1
|
Yu S, Zhou X, Hu P, Chen H, Shen F, Yu C, Meng H, Zhang Y, Wu Y. Inhalable particle-bound marine biotoxins in a coastal atmosphere: Concentration levels, influencing factors and health risks. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128925. [PMID: 35460997 DOI: 10.1016/j.jhazmat.2022.128925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Characterizing marine biotoxins (MBs) composition in coastal aerosol particles has become essential to tracking sources of atmospheric contaminants and assessing human inhalable exposure risks to air particles. Here, coastal aerosol particles were collected over an almost 3-year period for the analysis of eight representative MBs, including brevetoxin (BTX), okadaic acid (OA), pectenotoxin-2 (PTX-2), domoic acid (DA), tetrodotoxin (TTX), saxitoxin (STX), ciguatoxin (CTX) and ω-Conotoxin. Our data showed that the levels of inhalable airborne marine biotoxins (AMBs) varied greatly among the subcategories and over time. Both in daytime and nighttime, a predominance of coarse-mode AMB particles was found for all the target AMBs. Based on the experimental data, we speculate that an ambient AMB might have multiple sources/production pathways, which include air-sea aerosol production and direct generation and release from toxigenic microalgae/bacteria suspended in surface seawater or air, and different sources may make different contribution. Regardless of the subcategory, the highest deposition efficiency of an individual AMB was found in the head airway region, followed by the alveolar and tracheobronchial regions. This study provides new information about inhalable MBs in the coastal atmosphere. The coexistence of various particle-bound MBs raises concerns about potential health risks from exposure to coastal air particles.
Collapse
Affiliation(s)
- Song Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xuedong Zhou
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Peiwen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Haoxuan Chen
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Fangxia Shen
- School of Space and Environment, Beihang University, Beijing 100083, China
| | - Chenglin Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - He Meng
- Qingdao Eco-Environment Monitoring Center of Shandong Province, Qingdao 266003, China
| | - Yong Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Yan Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Does temperature shift justify microalgae production under greenhouse? ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Singh NK, Sanghvi G, Yadav M, Padhiyar H, Thanki A. A state-of-the-art review on WWTP associated bioaerosols: Microbial diversity, potential emission stages, dispersion factors, and control strategies. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124686. [PMID: 33309139 DOI: 10.1016/j.jhazmat.2020.124686] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 05/13/2023]
Abstract
Wastewater treatment plants (WWTPs) associated bioaerosols have emerged as one of the critical sustainability indicators, ensuring health and well-being of societies and cities. In this context, this review summarizes the various wastewater treatment technologies which have been studied with a focus of bioaerosols emissions, potential emission stages, available sampling strategies, survival and dispersion factors, dominant microbial species in bioaerosols, and possible control approaches. Literature review revealed that most of the studies were devoted to sampling, enumerating and identifying cultivable microbial species of bioaerosols, as well as measuring their concentrations. However, the role of treatment technologies and their operational factors are investigated in limited studies only. Moreover, few studies have been reported to investigate the presence and concentrations of air borne virus and fungi in WWTP, as compared to bacterial species. The common environmental factors, affecting the survival and dispersion of bioaerosols, are observed as relative humidity, temperature, wind speed, and solar illumination. Further, research studies on recent episodes of COVID-19 (SARS-CoV-2 virus) pandemic also revealed that continuous and effective surveillance on WWTPs associated bioaerosols may led to early sign for future pandemics. The evaluation of reported data is bit complicated, due to the variation in sampling approaches, ambient conditions, and site activities of each study. Therefore, such studies need a standardized methodology and improved guidance to help informed future policies, contextual research, and support a robust health-based risk assessment process. Based on this review, an integrated sampling and analysis framework is suggested for future WWTPs to ensure their sustainability at social and/or health associated aspects.
Collapse
Affiliation(s)
- Nitin Kumar Singh
- Department of Environmental Science and Engineering, Marwadi Education Foundations Group of Institutions, Rajkot, India.
| | - Gaurav Sanghvi
- Department of Microbiology, Marwadi University, Rajkot, India.
| | - Manish Yadav
- Central Mine Planning Design Institute, Bhubaneshwar, India.
| | - Hirendrasinh Padhiyar
- Department of Environmental Science and Engineering, Marwadi Education Foundations Group of Institutions, Rajkot, India.
| | - Arti Thanki
- Department of Microbiology, Marwadi University, Rajkot, India.
| |
Collapse
|
4
|
Xie W, Li Y, Bai W, Hou J, Ma T, Zeng X, Zhang L, An T. The source and transport of bioaerosols in the air: A review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2021; 15:44. [PMID: 33589868 PMCID: PMC7876263 DOI: 10.1007/s11783-020-1336-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 05/13/2023]
Abstract
Recent pandemic outbreak of the corona-virus disease 2019 (COVID-19) has raised widespread concerns about the importance of the bioaerosols. They are atmospheric aerosol particles of biological origins, mainly including bacteria, fungi, viruses, pollen, and cell debris. Bioaerosols can exert a substantial impact on ecosystems, climate change, air quality, and public health. Here, we review several relevant topics on bioaerosols, including sampling and detection techniques, characterization, effects on health and air quality, and control methods. However, very few studies have focused on the source apportionment and transport of bioaerosols. The knowledge of the sources and transport pathways of bioaerosols is essential for a comprehensive understanding of the role microorganisms play in the atmosphere and control the spread of epidemic diseases associated with them. Therefore, this review comprehensively summarizes the up to date progress on the source characteristics, source identification, and diffusion and transport process of bioaerosols. We intercompare three types of diffusion and transport models, with a special emphasis on a widely used mathematical model. This review also highlights the main factors affecting the source emission and transport process, such as biogeographic regions, land-use types, and environmental factors. Finally, this review outlines future perspectives on bioaerosols.
Collapse
Affiliation(s)
- Wenwen Xie
- School of Water and Environment, Chang’an University, Xi’an, 710054 China
| | - Yanpeng Li
- School of Water and Environment, Chang’an University, Xi’an, 710054 China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region (Ministry of Education), Chang’an University, Xi’an, 710054 China
| | - Wenyan Bai
- School of Water and Environment, Chang’an University, Xi’an, 710054 China
| | - Junli Hou
- School of Water and Environment, Chang’an University, Xi’an, 710054 China
| | - Tianfeng Ma
- School of Water and Environment, Chang’an University, Xi’an, 710054 China
| | - Xuelin Zeng
- School of Water and Environment, Chang’an University, Xi’an, 710054 China
| | - Liyuan Zhang
- School of Water and Environment, Chang’an University, Xi’an, 710054 China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region (Ministry of Education), Chang’an University, Xi’an, 710054 China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environment Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006 China
| |
Collapse
|
5
|
Yang T, Jiang L, Han Y, Liu J, Wang X, Yan X, Liu J. Linking aerosol characteristics of size distributions, core potential pathogens and toxic metal(loid)s to wastewater treatment process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114741. [PMID: 32402711 DOI: 10.1016/j.envpol.2020.114741] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Wastewater treatment plants (WWTPs) play important roles in water purification but are also important source of aerosols. However, the relationship between aerosol characteristics and wastewater treatment process remains poorly understood. In this study, aerosols were collected over a 24-month period from a WWTP using a modified anaerobic-anoxic-oxic process. The aerated tank (AerT) was characterized by the highest respiratory fraction (RF) concentrations (861-1525 CFU/m3) and proportions (50.76%-65.96%) of aerosol particles. Fourteen core potential pathogens and 15 toxic metal(loid)s were identified in aerosols. Mycobacterium was the genus that aerosolized most easily in fine grid, pre-anoxic tank, and AerT. High wastewater treatment efficiency may increase the emission of RF and core potential pathogens. The median size of activated sludge, richness of core potential pathogens in wastewater, and total suspended particulates were the most influential factors directly related to the RF proportions, core community of potential pathogens, and composition of toxic metal(loid)s in WWTP aerosols, respectively. Relative humidity, temperature, input and removal of biochemical oxygen demand, dissolved oxygen, and mixed liquor suspended solids could also directly or indirectly affect the aerosol characteristics. This study enhances the mechanistic understanding of linking aerosol characteristics to treatment processes and has important implications for targeted manipulation.
Collapse
Affiliation(s)
- Tang Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 101408, PR China.
| | - Lu Jiang
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, 266100, PR China.
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 101408, PR China.
| | - Jianwei Liu
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China.
| | - Xiaodong Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xu Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| | - Junxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 101408, PR China.
| |
Collapse
|
6
|
Airborne Survival of Escherichia coli under Different Culture Conditions in Synthetic Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234745. [PMID: 31783576 PMCID: PMC6926559 DOI: 10.3390/ijerph16234745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 11/23/2022]
Abstract
Bioaerosol generated in wastewater treatment plants has potential to harm human health. Survival of bacteria in bioaerosol during suspension is one of the major factors that affect its biological risk. It is hypothesized that bacteria grown in different wastewater have different physiology and lead to variation in airborne survival. This study investigated the relationship between the cultured conditions and the bioaerosol survival. Synthetic wastewater was used as the culture medium to simulate the water quality of wastewater. Escherichia coli BW25113 were cultured in different conditions, including growth salinity, growth temperature, growth pH, and presence of pesticide. The fatty acid composition and the reduction in airborne survival of the E. coli cultured under these conditions were determined and compared. Results showed that increasing growth salinity and temperature led to a lower reduction in airborne survival of E. coli.E. coli cultured at pH 6 had a higher reduction in airborne survival than those cultured at pH 7 and 8. Moreover, a correlation was observed between the membrane fluidity (fluidity index) and the reduction airborne survival for both aerosolization and airborne suspension. A link between culture conditions, bacterial membrane fluidity, and airborne survival was established. Culture conditions (wastewater quality) that lead to a low membrane fluidity of bacteria increase the airborne survival of bioaerosol, and vice versa. This provides a new aspect to evaluate bioaerosol survival and improve assessment on biological risk of bioaerosols.
Collapse
|
7
|
Nasir ZA, Hayes E, Williams B, Gladding T, Rolph C, Khera S, Jackson S, Bennett A, Collins S, Parks S, Attwood A, Kinnersley RP, Walsh K, Alcega SG, Pollard SJT, Drew G, Coulon F, Tyrrel S. Scoping studies to establish the capability and utility of a real-time bioaerosol sensor to characterise emissions from environmental sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:25-32. [PMID: 30107303 DOI: 10.1016/j.scitotenv.2018.08.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 05/21/2023]
Abstract
A novel dual excitation wavelength based bioaerosol sensor with multiple fluorescence bands called Spectral Intensity Bioaerosol Sensor (SIBS) has been assessed across five contrasting outdoor environments. The mean concentrations of total and fluorescent particles across the sites were highly variable being the highest at the agricultural farm (2.6 cm-3 and 0.48 cm-3, respectively) and the composting site (2.32 cm-3 and 0.46 cm-3, respectively) and the lowest at the dairy farm (1.03 cm-3 and 0.24 cm-3, respectively) and the sewage treatment works (1.03 cm-3 and 0.25 cm-3, respectively). In contrast, the number-weighted fluorescent fraction was lowest at the agricultural site (0.18) in comparison to the other sites indicating high variability in nature and magnitude of emissions from environmental sources. The fluorescence emissions data demonstrated that the spectra at different sites were multimodal with intensity differences largely at wavelengths located in secondary emission peaks for λex 280 and λex 370. This finding suggests differences in the molecular composition of emissions at these sites which can help to identify distinct fluorescence signature of different environmental sources. Overall this study demonstrated that SIBS provides additional spectral information compared to existing instruments and capability to resolve spectrally integrated signals from relevant biological fluorophores could improve selectivity and thus enhance discrimination and classification strategies for real-time characterisation of bioaerosols from environmental sources. However, detailed lab-based measurements in conjunction with real-world studies and improved numerical methods are required to optimise and validate these highly resolved spectral signatures with respect to the diverse atmospherically relevant biological fluorophores.
Collapse
Affiliation(s)
- Zaheer Ahmad Nasir
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK.
| | - Enda Hayes
- Air Quality Management Resource Centre, Faculty of Environment and Technology, University of the West of England, Bristol BS16 1QY, UK
| | - Ben Williams
- Air Quality Management Resource Centre, Faculty of Environment and Technology, University of the West of England, Bristol BS16 1QY, UK
| | - Toni Gladding
- STEM Faculty, Open University, Walton Hall, MK6 7AA, UK
| | | | - Shagun Khera
- School of Biomedical and Healthcare Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK
| | - Simon Jackson
- School of Biomedical and Healthcare Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK
| | - Allan Bennett
- Biosafety, Air and Water Microbiology Group, National Infection Service, Public Health England, Salisbury SP4 0JG, UK
| | - Samuel Collins
- Biosafety, Air and Water Microbiology Group, National Infection Service, Public Health England, Salisbury SP4 0JG, UK
| | - Simon Parks
- Biosafety, Air and Water Microbiology Group, National Infection Service, Public Health England, Salisbury SP4 0JG, UK
| | - Alexis Attwood
- Droplet Measurement Technologies, 2400 Trade Centre Avenue, Longmont, CO 80503, United States of America
| | | | - Kerry Walsh
- Environment Agency, Evidence Directorate, Deanery Road, Bristol BS1 5AH, UK
| | - Sonia Garcia Alcega
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Simon J T Pollard
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Gill Drew
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Sean Tyrrel
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
8
|
Xu G, Han Y, Li L, Liu J. Characterization and source analysis of indoor/outdoor culturable airborne bacteria in a municipal wastewater treatment plant. J Environ Sci (China) 2018; 74:71-78. [PMID: 30340676 DOI: 10.1016/j.jes.2018.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/09/2018] [Accepted: 02/11/2018] [Indexed: 05/14/2023]
Abstract
The potential health risks of airborne bacteria emission from a wastewater treatment process have been concerned. However, few studies have investigated the differences in community structure between indoor and outdoor bacteria. In this work, the characterization of airborne bacteria was studied in a municipal wastewater treatment plant in Beijing, China. Two indoor (i.e., fine screen room and sludge dewatering house) and two outdoor (i.e., aeration tank and control site) sampling sites were selected. An Andersen six-stage impactor was used for collecting culturable airborne bacteria in the air, and Illumina MiSeq sequencing was conducted to track the emission source of the culturable airborne bacteria. The results indicate that, compared with the outdoor aeration tank site, the concentrations of culturable airborne bacteria in the indoor fine screen room with poor ventilation were more than ten times higher and the particle size was about twice as large. The community structures of indoor and outdoor culturable airborne bacteria were obviously different. Enterobacteriaceae and opportunistic pathogens were detected in indoor culturable airborne bacteria, with wastewater and sludge dewatering machine identified as the primary sources. Conversely, Enterobacteriaceae and opportunistic pathogens were not detected in outdoor culturable airborne bacteria. Outdoor high wind speed might have resulted in rapid dilution and mixing of culturable airborne bacteria generated from the aeration tank with the ambient air. The results of the present research suggest that covering pollution sources, increasing ventilation rates, and using protective measures for personnel should be implemented to decrease the exposure risk to indoor culturable airborne bacteria.
Collapse
Affiliation(s)
- Guangsu Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunping Han
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lin Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junxin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Yang Y, Zhou R, Chen B, Zhang T, Hu L, Zou S. Characterization of airborne antibiotic resistance genes from typical bioaerosol emission sources in the urban environment using metagenomic approach. CHEMOSPHERE 2018; 213:463-471. [PMID: 30245223 DOI: 10.1016/j.chemosphere.2018.09.066] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
The wide spread of antibiotic resistance genes (ARGs) has attracted increasing concern. However, the occurrence and diversity of ARGs in airborne particles remains to be understood. In this study, total suspended particles (TSP) in the atmosphere were collected from typical sources of ARG pollution, including animal farms and wastewater treatment plant (WWTP), as well as the downtown area in Zhuhai, China. Metagenomic profiling demonstrated that ARGs were abundant and diverse in the TSP from animal farms and WWTP, but significant differences in ARG composition pattern between these samples were observed. ARGs associated with the resistance to aminoglycoside, macrolide-lincosamide-streptogramin (MLS) and tetracycline were dominant over other ARGs in the TSP of the animal farms, whereas multidrug and bacitracin resistance genes were more abundant than other ARGs in the TSP of the WWTP. In the animal farms, ARG profiles of the TSP were consistent with those of animal feces, indicating that animal feces could be one of the most contributing sources of airborne ARGs in animal farms. In contrast to representative sources of ARG pollution, ARG abundance and diversity in the TSP collected from the downtown area was relatively low, with multidrug resistance genes being predominant. This study suggests that metagenomic profiling of the ARGs in airborne TSP could enhance our comprehensive understanding of ARGs dissemination in the environment and their potential health threats.
Collapse
Affiliation(s)
- Ying Yang
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Renjun Zhou
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Baowei Chen
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shichun Zou
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
10
|
Mirskaya E, Agranovski IE. Sources and mechanisms of bioaerosol generation in occupational environments. Crit Rev Microbiol 2018; 44:739-758. [DOI: 10.1080/1040841x.2018.1508125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|