1
|
Haryani Y, Abdul Halid N, Goh SG, Nor-Khaizura MAR, Md Hatta MA, Sabri S, Radu S, Hasan H. Efficient metabolic pathway modification in various strains of lactic acid bacteria using CRISPR/Cas9 system for elevated synthesis of antimicrobial compounds. J Biotechnol 2024; 395:53-63. [PMID: 39245212 DOI: 10.1016/j.jbiotec.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Lactic acid bacteria (LAB) are known to exhibit various beneficial roles in fermentation, serving as probiotics, and producing a plethora of valuable compounds including antimicrobial activity such as bacteriocin-like inhibitory substance (BLIS) that can be used as biopreservative to improve food safety and quality. However, the yield of BLIS is often limited, which poses a challenge to be commercially competitive with the current preservation practice. Therefore, the present work aimed to establish an optimised two-plasmid CRISPR/Cas9 system to redirect the carbon flux away from lactate towards compounds with antimicrobial activity by disrupting lactate dehydrogenase gene (ldh) on various strains of LAB. The lactic acid-deficient (ldhΔ) strains caused a metabolic shift resulting in increased inhibitory activity against selected foodborne pathogens up to 78 % than the wild-type (WT) strain. The most significant effect was depicted by Enterococcus faecalis-ldh∆ which displayed prominent bactericidal effects against all foodborne pathogens as compared to the WT that showed no antimicrobial activity. The present work provided a framework model for economically important LAB and other beneficial bacteria to synthesise and increase the yield of valuable food and industrial compounds. The present work reported for the first time that the metabolism of selected LAB can be manipulated by modifying ldh to attain metabolites with higher antimicrobial activity.
Collapse
Affiliation(s)
- Yuli Haryani
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Riau University, Pekanbaru, Riau 28293, Indonesia
| | - Nadrah Abdul Halid
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Sur Guat Goh
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Mahmud Ab Rashid Nor-Khaizura
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia; Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Muhammad Asyraf Md Hatta
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Suriana Sabri
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Son Radu
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia
| | - Hanan Hasan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia; Laboratory of Halal Science Research, Halal Research Product Institute, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia.
| |
Collapse
|
2
|
McCarthy M, Dodd WB, Lu X, Pritko DJ, Patel ND, Haskell CV, Sanabria H, Blenner MA, Birtwistle MR. Theory for High-Throughput Genetic Interaction Screening. ACS Synth Biol 2023; 12:2290-2300. [PMID: 37463472 PMCID: PMC10443530 DOI: 10.1021/acssynbio.2c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 07/20/2023]
Abstract
Systematic, genome-scale genetic screens have been instrumental for elucidating genotype-phenotype relationships, but approaches for probing genetic interactions have been limited to at most ∼100 pre-selected gene combinations in mammalian cells. Here, we introduce a theory for high-throughput genetic interaction screens. The theory extends our recently developed Multiplexing using Spectral Imaging and Combinatorics (MuSIC) approach to propose ∼105 spectrally unique, genetically encoded MuSIC barcodes from 18 currently available fluorescent proteins. Simulation studies based on constraints imposed by spectral flow cytometry equipment suggest that genetic interaction screens at the human genome-scale may be possible if MuSIC barcodes can be paired to guide RNAs. While experimental testing of this theory awaits, it offers transformative potential for genetic perturbation technology and knowledge of genetic function. More broadly, the availability of a genome-scale spectral barcode library for non-destructive identification of single cells could find more widespread applications such as traditional genetic screening and high-dimensional lineage tracing.
Collapse
Affiliation(s)
- Madeline
E. McCarthy
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29631, United States
| | - William B. Dodd
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29631, United States
| | - Xiaoming Lu
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29631, United States
| | - Daniel J. Pritko
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29631, United States
| | - Nishi D. Patel
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29631, United States
| | - Charlotte V. Haskell
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29631, United States
| | - Hugo Sanabria
- Department
of Physics and Astronomy, Clemson University, Clemson, South Carolina 29631, United States
| | - Mark A. Blenner
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29631, United States
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Marc R. Birtwistle
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29631, United States
- Department
of Bioengineering, Clemson University, Clemson, South Carolina 29631, United States
| |
Collapse
|
3
|
Ministro JH, Oliveira SS, Oliveira JG, Cardoso M, Aires-da-Silva F, Corte-Real S, Goncalves J. Synthetic antibody discovery against native antigens by CRISPR/Cas9-library generation and endoplasmic reticulum screening. Appl Microbiol Biotechnol 2020; 104:2501-2512. [PMID: 32020276 DOI: 10.1007/s00253-020-10423-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/18/2020] [Accepted: 01/26/2020] [Indexed: 01/03/2023]
Abstract
Despite the significant advances of antibodies as therapeutic agents, there is still much room for improvement concerning the discovery of these macromolecules. Here, we present a new synthetic cell-based strategy that takes advantage of eukaryotic cell biology to produce highly diverse antibody libraries and, simultaneously, link them to a high-throughput selection mechanism, replicating B cell diversification mechanisms. The interference of site-specific recognition by CRISPR/Cas9 with error-prone DNA repair mechanisms was explored for the generation of diversity, in a cell population containing a gene for a light chain antibody fragment. We achieved up to 93% of cells containing a mutated antibody gene after diversification mechanisms, specifically inside one of the antigen-binding sites. This targeted variability strategy was then integrated into an intracellular selection mechanism. By fusing the antibody with a KDEL retention signal, the interaction of antibodies and native membrane antigens occurs inside the endoplasmic reticulum during the process of protein secretion, enabling the detection of high-quality leads for expression and affinity by flow cytometry. We successfully obtained antibody lead candidates against CD3 as proof of concept. In summary, we developed a novel antibody discovery platform against native antigens by endoplasmic synthetic library generation using CRISPR/Cas9, which will contribute to a faster discovery of new biotherapeutic molecules, reducing the time-to-market.
Collapse
Affiliation(s)
- Joana H Ministro
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-019, Lisbon, Portugal.,Technophage SA, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028, Lisbon, Portugal
| | - Soraia S Oliveira
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-019, Lisbon, Portugal.,Technophage SA, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028, Lisbon, Portugal
| | - Joana G Oliveira
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-019, Lisbon, Portugal.,Technophage SA, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028, Lisbon, Portugal
| | - Miguel Cardoso
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-019, Lisbon, Portugal
| | - Frederico Aires-da-Silva
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Sofia Corte-Real
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-019, Lisbon, Portugal.,Technophage SA, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028, Lisbon, Portugal
| | - Joao Goncalves
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-019, Lisbon, Portugal.
| |
Collapse
|
4
|
Higashikuni Y, Lu TK. Advancing CRISPR-Based Programmable Platforms beyond Genome Editing in Mammalian Cells. ACS Synth Biol 2019; 8:2607-2619. [PMID: 31751114 DOI: 10.1021/acssynbio.9b00297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human diseases are caused by dysregulation of cellular biological programs that are encoded in DNA. Unveiling the endogenous programs and encoding new programs into the genome are key to creating novel diagnostic and therapeutic strategies. CRISPR/Cas9, originally identified in bacteria, has revolutionized genome editing in mammalian cells. Recent advances in CRISPR technologies have provided new programmable platforms for modifying cell function and behavior. CRISPR-based transcriptional regulators and modified gRNAs have enabled multiplexed regulation and visualization of genome dynamics with spatiotemporal precision. Using these toolkits, genome-scale screening platforms can identify key genetic elements or combinations thereof that modulate phenotypes in mammalian cells. In addition, imaging platforms for multiplexed genomic labeling have been created to study the conformation and dynamics of chromatin in living cells, which are essential for genome function. Furthermore, CRISPR-based computation and memory platforms have been built in living mammalian cells by using DNA as a data processing and storage medium to regulate and monitor cellular behaviors. The conditional regulation of CRISPR-based parts has enabled the design of complex multilayered biological programs. CRISPR-based memory platforms can continuously record biological events as mutations in defined DNA loci. By making use of base editors, CRISPR-based computation and memory platforms have been interconnected to perform logic operations based on past events. These technologies open up new avenues for understanding biological phenomena and designing mammalian cells as living machines for biomedical applications.
Collapse
|
5
|
Satheesh V, Zhang H, Wang X, Lei M. Precise editing of plant genomes - Prospects and challenges. Semin Cell Dev Biol 2019; 96:115-123. [PMID: 31002868 DOI: 10.1016/j.semcdb.2019.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022]
Abstract
The past decade has witnessed unprecedented development in genome engineering, a process that enables targeted modification of genomes. The identification of sequence-specific nucleases such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the CRISPR/Cas system, in particular, has led to precise and efficient introduction of genetic variations into genomes of various organisms. Since the CRISPR/Cas system is highly versatile, cost-effective and much superior to ZFNs and TALENs, its widespread adoption by the research community has been inevitable. In plants, a number of studies have shown that CRISPR/Cas could be a potential tool in basic research where insertion, deletion and/or substitution in the genetic sequence could help answer fundamental questions about plant processes, and in applied research these technologies could help build or reverse-engineer plant systems to make them more useful. In this review article, we summarize technologies for precise editing of genomes with a special focus on the CRISPR/Cas system, highlight the latest developments in the CRISPR/Cas system and discuss the challenges and prospects in using the system for plant biology research.
Collapse
Affiliation(s)
- Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hui Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xianting Wang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
6
|
Medina-Aparicio L, Dávila S, Rebollar-Flores JE, Calva E, Hernández-Lucas I. The CRISPR-Cas system in Enterobacteriaceae. Pathog Dis 2018; 76:4794941. [PMID: 29325038 DOI: 10.1093/femspd/fty002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022] Open
Abstract
In nature, microorganisms are constantly exposed to multiple viral infections and thus have developed many strategies to survive phage attack and invasion by foreign DNA. One of such strategies is the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) bacterial immunological system. This defense mechanism is widespread in prokaryotes including several families such as Enterobacteriaceae. Much knowledge about the CRISPR-Cas system has been generated, including its biological functions, transcriptional regulation, distribution, utility as a molecular marker and as a tool for specific genome editing. This review focuses on these aspects and describes the state of the art of the CRISPR-Cas system in the Enterobacteriaceae bacterial family.
Collapse
Affiliation(s)
- Liliana Medina-Aparicio
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Sonia Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Cuernavaca, Morelos 62209, México
| | - Javier E Rebollar-Flores
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Ismael Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| |
Collapse
|
7
|
Abstract
CRISPR-Cas genome editing technologies have revolutionized modern molecular biology by making targeted DNA edits simple and scalable. These technologies are developed by domesticating naturally occurring microbial adaptive immune systems that display wide diversity of functionality for targeted nucleic acid cleavage. Several CRISPR-Cas single effector enzymes have been characterized and engineered for use in mammalian cells. The unique properties of the single effector enzymes can make a critical difference in experimental use or targeting specificity. This review describes known single effector enzymes and discusses their use in genome engineering applications.
Collapse
Affiliation(s)
- Neena K. Pyzocha
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sidi Chen
- Department of Genetics, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
- System Biology Institute, 850 West Campus Drive, ISTC 361, West Haven, Connecticut 06516, United States
- MCGD Program, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
- Immunobiology Program, Yale University, 300 Cedar Street, New Haven, Connecticut 06520, United States
- Comprehensive Cancer Center, Yale University, New Haven, Connecticut 06510, United States
- Stem Cell Center, Yale University, New Haven, Connecticut 06510, United States
| |
Collapse
|