1
|
Bryson JB, Kourgiantaki A, Jiang D, Demosthenous A, Greensmith L. An optogenetic cell therapy to restore control of target muscles in an aggressive mouse model of amyotrophic lateral sclerosis. eLife 2024; 12:RP88250. [PMID: 38236205 PMCID: PMC10945574 DOI: 10.7554/elife.88250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Breakdown of neuromuscular junctions (NMJs) is an early pathological hallmark of amyotrophic lateral sclerosis (ALS) that blocks neuromuscular transmission, leading to muscle weakness, paralysis and, ultimately, premature death. Currently, no therapies exist that can prevent progressive motor neuron degeneration, muscle denervation, or paralysis in ALS. Here, we report important advances in the development of an optogenetic, neural replacement strategy that can effectively restore innervation of severely affected skeletal muscles in the aggressive SOD1G93A mouse model of ALS, thus providing an interface to selectively control the function of targeted muscles using optical stimulation. We also identify a specific approach to confer complete survival of allogeneic replacement motor neurons. Furthermore, we demonstrate that an optical stimulation training paradigm can prevent atrophy of reinnervated muscle fibers and results in a tenfold increase in optically evoked contractile force. Together, these advances pave the way for an assistive therapy that could benefit all ALS patients.
Collapse
Affiliation(s)
- J Barney Bryson
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Alexandra Kourgiantaki
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Dai Jiang
- Department of Electronic and Electrical Engineering, University College London, London, United Kingdom
| | - Andreas Demosthenous
- Department of Electronic and Electrical Engineering, University College London, London, United Kingdom
| | - Linda Greensmith
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
2
|
Gao TT, Oh T, Mehta K, Huang YA, Camp T, Fan H, Han JW, Barnes CM, Zhang K. The clinical potential of optogenetic interrogation of pathogenesis. Clin Transl Med 2023; 13:e1243. [PMID: 37132114 PMCID: PMC10154842 DOI: 10.1002/ctm2.1243] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Opsin-based optogenetics has emerged as a powerful biomedical tool using light to control protein conformation. Such capacity has been initially demonstrated to control ion flow across the cell membrane, enabling precise control of action potential in excitable cells such as neurons or muscle cells. Further advancement in optogenetics incorporates a greater variety of photoactivatable proteins and results in flexible control of biological processes, such as gene expression and signal transduction, with commonly employed light sources such as LEDs or lasers in optical microscopy. Blessed by the precise genetic targeting specificity and superior spatiotemporal resolution, optogenetics offers new biological insights into physiological and pathological mechanisms underlying health and diseases. Recently, its clinical potential has started to be capitalized, particularly for blindness treatment, due to the convenient light delivery into the eye. AIMS AND METHODS This work summarizes the progress of current clinical trials and provides a brief overview of basic structures and photophysics of commonly used photoactivable proteins. We highlight recent achievements such as optogenetic control of the chimeric antigen receptor, CRISPR-Cas system, gene expression, and organelle dynamics. We discuss conceptual innovation and technical challenges faced by current optogenetic research. CONCLUSION In doing so, we provide a framework that showcases ever-growing applications of optogenetics in biomedical research and may inform novel precise medicine strategies based on this enabling technology.
Collapse
Affiliation(s)
- Tianyu Terry Gao
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Teak‐Jung Oh
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Kritika Mehta
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Yu‐En Andrew Huang
- University of Illinois at Urbana‐ChampaignCenter for Biophysics and Quantitative BiologyUrbanaIllinoisUSA
| | - Tyler Camp
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Huaxun Fan
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Jeong Won Han
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Collin Michael Barnes
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Kai Zhang
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
- University of Illinois at Urbana‐ChampaignCenter for Biophysics and Quantitative BiologyUrbanaIllinoisUSA
- Cancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
3
|
Geng Y, Li Z, Zhu J, Du C, Yuan F, Cai X, Ali A, Yang J, Tang C, Cong Z, Ma C. Advances in Optogenetics Applications for Central Nervous System Injuries. J Neurotrauma 2023. [PMID: 36305381 DOI: 10.1089/neu.2022.0290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Injuries to the central nervous system (CNS) often lead to severe neurological dysfunction and even death. However, there are still no effective measures to improve functional recovery following CNS injuries. Optogenetics, an ideal method to modulate neural activity, has shown various advantages in controlling neural circuits, promoting neural remapping, and improving cell survival. In particular, the emerging technique of optogenetics has exhibited promising therapeutic methods for CNS injuries. In this review, we introduce the light-sensitive proteins and light stimulation system that are important components of optogenetic technology in detail and summarize the development trends. In addition, we construct a comprehensive picture of the current application of optogenetics in CNS injuries and highlight recent advances for the treatment and functional recovery of neurological deficits. Finally, we discuss the therapeutic challenges and prospective uses of optogenetics therapy by photostimulation/photoinhibition modalities that would be suitable for clinical applications.
Collapse
Affiliation(s)
- Yuanming Geng
- Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenxing Li
- Department of Neurosurgery, Jinling Hospital, Nanjing, China.,Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Junhao Zhu
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chaonan Du
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Yuan
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiangming Cai
- School of Medicine, Southeast University, Nanjing, China
| | - Alleyar Ali
- Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Yang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Chao Tang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Zixiang Cong
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Chiyuan Ma
- Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, Jinling Hospital, Nanjing, China.,Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China.,Department of Neurosurgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, China
| |
Collapse
|
4
|
Oh TJ, Fan H, Skeeters SS, Zhang K. Steering Molecular Activity with Optogenetics: Recent Advances and Perspectives. Adv Biol (Weinh) 2021; 5:e2000180. [PMID: 34028216 PMCID: PMC8218620 DOI: 10.1002/adbi.202000180] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/14/2020] [Indexed: 12/24/2022]
Abstract
Optogenetics utilizes photosensitive proteins to manipulate the localization and interaction of molecules in living cells. Because light can be rapidly switched and conveniently confined to the sub-micrometer scale, optogenetics allows for controlling cellular events with an unprecedented resolution in time and space. The past decade has witnessed an enormous progress in the field of optogenetics within the biological sciences. The ever-increasing amount of optogenetic tools, however, can overwhelm the selection of appropriate optogenetic strategies. Considering that each optogenetic tool may have a distinct mode of action, a comparative analysis of the current optogenetic toolbox can promote the further use of optogenetics, especially by researchers new to this field. This review provides such a compilation that highlights the spatiotemporal accuracy of current optogenetic systems. Recent advances of optogenetics in live cells and animal models are summarized, the emerging work that interlinks optogenetics with other research fields is presented, and exciting clinical and industrial efforts to employ optogenetic strategy toward disease intervention are reported.
Collapse
Affiliation(s)
- Teak-Jung Oh
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| | - Huaxun Fan
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| | - Savanna S Skeeters
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| | - Kai Zhang
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| |
Collapse
|
5
|
Texakalidis P, Tora MS, Canute S, Hardcastle N, Poth K, Donsante A, Federici T, Javidfar J, Boulis NM. Minimally Invasive Injection to the Phrenic Nerve in a Porcine Hemidiaphragmatic Paralysis Model: A Pilot Study. Neurosurgery 2020; 87:847-853. [PMID: 31625573 DOI: 10.1093/neuros/nyz473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/18/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Neurodegenerative diseases and spinal cord injury can affect respiratory function often through motor neuron loss innervating the diaphragm. To reinnervate this muscle, new motor neurons could be transplanted into the phrenic nerve (PN), allowing them to extend axons to the diaphragm. These neurons could then be driven by an optogenetics approach to regulate breathing. This type of approach has already been demonstrated in the peripheral nerves of mice. However, there is no established thoracoscopic approach to PN injection. Also, there is currently a lack of preclinical large animal models of diaphragmatic dysfunction in order to evaluate the efficacy of potential treatments. OBJECTIVE To evaluate the feasibility of thoracoscopic drug delivery into the PN and to assess the viability of hemidiaphragmatic paralysis in a porcine model. METHODS Two Landrace farm pigs underwent a novel procedure for thoracoscopic PN injections, including 1 nonsurvival and 1 survival surgery. Nonsurvival surgery involved bilateral PN injections and ligation. Survival surgery included a right PN injection and transection proximal to the injection site to induce hemidiaphragmatic paralysis. RESULTS PN injections were successfully performed in both procedures. The animal that underwent survival surgery recovered postoperatively with an established right hemidiaphragmatic paralysis. Over the 5-d postoperative period, the animal displayed stable vital signs and oxygenation saturation on room air with voluntary breathing. CONCLUSION Thoracoscopic targeting of the porcine PN is a feasible approach to administer therapeutic agents. A swine model of hemidiaphragmatic paralysis induced by unilateral PN ligation or transection may be potentially used to study diaphragmatic reinnervation following delivery of therapeutics.
Collapse
Affiliation(s)
- Pavlos Texakalidis
- Department of Neurosurgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Muhibullah S Tora
- Department of Neurosurgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Skyler Canute
- Department of Neurosurgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Nathan Hardcastle
- Department of Neurosurgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Kelly Poth
- Department of Neurosurgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Anthony Donsante
- Department of Neurosurgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Thais Federici
- Department of Neurosurgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Jeffrey Javidfar
- Division of Cardiothoracic Surgery, Department of Surgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| | - Nicholas M Boulis
- Department of Neurosurgery, Emory School of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
6
|
Texakalidis P, Tora MS, Federici T, Javidfar JJ, Boulis NM. Thoracoscopic delivery of therapeutics in the swine sympathetic chain: Implications for future neuromodulation. J Clin Neurosci 2020; 77:199-202. [DOI: 10.1016/j.jocn.2020.04.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
|
7
|
Gundelach LA, Hüser MA, Beutner D, Ruther P, Bruegmann T. Towards the clinical translation of optogenetic skeletal muscle stimulation. Pflugers Arch 2020; 472:527-545. [PMID: 32415463 PMCID: PMC7239821 DOI: 10.1007/s00424-020-02387-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/05/2020] [Accepted: 04/28/2020] [Indexed: 12/27/2022]
Abstract
Paralysis is a frequent phenomenon in many diseases, and to date, only functional electrical stimulation (FES) mediated via the innervating nerve can be employed to restore skeletal muscle function in patients. Despite recent progress, FES has several technical limitations and significant side effects. Optogenetic stimulation has been proposed as an alternative, as it may circumvent some of the disadvantages of FES enabling cell type–specific, spatially and temporally precise stimulation of cells expressing light-gated ion channels, commonly Channelrhodopsin2. Two distinct approaches for the restoration of skeletal muscle function with optogenetics have been demonstrated: indirect optogenetic stimulation through the innervating nerve similar to FES and direct optogenetic stimulation of the skeletal muscle. Although both approaches show great promise, both have their limitations and there are several general hurdles that need to be overcome for their translation into clinics. These include successful gene transfer, sustained optogenetic protein expression, and the creation of optically active implantable devices. Herein, a comprehensive summary of the underlying mechanisms of electrical and optogenetic approaches is provided. With this knowledge in mind, we substantiate a detailed discussion of the advantages and limitations of each method. Furthermore, the obstacles in the way of clinical translation of optogenetic stimulation are discussed, and suggestions on how they could be overcome are provided. Finally, four specific examples of pathologies demanding novel therapeutic measures are discussed with a focus on the likelihood of direct versus indirect optogenetic stimulation.
Collapse
Affiliation(s)
- Lili A Gundelach
- Institute of Cardiovascular Physiology, University Medical Center, Göttingen, Germany
| | - Marc A Hüser
- Institute of Cardiovascular Physiology, University Medical Center, Göttingen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center, Göttingen, Germany
| | - Dirk Beutner
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center, Göttingen, Germany
| | - Patrick Ruther
- Microsystem Materials Laboratory, Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Cluster of Excellence at the University of Freiburg, Freiburg, Germany
| | - Tobias Bruegmann
- Institute of Cardiovascular Physiology, University Medical Center, Göttingen, Germany.
- DZHK e.V. (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
8
|
Ibitoye MO, Hamzaid NA, Abdul Wahab AK, Hasnan N, Davis GM. Quadriceps mechanomyography reflects muscle fatigue during electrical stimulus-sustained standing in adults with spinal cord injury - a proof of concept. BIOMED ENG-BIOMED TE 2020; 65:165-174. [PMID: 31539346 DOI: 10.1515/bmt-2019-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/12/2019] [Indexed: 11/15/2022]
Abstract
This study investigates whether mechanomyography (MMG) produced from contracting muscles as a measure of their performance could be a proxy of muscle fatigue during a sustained functional electrical stimulation (FES)-supported standing-to-failure task. Bilateral FES-evoked contractions of quadriceps and glutei muscles, of four adults with motor-complete spinal cord injury (SCI), were used to maintain upright stance using two different FES frequencies: high frequency (HF - 35 Hz) and low frequency (LF - 20 Hz). The time at 30° knee angle reduction was taken as the point of critical "fatigue failure", while the generated MMG characteristics were used to track the pattern of force development during stance. Quadriceps fatigue, which was primarily responsible for the knee buckle, was characterized using MMG-root mean square (RMS) amplitude. A double exponential decay model fitted the MMG fatigue data with good accuracy [R2 = 0.85-0.99; root mean square error (RMSE) = 2.12-8.10] implying changes in the mechanical activity performance of the muscle's motor units. Although the standing duration was generally longer for the LF strategy (31-246 s), except in one participant, when compared to the HF strategy, such differences were not significant (p > 0.05) but suggested a faster muscle fatigue onset during HF stimulation. As MMG could discriminate between different stimulation frequencies, we speculate that this signal can quantify muscle fatigue characteristics during prolonged FES applications.
Collapse
Affiliation(s)
- Morufu Olusola Ibitoye
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering and Technology, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| | - Nur Azah Hamzaid
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Ahmad Khairi Abdul Wahab
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Nazirah Hasnan
- Department of Rehabilitation Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Glen M Davis
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
- Clinical Exercise and Rehabilitation Unit, Discipline of Exercise and Sports Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
CRISPR, Prime Editing, Optogenetics, and DREADDs: New Therapeutic Approaches Provided by Emerging Technologies in the Treatment of Spinal Cord Injury. Mol Neurobiol 2020; 57:2085-2100. [DOI: 10.1007/s12035-019-01861-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/15/2019] [Indexed: 02/07/2023]
|
10
|
Srinivasan S, Schelhaas B, Maimon B, Song H, Herr H. Retinal supplementation augments optogenetic stimulation efficacy in vivo. J Neural Eng 2019; 16:054002. [PMID: 31039554 DOI: 10.1088/1741-2552/ab1e22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Over the last two decades, optical control of neuronal activity in the central nervous system has seen rapid development, demonstrating the utility of optogenetics as both an experimental and therapeutic tool. Conversely, applications of optogenetics in the peripheral nervous system have been relatively constrained by the challenges of temporally variable opsin expression, light penetration and immune attack of non-native opsins. Whilst opsin expression can be increased significantly through high-concentration viral induction, subsequent attack by the immune system causes temporal decay and high variability in electrophysiological response. APPROACH In this study, we present a method to circumvent the aforementioned challenges by locally supplementing all-trans-retinal (ATR) (via a slow release pellet) to increase tissue photosensitivity in transgenic mice expressing channelrhodopsin 2 (ChR2) in nerves. MAIN RESULTS In mice supplemented with ATR, we demonstrate enhanced electrophysiological activation and fatigue tolerance in response to optical stimulation for six weeks. SIGNIFICANCE Local supplementation of ATR enables improved optogenetic stimulation efficacy in peripheral nerves. This method enables greater exploration of neurophysiology and development of clinically-viable optogenetic treatments in the peripheral nervous system.
Collapse
Affiliation(s)
- Shriya Srinivasan
- Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America. Harvard-MIT Division of Health Sciences and Technology (HST), Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | | | | | | | | |
Collapse
|
11
|
Srinivasan SS, Maimon BE, Diaz M, Song H, Herr HM. Closed-loop functional optogenetic stimulation. Nat Commun 2018; 9:5303. [PMID: 30546051 PMCID: PMC6294002 DOI: 10.1038/s41467-018-07721-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/16/2018] [Indexed: 12/30/2022] Open
Abstract
Optogenetics has been used to orchestrate temporal- and tissue-specific control of neural tissues and offers a wealth of unique advantages for neuromuscular control. Here, we establish a closed-loop functional optogenetic stimulation (CL-FOS) system to control ankle joint position in murine models. Using the measurement of either joint angle or fascicle length as a feedback signal, we compare the controllability of CL-FOS to closed-loop functional electrical stimulation (CL-FES) and demonstrate significantly greater accuracy, lower rise times and lower overshoot percentages. We demonstrate orderly recruitment of motor units and reduced fatigue when performing cyclical movements with CL-FOS compared with CL-FES. We develop and investigate a 3-phase, photo-kinetic model to elucidate the underlying mechanisms for temporal variations in optogenetically activated neuromusculature during closed-loop control experiments. Methods and insights from this study lay the groundwork for the development of closed-loop optogenetic neuromuscular stimulation therapies and devices for peripheral limb control.
Collapse
Affiliation(s)
- Shriya S Srinivasan
- MIT Media Lab, Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA.
- Harvard-MIT Division of Health Sciences and Technology (HST), Massachusetts Institute of Technology, Cambridge, 02139, MA, USA.
| | - Benjamin E Maimon
- MIT Media Lab, Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
- Harvard-MIT Division of Health Sciences and Technology (HST), Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Maurizio Diaz
- MIT Media Lab, Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Hyungeun Song
- MIT Media Lab, Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
- Harvard-MIT Division of Health Sciences and Technology (HST), Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Hugh M Herr
- MIT Media Lab, Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA.
| |
Collapse
|
12
|
Theme 3 In vivo experimental models. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:130-153. [DOI: 10.1080/21678421.2018.1510570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Gahl TJ, Kunze A. Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function. Front Neurosci 2018; 12:299. [PMID: 29867315 PMCID: PMC5962660 DOI: 10.3389/fnins.2018.00299] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022] Open
Abstract
Cellular processes like membrane deformation, cell migration, and transport of organelles are sensitive to mechanical forces. Technically, these cellular processes can be manipulated through operating forces at a spatial precision in the range of nanometers up to a few micrometers through chaperoning force-mediating nanoparticles in electrical, magnetic, or optical field gradients. But which force-mediating tool is more suitable to manipulate cell migration, and which, to manipulate cell signaling? We review here the differences in forces sensation to control and engineer cellular processes inside and outside the cell, with a special focus on neuronal cells. In addition, we discuss technical details and limitations of different force-mediating approaches and highlight recent advancements of nanomagnetics in cell organization, communication, signaling, and intracellular trafficking. Finally, we give suggestions about how force-mediating nanoparticles can be used to our advantage in next-generation neurotherapeutic devices.
Collapse
Affiliation(s)
| | - Anja Kunze
- Department of Electrical and Computer Engineering, Montana State University, Bozeman, MT, United States
| |
Collapse
|
14
|
van Bremen T, Send T, Sasse P, Bruegmann T. Spot light on skeletal muscles: optogenetic stimulation to understand and restore skeletal muscle function. J Muscle Res Cell Motil 2017; 38:331-337. [PMID: 28918572 DOI: 10.1007/s10974-017-9481-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/07/2017] [Indexed: 02/04/2023]
Abstract
Damage of peripheral nerves results in paralysis of skeletal muscle. Currently, the only treatment option to restore proper function is electrical stimulation of the innervating nerve or of the skeletal muscles directly. However this approach has low spatial and temporal precision leading to co-activation of antagonistic muscles and lacks cell-type selectivity resulting in pain or discomfort by stimulation of sensible nerves. In contrast to electrical stimulation, optogenetic methods enable spatially confined and cell-type selective stimulation of cells expressing the light sensitive channel Channelrhodopsin-2 with precise temporal control over the membrane potential. Herein we summarize the current knowledge about the use of this technology to control skeletal muscle function with the focus on the direct, non-neuronal stimulation of muscle fibers. The high temporal flexibility of using light pulses allows new stimulation patterns to investigate skeletal muscle physiology. Furthermore, the high spatial precision of focused illumination was shown to be beneficial for selective stimulation of distinct nearby muscle groups. Finally, the cell-type specific expression of the light-sensitive effector proteins in muscle fibers will allow pain-free stimulation and open new options for clinical treatments. Therefore, we believe that direct optogenetic stimulation of skeletal muscles is a very potent method for basic scientists that also harbors several distinct advantages over electrical stimulation to be considered for clinical use in the future.
Collapse
Affiliation(s)
- Tobias van Bremen
- Department of Otorhinolaryngology/Head and Neck Surgery, University Hospital of Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany
| | - Thorsten Send
- Department of Otorhinolaryngology/Head and Neck Surgery, University Hospital of Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany.
| | - Tobias Bruegmann
- Institute of Physiology I, Medical Faculty, University of Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany. .,Research Training Group 1873, University of Bonn, 53127, Bonn, Germany.
| |
Collapse
|
15
|
Hu K, Bounni F, Williams Z. Editorial. Advancement in brain-machine interfaces for patients with tetraplegia: neurosurgical perspective. Neurosurg Focus 2017; 43:E5. [PMID: 28669301 DOI: 10.3171/2017.5.focus17244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kejia Hu
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and.,Department of Microsurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Firas Bounni
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Ziv Williams
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|