selecting proper polymer microfabrication strategies in microfluidics.
Collapse
Affiliation(s)
- Chia-Wen Tsao
- Department of Mechanical Engineering, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
43
|
Wang J, Zhao J, Wang Y, Wang W, Gao Y, Xu R, Zhao W. A New Microfluidic Device for Classification of Microalgae Cells Based on Simultaneous Analysis of Chlorophyll Fluorescence, Side Light Scattering, Resistance Pulse Sensing. MICROMACHINES 2016; 7:mi7110198. [PMID: 30404370 PMCID: PMC6190122 DOI: 10.3390/mi7110198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 01/09/2023]
Abstract
Fast on-site monitoring of foreign microalgae species carried by ship ballast water has drawn more and more attention. In this paper, we presented a new method and a compact device of classification of microalgae cells by simultaneous detection of three kinds of signals of single microalgae cells in a disposable microfluidic chip. The microfluidic classification device has advantages of fast detection, low cost, and portability. The species of a single microalgae cell can be identified by simultaneous detection of three signals of chlorophyll fluorescence (CF), side light scattering (SLS), and resistance pulse sensing (RPS) of the microalgae cell. These three signals represent the different characteristics of a microalgae cell. A compact device was designed to detect these three signals of a microalgae cell simultaneously. In order to demonstrate the performance of the developed system, the comparison experiments of the mixed samples of three different species of microalgae cells between the developed system and a commercial flow cytometer were conducted. The results show that three kinds of microalgae cells can be distinguished clearly by our developed system and the commercial flow cytometer and both results have good agreement.
Collapse
Affiliation(s)
- Junsheng Wang
- College of Information and Science Technology, Dalian Maritime University, Dalian 116026, China.
- Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University, Dalian 116026, China.
| | - Jinsong Zhao
- College of Information and Science Technology, Dalian Maritime University, Dalian 116026, China.
| | - Yanjuan Wang
- College of Information and Science Technology, Dalian Maritime University, Dalian 116026, China.
| | - Wei Wang
- College of Information and Science Technology, Dalian Maritime University, Dalian 116026, China.
| | - Yushu Gao
- College of Information and Science Technology, Dalian Maritime University, Dalian 116026, China.
| | - Runze Xu
- College of Information and Science Technology, Dalian Maritime University, Dalian 116026, China.
| | - Wenshuang Zhao
- College of Information and Science Technology, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
44
|
Hung LY, Wang CH, Fu CY, Gopinathan P, Lee GB. Microfluidics in the selection of affinity reagents for the detection of cancer: paving a way towards future diagnostics. LAB ON A CHIP 2016; 16:2759-74. [PMID: 27381813 DOI: 10.1039/c6lc00662k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Microfluidic technologies have miniaturized a variety of biomedical applications, and these chip-based systems have several significant advantages over their large-scale counterparts. Recently, this technology has been used for automating labor-intensive and time-consuming screening processes, whereby affinity reagents, including aptamers, peptides, antibodies, polysaccharides, glycoproteins, and a variety of small molecules, are used to probe for molecular biomarkers. When compared to conventional methods, the microfluidic approaches are faster, more compact, require considerably smaller quantities of samples and reagents, and can be automated. Furthermore, they allow for more precise control of reaction conditions (e.g., pH, temperature, and shearing forces) such that more efficient screening can be performed. A variety of affinity reagents for targeting cancer cells or cancer biomarkers are now available and will likely replace conventional antibodies. In this review article, the selection of affinity reagents for cancer cells or cancer biomarkers on microfluidic platforms is reviewed with the aim of highlighting the utility of such approaches in cancer diagnostics.
Collapse
MESH Headings
- Animals
- Antibodies, Immobilized/chemistry
- Antibodies, Immobilized/metabolism
- Antibodies, Neoplasm/chemistry
- Antibodies, Neoplasm/metabolism
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/metabolism
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Coculture Techniques
- Humans
- Immobilized Nucleic Acids/chemistry
- Immobilized Nucleic Acids/metabolism
- Immobilized Proteins/metabolism
- Lab-On-A-Chip Devices/trends
- Leukocytes/cytology
- Leukocytes/metabolism
- Ligands
- Mice
- Neoplasms/blood
- Neoplasms/diagnosis
- Neoplasms/metabolism
- Neoplasms/pathology
- Oligonucleotides/chemistry
- Oligonucleotides/metabolism
- Single-Chain Antibodies/chemistry
- Single-Chain Antibodies/metabolism
Collapse
Affiliation(s)
- Lien-Yu Hung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | | | | | | | | |
Collapse
|
45
|
Abstract
This review focuses on recent advances in the field of microfluidic liquid chromatography from January 2013 through April 2015. Articles are organized by the type of stationary phase support focusing on device fabrication, column preparation, and use for specific applications. Additionally, a comprehensive table comparing chromatographic figures of merit for the work described is included as Appendix A as a reference for readers.
Collapse
Affiliation(s)
- James P. Grinias
- Department of Chemistry, University of Michigan, Ann Arbor,
MI 48109, USA
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor,
MI 48109, USA
- Department of Pharmacology, University of Michigan, Ann
Arbor, MI 48109, USA
| |
Collapse
|
46
|
Oedit A, Ramautar R, Hankemeier T, Lindenburg PW. Electroextraction and electromembrane extraction: Advances in hyphenation to analytical techniques. Electrophoresis 2016; 37:1170-86. [PMID: 26864699 PMCID: PMC5071742 DOI: 10.1002/elps.201500530] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/06/2016] [Accepted: 01/31/2016] [Indexed: 12/16/2022]
Abstract
Electroextraction (EE) and electromembrane extraction (EME) are sample preparation techniques that both require an electric field that is applied over a liquid-liquid system, which enables the migration of charged analytes. Furthermore, both techniques are often used to pre-concentrate analytes prior to analysis. In this review an overview is provided of the body of literature spanning April 2012-November 2015 concerning EE and EME, focused on hyphenation to analytical techniques. First, the theoretical aspects of concentration enhancement in EE and EME are discussed to explain extraction recovery and enrichment factor. Next, overviews are provided of the techniques based on their hyphenation to LC, GC, CE, and direct detection. These overviews cover the compounds and matrices, experimental aspects (i.e. donor volume, acceptor volume, extraction time, extraction voltage, and separation time) and the analytical aspects (i.e. limit of detection, enrichment factor, and extraction recovery). Techniques that were either hyphenated online to analytical techniques or show high potential with respect to online hyphenation are highlighted. Finally, the potential future directions of EE and EME are discussed.
Collapse
Affiliation(s)
- Amar Oedit
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Rawi Ramautar
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Petrus W Lindenburg
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| |
Collapse
|
47
|
Dietze C, Hackl C, Gerhardt R, Seim S, Belder D. Chip-based electrochromatography coupled to ESI-MS detection. Electrophoresis 2016; 37:1345-52. [DOI: 10.1002/elps.201500543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Claudia Dietze
- Institute of Analytical Chemistry; University of Leipzig; Leipzig Germany
| | - Claudia Hackl
- Institute of Analytical Chemistry; University of Leipzig; Leipzig Germany
| | - Renata Gerhardt
- Institute of Analytical Chemistry; University of Leipzig; Leipzig Germany
| | - Stephan Seim
- Institute of Analytical Chemistry; University of Leipzig; Leipzig Germany
| | - Detlev Belder
- Institute of Analytical Chemistry; University of Leipzig; Leipzig Germany
| |
Collapse
|
48
|
Monkkonen L, Edgar JS, Winters D, Heron SR, Mackay CL, Masselon CD, Stokes AA, Langridge-Smith PR, Goodlett DR. Screen-printed digital microfluidics combined with surface acoustic wave nebulization for hydrogen-deuterium exchange measurements. J Chromatogr A 2016; 1439:161-166. [DOI: 10.1016/j.chroma.2015.12.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/16/2015] [Accepted: 12/17/2015] [Indexed: 01/15/2023]
|
49
|
Lotter C, Heiland JJ, Thurmann S, Mauritz L, Belder D. HPLC-MS with Glass Chips Featuring Monolithically Integrated Electrospray Emitters of Different Geometries. Anal Chem 2016; 88:2856-63. [DOI: 10.1021/acs.analchem.5b04583] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Carsten Lotter
- Institute
of Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Josef J. Heiland
- Institute
of Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Sebastian Thurmann
- Institute
of Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Laura Mauritz
- Institute
of Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Detlev Belder
- Institute
of Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
50
|
Litti L, Amendola V, Toffoli G, Meneghetti M. Detection of low-quantity anticancer drugs by surface-enhanced Raman scattering. Anal Bioanal Chem 2016; 408:2123-31. [DOI: 10.1007/s00216-016-9315-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/27/2015] [Accepted: 01/05/2016] [Indexed: 01/12/2023]
|