1
|
Gao J, Yang LJ, Wang G, Xie CF, Yin H, Li H, Lu JM. Efficient Photocatalytic Water Purification Through Novel Janus-Nanomicelles with Long-Lived Charge Separation Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410805. [PMID: 39821438 DOI: 10.1002/smll.202410805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/08/2025] [Indexed: 01/19/2025]
Abstract
Although the design of photocatalysts incorporating donor-acceptor units has garnered significant attention for its potential to enhance the efficiency of the photocatalysis process, the primary bottleneck lies in the challenge of generating long-lived charge separation states during exciton separation. Therefore, a novel Janus-nanomicelles photocatalyst is developed using carbazole (Cz) as the donor unit, perylene-3,4,9,10-tetracarboxydiimide (PDI) with long-excited state as the acceptor unit and polyethylene glycol (PEG) as the hydrophilic segment through ROMP polymerization. After optimizing the ratio, Cz19-PDI18-PEG10 rapidly adsorbs bisphenol A (BPA) within 10 s through π-π interaction, hydrogen-bonding interaction, and hydrophobic interaction between BPA and hydrophobic blocks when exposed to aqueous humor and efficiently photodegrades BPA (50 ppm) within 120 min for water purification purposes due to its long-lived charge separation state and achieving the highest reported efficiency so far. Mechanistic studies have shown that this excellent performance of Cz19-PDI18-PEG10 can be attributed to synergistic interactions between highly efficient adsorption capacity and long-lived charge separation states during photocatalysis. This novel Janus-nanomicelles design strategy holds promise as an effective candidate for water purification.
Collapse
Affiliation(s)
- Jin Gao
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China
- Shaoxing Yu-Cai High School, Shaoxing, 312099, China
| | - Liu-Jun Yang
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China
| | - Guan Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Textile Academy, Beijing, 100025, China
| | - Chen-Fan Xie
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China
| | - Han Yin
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China
| | - Hua Li
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China
| | - Jian-Mei Lu
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China
| |
Collapse
|
2
|
Sodré V, Bugg TDH. Sustainable production of aromatic chemicals from lignin using enzymes and engineered microbes. Chem Commun (Camb) 2024; 60:14360-14375. [PMID: 39569570 PMCID: PMC11580001 DOI: 10.1039/d4cc05064a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Lignin is an aromatic biopolymer found in plant cell walls and is the most abundant source of renewable aromatic carbon in the biosphere. Hence there is considerable interest in the conversion of lignin, either derived from agricultural waste or produced as a byproduct of pulp/paper manufacture, into high-value chemicals. Although lignin is rather inert, due to the presence of ether C-O and C-C linkages, several microbes are able to degrade lignin. This review will introduce these microbes and the enzymes that they use to degrade lignin and will describe recent studies on metabolic engineering that can generate high-value chemicals from lignin bioconversion. Catabolic pathways for degradation of lignin fragments will be introduced, and case studies where these pathways have been engineered by gene knockout/insertion to generate bioproducts that are of interest as monomers for bioplastic synthesis or aroma chemicals will be described. Life cycle analysis of lignin bioconversion processes is discussed.
Collapse
Affiliation(s)
- Victoria Sodré
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
3
|
Asin-Garcia E, Martin-Pascual M, de Buck C, Allewijn M, Müller A, Martins dos Santos VAP. GenoMine: a CRISPR-Cas9-based kill switch for biocontainment of Pseudomonas putida. Front Bioeng Biotechnol 2024; 12:1426107. [PMID: 39351062 PMCID: PMC11439788 DOI: 10.3389/fbioe.2024.1426107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024] Open
Abstract
Synthetic genetic circuits have revolutionised our capacity to control cell viability by conferring microorganisms with programmable functionalities to limit survival to specific environmental conditions. Here, we present the GenoMine safeguard, a CRISPR-Cas9-based kill switch for the biotechnological workhorse Pseudomonas putida that employs repetitive genomic elements as cleavage targets to unleash a highly genotoxic response. To regulate the system's activation, we tested various circuit-based mechanisms including the digitalised version of an inducible expression system that operates at the transcriptional level and different options of post-transcriptional riboregulators. All of them were applied not only to directly control Cas9 and its lethal effects, but also to modulate the expression of two of its inhibitors: the AcrIIA4 anti-CRISPR protein and the transcriptional repressor TetR. Either upon direct induction of the endonuclease or under non-induced conditions of its inhibitors, the presence of Cas9 suppressed cell survival which could be exploited beyond biocontainment in situations where further CRISPR genome editing is undesirable.
Collapse
Affiliation(s)
- Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
- Bioprocess Engineering Group, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Martin-Pascual
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Claudia de Buck
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Max Allewijn
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Alexandra Müller
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Vitor A. P. Martins dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
- Bioprocess Engineering Group, Wageningen University & Research, Wageningen, Netherlands
- LifeGlimmer GmbH, Berlin, Germany
| |
Collapse
|
4
|
de Lorenzo V, Pérez-Pantoja D, Nikel PI. Pseudomonas putida KT2440: the long journey of a soil-dweller to become a synthetic biology chassis. J Bacteriol 2024; 206:e0013624. [PMID: 38975763 PMCID: PMC11270871 DOI: 10.1128/jb.00136-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Although members of the genus Pseudomonas share specific morphological, metabolic, and genomic traits, the diversity of niches and lifestyles adopted by the family members is vast. One species of the group, Pseudomonas putida, thrives as a colonizer of plant roots and frequently inhabits soils polluted with various types of chemical waste. Owing to a combination of historical contingencies and inherent qualities, a particular strain, P. putida KT2440, emerged time ago as an archetype of an environmental microorganism amenable to recombinant DNA technologies, which was also capable of catabolizing chemical pollutants. Later, the same bacterium progressed as a reliable platform for programming traits and activities in various biotechnological applications. This article summarizes the stepwise upgrading of P. putida KT2440 from being a system for fundamental studies on the biodegradation of aromatic compounds (especially when harboring the TOL plasmid pWW0) to its adoption as a chassis of choice in metabolic engineering and synthetic biology. Although there are remaining uncertainties about the taxonomic classification of KT2440, advanced genome editing capabilities allow us to tailor its genetic makeup to meet specific needs. This makes its traditional categorization somewhat less important, while also increasing the strain's overall value for contemporary industrial and environmental uses.
Collapse
Affiliation(s)
- Victor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Danilo Pérez-Pantoja
- Instituto Universitario de Investigación y Desarrollo Tecnológico, Universidad Tecnológica Metropolitana (UTEM), Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Systems Environmental Microbiology Group, Kgs. Lyngby, Denmark
| |
Collapse
|
5
|
Köbbing S, Lechtenberg T, Wynands B, Blank LM, Wierckx N. Reliable Genomic Integration Sites in Pseudomonas putida Identified by Two-Dimensional Transcriptome Analysis. ACS Synth Biol 2024; 13:2060-2072. [PMID: 38968167 PMCID: PMC11264328 DOI: 10.1021/acssynbio.3c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 07/07/2024]
Abstract
Genomic integration is commonly used to engineer stable production hosts. However, so far, for many microbial workhorses, only a few integration sites have been characterized, thereby restraining advanced strain engineering that requires multiple insertions. Here, we report on the identification of novel genomic integration sites, so-called landing pads, for Pseudomonas putida KT2440. We identified genomic regions with constant expression patterns under diverse experimental conditions by using RNA-Seq data. Homologous recombination constructs were designed to insert heterologous genes into intergenic sites in these regions, allowing condition-independent gene expression. Ten potential landing pads were characterized using four different msfGFP expression cassettes. An insulated probe sensor was used to study locus-dependent effects on recombinant gene expression, excluding genomic read-through of flanking promoters under changing cultivation conditions. While the reproducibility of expression in the landing pads was very high, the msfGFP signals varied strongly between the different landing pads, confirming a strong influence of the genomic context. To showcase that the identified landing pads are also suitable candidates for heterologous gene expression in other Pseudomonads, four equivalent landing pads were identified and characterized in Pseudomonas taiwanensis VLB120. This study shows that genomic "hot" and "cold" spots exist, causing strong promoter-independent variations in gene expression. This highlights that the genomic context is an additional parameter to consider when designing integrable genomic cassettes for tailored heterologous expression. The set of characterized genomic landing pads presented here further increases the genetic toolbox for deep metabolic engineering in Pseudomonads.
Collapse
Affiliation(s)
- Sebastian Köbbing
- Aachen
Biology and Biotechnology-ABBt, Institute of Applied Microbiology-iAMB, RWTH Aachen University, 52074 Aachen, Germany
| | - Thorsten Lechtenberg
- Institute
of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Benedikt Wynands
- Institute
of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Lars M. Blank
- Aachen
Biology and Biotechnology-ABBt, Institute of Applied Microbiology-iAMB, RWTH Aachen University, 52074 Aachen, Germany
| | - Nick Wierckx
- Aachen
Biology and Biotechnology-ABBt, Institute of Applied Microbiology-iAMB, RWTH Aachen University, 52074 Aachen, Germany
- Institute
of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
6
|
Fan M, Tan S, Wang W, Zhang X. Improvement in Salt Tolerance Ability of Pseudomonas putida KT2440. BIOLOGY 2024; 13:404. [PMID: 38927284 PMCID: PMC11200750 DOI: 10.3390/biology13060404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Pseudomonas putida KT2440 is a popular platform for bioremediation due to its robust tolerance to environmental stress and strong biodegradation capacity. Limited research on the salt tolerance of P. putida KT2440 has hindered its application. In this study, the strain KT2440 was tested to tolerate a maximum of 4% w/v NaCl cultured with minimal salts medium. Transcriptomic data in a high-salinity environment showed significant expression changes in genes in membrane components, redox processes, chemotaxis, and cellular catabolic processes. betB-encoding betaine-aldehyde dehydrogenase was identified from the transcriptome data to overexpress and enhance growth profile of the strain KT2440 in minimal salts medium containing 4% w/v NaCl. Meanwhile, screening for exogenous salt-tolerant genes revealed that the Na+/H+ antiporter EcnhaA from Escherichia coli significantly increased the growth of the strain KT2440 in 4% w/v NaCl. Then, co-expression of EcnhaA and betB (KT2440-EcnhaA-betB) increased the maximum salt tolerance of strain KT2440 to 5% w/v NaCl. Further addition of betaine and proline improved the salt tolerance of the engineered strain to 6% w/v NaCl. Finally, the engineered strain KT2440-EcnhaA-betB was able to degrade 56.70% of benzoic acid and 95.64% of protocatechuic acid in minimal salt medium containing 4% w/v NaCl in 48 h, while no biodegradation was observed in the normal strain KT2440 in the same conditions. However, the strain KT2440-EcnhaA-betB failed to degrade catechol in minimal salt medium containing 3% w/v NaCl. This study illustrated the improvement in the salt tolerance performance of Pseudomonas putida KT2440 and the feasibility of engineered strain KT2440 as a potential salt-tolerant bioremediation platform.
Collapse
Affiliation(s)
| | | | | | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (M.F.); (S.T.); (W.W.)
| |
Collapse
|
7
|
Yang L, Chen Z, Cao Q, Liao H, Gao J, Zhang L, Wei W, Li H, Lu J. Structural Regulation of Photocatalyst to Optimize Hydroxyl Radical Production Pathways for Highly Efficient Photocatalytic Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306758. [PMID: 37865887 DOI: 10.1002/adma.202306758] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Indexed: 10/23/2023]
Abstract
Ring-opening of phenol in wastewater is the pivotal step in photocatalytic degradation. The highly selective generation of catalytical active species (•OH) to facilitate this process presents a significant scientific challenge. Therefore, a novel approach for designing photocatalysts with single-atom containment in metal-covalent organic frameworks (M-COFs) is proposed. The selection of imine-linked COFs containing abundant N and O-chelate sites provides a solid foundation for anchoring metal atom. These dispersed metal atom possess rapid accumulation and transfer capabilities for photogenerated electrons, while the periodic π-conjugated structure in 2D-COFs establishes an effective platform. Additionally, the Lewis acid properties of imine bonds in COFs can enhance the adsorption capacity toward gases with Lewis base properties, such as O2 and N2 . It is demonstrated that the Pd2+ @Tp-TAPT, designed based on this concept, exhibits efficient oxygen adsorption and follows the reaction pathway of O2 →•O2 - →H2 O2 →•OH with high selectivity, thereby achieving completely degradation of refractory phenol through photocatalysis within 10 min. It is anticipated that the selective generation of catalytic active species via advanced material design concepts will serve as a significant reference for achieving precise material catalysis in the future.
Collapse
Affiliation(s)
- Liujun Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhengxi Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qiang Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huarong Liao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jin Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Long Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wanyu Wei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
- National Center of International Research on Intelligent New Nanomaterials and Detection Technologies in Environmental Protection, Suzhou, Jiangsu, 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
- National Center of International Research on Intelligent New Nanomaterials and Detection Technologies in Environmental Protection, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
8
|
Asin-Garcia E, Garcia-Morales L, Bartholet T, Liang Z, Isaacs F, Martins dos Santos VP. Metagenomics harvested genus-specific single-stranded DNA-annealing proteins improve and expand recombineering in Pseudomonas species. Nucleic Acids Res 2023; 51:12522-12536. [PMID: 37941137 PMCID: PMC10711431 DOI: 10.1093/nar/gkad1024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
The widespread Pseudomonas genus comprises a collection of related species with remarkable abilities to degrade plastics and polluted wastes and to produce a broad set of valuable compounds, ranging from bulk chemicals to pharmaceuticals. Pseudomonas possess characteristics of tolerance and stress resistance making them valuable hosts for industrial and environmental biotechnology. However, efficient and high-throughput genetic engineering tools have limited metabolic engineering efforts and applications. To improve their genome editing capabilities, we first employed a computational biology workflow to generate a genus-specific library of potential single-stranded DNA-annealing proteins (SSAPs). Assessment of the library was performed in different Pseudomonas using a high-throughput pooled recombinase screen followed by Oxford Nanopore NGS analysis. Among different active variants with variable levels of allelic replacement frequency (ARF), efficient SSAPs were found and characterized for mediating recombineering in the four tested species. New variants yielded higher ARFs than existing ones in Pseudomonas putida and Pseudomonas aeruginosa, and expanded the field of recombineering in Pseudomonas taiwanensisand Pseudomonas fluorescens. These findings will enhance the mutagenesis capabilities of these members of the Pseudomonas genus, increasing the possibilities for biotransformation and enhancing their potential for synthetic biology applications. .
Collapse
Affiliation(s)
- Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
- Bioprocess Engineering Group, Wageningen University & Research, Wageningen 6700 AA, The Netherlands
| | - Luis Garcia-Morales
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Tessa Bartholet
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Zhuobin Liang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Farren J Isaacs
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Vitor A P Martins dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
- Bioprocess Engineering Group, Wageningen University & Research, Wageningen 6700 AA, The Netherlands
- LifeGlimmer GmbH, Berlin 12163, Germany
| |
Collapse
|
9
|
van Schaik J, Li Z, Cheadle J, Crook N. Engineering the Maize Root Microbiome: A Rapid MoClo Toolkit and Identification of Potential Bacterial Chassis for Studying Plant-Microbe Interactions. ACS Synth Biol 2023; 12:3030-3040. [PMID: 37712562 DOI: 10.1021/acssynbio.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Sustainably enhancing crop production is a global necessity to meet the escalating demand for staple crops while sustainably managing their associated carbon/nitrogen inputs. Leveraging plant-associated microbiomes is a promising avenue for addressing this demand. However, studying these communities and engineering them for sustainable enhancement of crop production have remained a challenge due to limited genetic tools and methods. In this work, we detail the development of the Maize Root Microbiome ToolKit (MRMTK), a rapid Modular Cloning (MoClo) toolkit that only takes 2.5 h to generate desired constructs (5400 potential plasmids) that replicate and express heterologous genes in Enterobacter ludwigii strain AA4 (Elu), Pseudomonas putida strain AA7 (Ppu), Herbaspirillum robiniae strain AA6 (Hro), Stenotrophomonas maltophilia strain AA1 (Sma), and Brucella pituitosa strain AA2 (Bpi), which comprise a model maize root synthetic community (SynCom). In addition to these genetic tools, we describe a highly efficient transformation protocol (107-109 transformants/μg of DNA) 1 for each of these strains. Utilizing this highly efficient transformation protocol, we identified endogenous Expression Sequences (ES; promoter and ribosomal binding sites) for each strain via genomic promoter trapping. Overall, MRMTK is a scalable and adaptable platform that expands the genetic engineering toolbox while providing a standardized, high-efficiency transformation method across a diverse group of root commensals. These results unlock the ability to elucidate and engineer plant-microbe interactions promoting plant growth for each of the 5 bacterial strains in this study.
Collapse
Affiliation(s)
- John van Schaik
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - Zidan Li
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - John Cheadle
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States
| |
Collapse
|
10
|
Pearson AN, Thompson MG, Kirkpatrick LD, Ho C, Vuu KM, Waldburger LM, Keasling JD, Shih PM. The pGinger Family of Expression Plasmids. Microbiol Spectr 2023; 11:e0037323. [PMID: 37212656 PMCID: PMC10269703 DOI: 10.1128/spectrum.00373-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023] Open
Abstract
The pGinger suite of expression plasmids comprises 43 plasmids that will enable precise constitutive and inducible gene expression in a wide range of Gram-negative bacterial species. Constitutive vectors are composed of 16 synthetic constitutive promoters upstream of red fluorescent protein (RFP), with a broad-host-range BBR1 origin and a kanamycin resistance marker. The family also has seven inducible systems (Jungle Express, Psal/NahR, Pm/XylS, Prha/RhaS, LacO1/LacI, LacUV5/LacI, and Ptet/TetR) controlling RFP expression on BBR1/kanamycin plasmid backbones. For four of these inducible systems (Jungle Express, Psal/NahR, LacO1/LacI, and Ptet/TetR), we created variants that utilize the RK2 origin and spectinomycin or gentamicin selection. Relevant RFP expression and growth data have been collected in the model bacterium Escherichia coli as well as Pseudomonas putida. All pGinger vectors are available via the Joint BioEnergy Institute (JBEI) Public Registry. IMPORTANCE Metabolic engineering and synthetic biology are predicated on the precise control of gene expression. As synthetic biology expands beyond model organisms, more tools will be required that function robustly in a wide range of bacterial hosts. The pGinger family of plasmids constitutes 43 plasmids that will enable both constitutive and inducible gene expression in a wide range of nonmodel Proteobacteria.
Collapse
Affiliation(s)
- Allison N. Pearson
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Mitchell G. Thompson
- Joint BioEnergy Institute, Emeryville, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Liam D. Kirkpatrick
- Joint BioEnergy Institute, Emeryville, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Cindy Ho
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Khanh M. Vuu
- Joint BioEnergy Institute, Emeryville, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Lucas M. Waldburger
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Jay D. Keasling
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Patrick M. Shih
- Joint BioEnergy Institute, Emeryville, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| |
Collapse
|
11
|
Bujdoš D, Popelářová B, Volke DC, Nikel PI, Sonnenschein N, Dvořák P. Engineering of Pseudomonas putida for accelerated co-utilization of glucose and cellobiose yields aerobic overproduction of pyruvate explained by an upgraded metabolic model. Metab Eng 2023; 75:29-46. [PMID: 36343876 DOI: 10.1016/j.ymben.2022.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Pseudomonas putida KT2440 is an attractive bacterial host for biotechnological production of valuable chemicals from renewable lignocellulosic feedstocks as it can valorize lignin-derived aromatics or glucose obtainable from cellulose. P. putida EM42, a genome-reduced variant of strain KT2440 endowed with advantageous physiological properties, was recently engineered for growth on cellobiose, a major cellooligosaccharide product of enzymatic cellulose hydrolysis. Co-utilization of cellobiose and glucose was achieved in a mutant lacking periplasmic glucose dehydrogenase Gcd (PP_1444). However, the cause of the co-utilization phenotype remained to be understood and the Δgcd strain had a significant growth defect. In this study, we investigated the basis of the simultaneous uptake of the two sugars and accelerated the growth of P. putida EM42 Δgcd mutant for the bioproduction of valuable compounds from glucose and cellobiose. We show that the gcd deletion lifted the inhibition of the exogenous β-glucosidase BglC from Thermobifida fusca exerted by the intermediates of the periplasmic glucose oxidation pathway. The additional deletion of hexR gene, which encodes a repressor of the upper glycolysis genes, failed to restore rapid growth on glucose. The reduced growth rate of the Δgcd mutant was partially compensated by the implantation of heterologous glucose and cellobiose transporters (Glf from Zymomonas mobilis and LacY from Escherichia coli, respectively). Remarkably, this intervention resulted in the accumulation of pyruvate in aerobic P. putida cultures. We demonstrated that the excess of this key metabolic intermediate can be redirected to the enhanced biosynthesis of ethanol and lactate. The pyruvate overproduction phenotype was then unveiled by an upgraded genome-scale metabolic model constrained with proteomic and kinetic data. The model pointed to the saturation of glucose catabolism enzymes due to unregulated substrate uptake and it predicted improved bioproduction of pyruvate-derived chemicals by the engineered strain. This work sheds light on the co-metabolism of cellulosic sugars in an attractive biotechnological host and introduces a novel strategy for pyruvate overproduction in bacterial cultures under aerobic conditions.
Collapse
Affiliation(s)
- Dalimil Bujdoš
- Department of Experimental Biology (Section of Microbiology, Microbial Bioengineering Laboratory), Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Barbora Popelářová
- Department of Experimental Biology (Section of Microbiology, Microbial Bioengineering Laboratory), Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Nikolaus Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Pavel Dvořák
- Department of Experimental Biology (Section of Microbiology, Microbial Bioengineering Laboratory), Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic.
| |
Collapse
|
12
|
Velázquez E, Álvarez B, Fernández LÁ, de Lorenzo V. Hypermutation of specific genomic loci of Pseudomonas putida for continuous evolution of target genes. Microb Biotechnol 2022; 15:2309-2323. [PMID: 35695013 PMCID: PMC9437889 DOI: 10.1111/1751-7915.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/04/2022] Open
Abstract
The ability of T7 RNA polymerase (RNAPT7 ) fusions to cytosine deaminases (CdA) for entering C➔T changes in any DNA segment downstream of a T7 promoter was exploited for hyperdiversification of defined genomic portions of Pseudomonas putida KT2440. To this end, test strains were constructed in which the chromosomally encoded pyrF gene (the prokaryotic homologue of yeast URA3) was flanked by T7 transcription initiation and termination signals and also carried plasmids expressing constitutively either high-activity (lamprey's) or low-activity (rat's) CdA-RNAPT7 fusions. The DNA segment-specific mutagenic action of these fusions was then tested in strains lacking or not uracil-DNA glycosylase (UDG), that is ∆ung/ung+ variants. The resulting diversification was measured by counting single nucleotide changes in clones resistant to 5-fluoroorotic acid (5FOA), which otherwise is transformed by wild-type PyrF into a toxic compound. Although the absence of UDG dramatically increased mutagenic rates with both CdA-RNAPT7 fusions, the most active variant - pmCDA1 - caused extensive appearance of 5FOA-resistant colonies in the wild-type strain not limited to C➔T but including also a range of other changes. Furthermore, the presence/absence of UDG activity swapped cytosine deamination preference between DNA strands. These qualities provided the basis of a robust system for continuous evolution of preset genomic portions of P. putida and beyond.
Collapse
Affiliation(s)
- Elena Velázquez
- Systems Biology DepartmentCentro Nacional de Biotecnología (CNB‐CSIC)28049MadridSpain
| | - Beatriz Álvarez
- Microbiology DepartmentCentro Nacional de Biotecnología (CNB‐CSIC)28049MadridSpain
| | - Luis Ángel Fernández
- Microbiology DepartmentCentro Nacional de Biotecnología (CNB‐CSIC)28049MadridSpain
| | - Víctor de Lorenzo
- Systems Biology DepartmentCentro Nacional de Biotecnología (CNB‐CSIC)28049MadridSpain
| |
Collapse
|
13
|
Brandenberg OF, Schubert OT, Kruglyak L. Towards synthetic PETtrophy: Engineering Pseudomonas putida for concurrent polyethylene terephthalate (PET) monomer metabolism and PET hydrolase expression. Microb Cell Fact 2022; 21:119. [PMID: 35717313 PMCID: PMC9206389 DOI: 10.1186/s12934-022-01849-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/26/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Biocatalysis offers a promising path for plastic waste management and valorization, especially for hydrolysable plastics such as polyethylene terephthalate (PET). Microbial whole-cell biocatalysts for simultaneous PET degradation and growth on PET monomers would offer a one-step solution toward PET recycling or upcycling. We set out to engineer the industry-proven bacterium Pseudomonas putida for (i) metabolism of PET monomers as sole carbon sources, and (ii) efficient extracellular expression of PET hydrolases. We pursued this approach for both PET and the related polyester polybutylene adipate co-terephthalate (PBAT), aiming to learn about the determinants and potential applications of bacterial polyester-degrading biocatalysts. RESULTS P. putida was engineered to metabolize the PET and PBAT monomer terephthalic acid (TA) through genomic integration of four tphII operon genes from Comamonas sp. E6. Efficient cellular TA uptake was enabled by a point mutation in the native P. putida membrane transporter MhpT. Metabolism of the PET and PBAT monomers ethylene glycol and 1,4-butanediol was achieved through adaptive laboratory evolution. We then used fast design-build-test-learn cycles to engineer extracellular PET hydrolase expression, including tests of (i) the three PET hydrolases LCC, HiC, and IsPETase; (ii) genomic versus plasmid-based expression, using expression plasmids with high, medium, and low cellular copy number; (iii) three different promoter systems; (iv) three membrane anchor proteins for PET hydrolase cell surface display; and (v) a 30-mer signal peptide library for PET hydrolase secretion. PET hydrolase surface display and secretion was successfully engineered but often resulted in host cell fitness costs, which could be mitigated by promoter choice and altering construct copy number. Plastic biodegradation assays with the best PET hydrolase expression constructs genomically integrated into our monomer-metabolizing P. putida strains resulted in various degrees of plastic depolymerization, although self-sustaining bacterial growth remained elusive. CONCLUSION Our results show that balancing extracellular PET hydrolase expression with cellular fitness under nutrient-limiting conditions is a challenge. The precise knowledge of such bottlenecks, together with the vast array of PET hydrolase expression tools generated and tested here, may serve as a baseline for future efforts to engineer P. putida or other bacterial hosts towards becoming efficient whole-cell polyester-degrading biocatalysts.
Collapse
Affiliation(s)
- Oliver F Brandenberg
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, USA.
| | - Olga T Schubert
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, USA.,Department of Environmental Microbiology, EAWAG, 8600, Dübendorf, Switzerland.,Department of Environmental Systems Science, ETH Zurich, 8092, Zürich, Switzerland
| | - Leonid Kruglyak
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, USA.
| |
Collapse
|
14
|
Volke DC, Martino RA, Kozaeva E, Smania AM, Nikel PI. Modular (de)construction of complex bacterial phenotypes by CRISPR/nCas9-assisted, multiplex cytidine base-editing. Nat Commun 2022; 13:3026. [PMID: 35641501 PMCID: PMC9156665 DOI: 10.1038/s41467-022-30780-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/19/2022] [Indexed: 01/01/2023] Open
Abstract
CRISPR/Cas technologies constitute a powerful tool for genome engineering, yet their use in non-traditional bacteria depends on host factors or exogenous recombinases, which limits both efficiency and throughput. Here we mitigate these practical constraints by developing a widely-applicable genome engineering toolset for Gram-negative bacteria. The challenge is addressed by tailoring a CRISPR base editor that enables single-nucleotide resolution manipulations (C·G → T·A) with >90% efficiency. Furthermore, incorporating Cas6-mediated processing of guide RNAs in a streamlined protocol for plasmid assembly supports multiplex base editing with >85% efficiency. The toolset is adopted to construct and deconstruct complex phenotypes in the soil bacterium Pseudomonas putida. Single-step engineering of an aromatic-compound production phenotype and multi-step deconstruction of the intricate redox metabolism illustrate the versatility of multiplex base editing afforded by our toolbox. Hence, this approach overcomes typical limitations of previous technologies and empowers engineering programs in Gram-negative bacteria that were out of reach thus far. Rapid engineering of bacterial genomes is a requisite for both fundamental and applied studies. Here the authors develop an enhanced, broad-host-range cytidine base editor that enables multiplexed and efficient genome editing of Gram-negative bacteria.
Collapse
Affiliation(s)
- Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Román A Martino
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ekaterina Kozaeva
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andrea M Smania
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
15
|
Liu J, Wang X, Dai G, Zhang Y, Bian X. Microbial chassis engineering drives heterologous production of complex secondary metabolites. Biotechnol Adv 2022; 59:107966. [PMID: 35487394 DOI: 10.1016/j.biotechadv.2022.107966] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022]
Abstract
The cryptic secondary metabolite biosynthetic gene clusters (BGCs) far outnumber currently known secondary metabolites. Heterologous production of secondary metabolite BGCs in suitable chassis facilitates yield improvement and discovery of new-to-nature compounds. The two juxtaposed conventional model microorganisms, Escherichia coli, Saccharomyces cerevisiae, have been harnessed as microbial chassis to produce a bounty of secondary metabolites with the help of certain host engineering. In last decade, engineering non-model microbes to efficiently biosynthesize secondary metabolites has received increasing attention due to their peculiar advantages in metabolic networks and/or biosynthesis. The state-of-the-art synthetic biology tools lead the way in operating genetic manipulation in non-model microorganisms for phenotypic optimization or yields improvement of desired secondary metabolites. In this review, we firstly discuss the pros and cons of several model and non-model microbial chassis, as well as the importance of developing broader non-model microorganisms as alternative programmable heterologous hosts to satisfy the desperate needs of biosynthesis study and industrial production. Then we highlight the lately advances in the synthetic biology tools and engineering strategies for optimization of non-model microbial chassis, in particular, the successful applications for efficient heterologous production of multifarious complex secondary metabolites, e.g., polyketides, nonribosomal peptides, as well as ribosomally synthesized and post-translationally modified peptides. Lastly, emphasis is on the perspectives of chassis cells development to access the ideal cell factory in the artificial intelligence-driven genome era.
Collapse
Affiliation(s)
- Jiaqi Liu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China; Present address: Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Xue Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Guangzhi Dai
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
16
|
Immethun CM, Kathol M, Changa T, Saha R. Synthetic Biology Tool Development Advances Predictable Gene Expression in the Metabolically Versatile Soil Bacterium Rhodopseudomonas palustris. Front Bioeng Biotechnol 2022; 10:800734. [PMID: 35372317 PMCID: PMC8966681 DOI: 10.3389/fbioe.2022.800734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Harnessing the unique biochemical capabilities of non-model microorganisms would expand the array of biomanufacturing substrates, process conditions, and products. There are non-model microorganisms that fix nitrogen and carbon dioxide, derive energy from light, catabolize methane and lignin-derived aromatics, are tolerant to physiochemical stresses and harsh environmental conditions, store lipids in large quantities, and produce hydrogen. Model microorganisms often only break down simple sugars and require low stress conditions, but they have been engineered for the sustainable manufacture of numerous products, such as fragrances, pharmaceuticals, cosmetics, surfactants, and specialty chemicals, often by using tools from synthetic biology. Transferring complex pathways has proven to be exceedingly difficult, as the cofactors, cellular conditions, and energy sources necessary for this pathway to function may not be present in the host organism. Utilization of unique biochemical capabilities could also be achieved by engineering the host; although, synthetic biology tools developed for model microbes often do not perform as designed in other microorganisms. The metabolically versatile Rhodopseudomonas palustris CGA009, a purple non-sulfur bacterium, catabolizes aromatic compounds derived from lignin in both aerobic and anaerobic conditions and can use light, inorganic, and organic compounds for its source of energy. R. palustris utilizes three nitrogenase isozymes to fulfill its nitrogen requirements while also generating hydrogen. Furthermore, the bacterium produces two forms of RuBisCo in response to carbon dioxide/bicarbonate availability. While this potential chassis harbors many beneficial traits, stable heterologous gene expression has been problematic due to its intrinsic resistance to many antibiotics and the lack of synthetic biology parts investigated in this microbe. To address these problems, we have characterized gene expression and plasmid maintenance for different selection markers, started a synthetic biology toolbox specifically for the photosynthetic R. palustris, including origins of replication, fluorescent reporters, terminators, and 5′ untranslated regions, and employed the microbe’s endogenous plasmid for exogenous protein production. This work provides essential synthetic biology tools for engineering R. palustris’ many unique biochemical processes and has helped define the principles for expressing heterologous genes in this promising microbe through a methodology that could be applied to other non-model microorganisms.
Collapse
|
17
|
Wohlers K, Wirtz A, Reiter A, Oldiges M, Baumgart M, Bott M. Metabolic engineering of Pseudomonas putida for production of the natural sweetener 5-ketofructose from fructose or sucrose by periplasmic oxidation with a heterologous fructose dehydrogenase. Microb Biotechnol 2021; 14:2592-2604. [PMID: 34437751 PMCID: PMC8601194 DOI: 10.1111/1751-7915.13913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/13/2021] [Indexed: 11/30/2022] Open
Abstract
5-Ketofructose (5-KF) is a promising low-calorie natural sweetener with the potential to reduce health problems caused by excessive sugar consumption. It is formed by periplasmic oxidation of fructose by fructose dehydrogenase (Fdh) of Gluconobacter japonicus, a membrane-bound three-subunit enzyme containing FAD and three haemes c as prosthetic groups. This study aimed at establishing Pseudomonas putida KT2440 as a new cell factory for 5-KF production, as this host offers a number of advantages compared with the established host Gluconobacter oxydans. Genomic expression of the fdhSCL genes from G. japonicus enabled synthesis of functional Fdh in P. putida and successful oxidation of fructose to 5-KF. In a batch fermentation, 129 g l-1 5-KF were formed from 150 g l-1 fructose within 23 h, corresponding to a space-time yield of 5.6 g l-1 h-1 . Besides fructose, also sucrose could be used as substrate for 5-KF production by plasmid-based expression of the invertase gene inv1417 from G. japonicus. In a bioreactor cultivation with pulsed sucrose feeding, 144 g 5-KF were produced from 358 g sucrose within 48 h. These results demonstrate that P. putida is an attractive host for 5-KF production.
Collapse
Affiliation(s)
- Karen Wohlers
- IBG‐1: BiotechnologyInstitute of Bio‐ and GeosciencesForschungszentrum JülichJülich52425Germany
| | - Astrid Wirtz
- IBG‐1: BiotechnologyInstitute of Bio‐ and GeosciencesForschungszentrum JülichJülich52425Germany
| | - Alexander Reiter
- IBG‐1: BiotechnologyInstitute of Bio‐ and GeosciencesForschungszentrum JülichJülich52425Germany
- Institute of BiotechnologyRWTH Aachen UniversityAachen52062Germany
| | - Marco Oldiges
- IBG‐1: BiotechnologyInstitute of Bio‐ and GeosciencesForschungszentrum JülichJülich52425Germany
- Institute of BiotechnologyRWTH Aachen UniversityAachen52062Germany
| | - Meike Baumgart
- IBG‐1: BiotechnologyInstitute of Bio‐ and GeosciencesForschungszentrum JülichJülich52425Germany
| | - Michael Bott
- IBG‐1: BiotechnologyInstitute of Bio‐ and GeosciencesForschungszentrum JülichJülich52425Germany
- The Bioeconomy Science Center (BioSC)Forschungszentrum JülichJülichD‐52425Germany
| |
Collapse
|
18
|
Gauttam R, Mukhopadhyay A, Simmons BA, Singer SW. Development of dual-inducible duet-expression vectors for tunable gene expression control and CRISPR interference-based gene repression in Pseudomonas putida KT2440. Microb Biotechnol 2021; 14:2659-2678. [PMID: 34009716 PMCID: PMC8601191 DOI: 10.1111/1751-7915.13832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/29/2021] [Indexed: 12/16/2022] Open
Abstract
The development of P. putida as an industrial host requires a sophisticated molecular toolbox for strain improvement, including vectors for gene expression and repression. To augment existing expression plasmids for metabolic engineering, we developed a series of dual-inducible duet-expression vectors for P. putida KT2440. A number of inducible promoters (Plac , Ptac , PtetR/tetA and Pbad ) were used in different combinations to differentially regulate the expression of individual genes. Protein expression was evaluated by measuring the fluorescence of reporter proteins (GFP and RFP). Our experiments demonstrated the use of compatible plasmids, a useful approach to coexpress multiple genes in P. putida KT2440. These duet vectors were modified to generate a fully inducible CRISPR interference system using two catalytically inactive Cas9 variants from S. pasteurianus (dCas9) and S. pyogenes (spdCas9). The utility of developed CRISPRi system(s) was demonstrated by repressing the expression of nine conditionally essential genes, resulting in growth impairment and prolonged lag phase for P. putida KT2440 growth on glucose. Furthermore, the system was shown to be tightly regulated, tunable and to provide a simple way to identify essential genes with an observable phenotype.
Collapse
Affiliation(s)
- Rahul Gauttam
- The Joint BioEnergy InstituteEmeryvilleCAUSA
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
| | - Aindrila Mukhopadhyay
- The Joint BioEnergy InstituteEmeryvilleCAUSA
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
| | - Blake A. Simmons
- The Joint BioEnergy InstituteEmeryvilleCAUSA
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
| | - Steven W. Singer
- The Joint BioEnergy InstituteEmeryvilleCAUSA
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
| |
Collapse
|
19
|
Sathesh-Prabu C, Tiwari R, Kim D, Lee SK. Inducible and tunable gene expression systems for Pseudomonas putida KT2440. Sci Rep 2021; 11:18079. [PMID: 34508142 PMCID: PMC8433446 DOI: 10.1038/s41598-021-97550-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022] Open
Abstract
Inducible and tunable expression systems are essential for the microbial production of biochemicals. Five different carbon source- and substrate-inducible promoter systems were developed and further evaluated in Pseudomonas putida KT2440 by analyzing the expression of green fluorescent protein (GFP) as a reporter protein. These systems can be induced by low-cost compounds such as glucose, 3-hydroxypropionic acid (3HP), levulinic acid (LA), and xylose. 3HP-inducible HpdR/PhpdH was also efficiently induced by LA. LvaR/PlvaA and XutR/PxutA systems were induced even at low concentrations of LA (0.1 mM) and xylose (0.5 mM), respectively. Glucose-inducible HexR/Pzwf1 showed weak GFP expression. These inducer agents can be used as potent starting materials for both cell growth and the production of a wide range of biochemicals. The efficiency of the reported systems was comparable to that of conventional chemical-inducible systems. Hence, the newly investigated promoter systems are highly useful for the expression of target genes in the widely used synthetic biology chassis P. putida KT2440 for industrial and medical applications.
Collapse
Affiliation(s)
- Chandran Sathesh-Prabu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Rameshwar Tiwari
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Doyun Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sung Kuk Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. .,Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
20
|
Fraile S, Briones M, Revenga-Parra M, de Lorenzo V, Lorenzo E, Martínez-García E. Engineering Tropism of Pseudomonas putida toward Target Surfaces through Ectopic Display of Recombinant Nanobodies. ACS Synth Biol 2021; 10:2049-2059. [PMID: 34337948 PMCID: PMC8397431 DOI: 10.1021/acssynbio.1c00227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 12/15/2022]
Abstract
Gram-negative bacteria are endowed with complex outer membrane (OM) structures that allow them to both interact with other organisms and attach to different physical structures. However, the design of reliable bacterial coatings of solid surfaces is still a considerable challenge. In this work, we report that ectopic expression of a fibrinogen-specific nanobody on the envelope of Pseudomonas putida cells enables controllable formation of a bacterial monolayer strongly bound to an antigen-coated support. To this end, either the wild type or a surface-naked derivative of P. putida was engineered to express a hybrid between the β-barrel of an intimin-type autotransporter inserted in the outer membrane and a nanobody (VHH) moiety that targets fibrinogen as its cognate interaction partner. The functionality of the thereby presented VHH and the strength of the resulting cell attachment to a solid surface covered with the cognate antigen were tested and parametrized with Quartz Crystal Microbalance technology. The results not only demonstrated the value of using bacteria with reduced OM complexity for efficient display of artificial adhesins, but also the potential of this approach to engineer specific bacterial coverings of predetermined target surfaces.
Collapse
Affiliation(s)
- Sofía Fraile
- Systems Biology Department, Centro Nacional
de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - María Briones
- Departamento de Química Analítica y Análisis
Instrumental, Universidad Autónoma
de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mónica Revenga-Parra
- Departamento de Química Analítica y Análisis
Instrumental, Universidad Autónoma
de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Víctor de Lorenzo
- Systems Biology Department, Centro Nacional
de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis
Instrumental, Universidad Autónoma
de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Esteban Martínez-García
- Systems Biology Department, Centro Nacional
de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
21
|
|
22
|
Towards robust Pseudomonas cell factories to harbour novel biosynthetic pathways. Essays Biochem 2021; 65:319-336. [PMID: 34223620 PMCID: PMC8314020 DOI: 10.1042/ebc20200173] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/01/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Biotechnological production in bacteria enables access to numerous valuable chemical compounds. Nowadays, advanced molecular genetic toolsets, enzyme engineering as well as the combinatorial use of biocatalysts, pathways, and circuits even bring new-to-nature compounds within reach. However, the associated substrates and biosynthetic products often cause severe chemical stress to the bacterial hosts. Species of the Pseudomonas clade thus represent especially valuable chassis as they are endowed with multiple stress response mechanisms, which allow them to cope with a variety of harmful chemicals. A built-in cell envelope stress response enables fast adaptations that sustain membrane integrity under adverse conditions. Further, effective export machineries can prevent intracellular accumulation of diverse harmful compounds. Finally, toxic chemicals such as reactive aldehydes can be eliminated by oxidation and stress-induced damage can be recovered. Exploiting and engineering these features will be essential to support an effective production of natural compounds and new chemicals. In this article, we therefore discuss major resistance strategies of Pseudomonads along with approaches pursued for their targeted exploitation and engineering in a biotechnological context. We further highlight strategies for the identification of yet unknown tolerance-associated genes and their utilisation for engineering next-generation chassis and finally discuss effective measures for pathway fine-tuning to establish stable cell factories for the effective production of natural compounds and novel biochemicals.
Collapse
|
23
|
Liang T, Sun J, Ju S, Su S, Yang L, Wu J. Construction of T7-Like Expression System in Pseudomonas putida KT2440 to Enhance the Heterologous Expression Level. Front Chem 2021; 9:664967. [PMID: 34336782 PMCID: PMC8322953 DOI: 10.3389/fchem.2021.664967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas putida KT2440 has become an attractive chassis for heterologous expression with the development of effective genetic manipulation tools. Improving the level of transcriptional regulation is particularly important for extending the potential of P. putida KT2440 in heterologous expression. Although many strategies have been applied to enhance the heterologous expression level in P. putida KT2440, it was still at a relatively low level. Herein we constructed a T7-like expression system in P. putida KT2440, mimicking the pET expression system in Escherichia coli, which consisted of T7-like RNA polymerase (MmP1) integrated strain and the corresponding expression vector for the heterologous expression enhancement. With the optimization of the insertion site and the copy number of RNA polymerase (RNAP), the relative fluorescence intensity (RFI) of the super-folder green fluorescent protein (sfGFP) was improved by 1.4-fold in MmP1 RNAP integrated strain. The induction point and IPTG concentration were also optimized. This strategy was extended to the gene-reduced strain EM42 and the expression of sfGFP was improved by 2.1-fold. The optimal RNAP integration site was also used for introducing T7 RNAP in P. putida KT2440 and the expression level was enhanced, indicating the generality of the integration site for the T7 expression system. Compared to other inducible expression systems in KT2440, the heterologous expression level of the Mmp1 system and T7 system were more than 2.5 times higher. Furthermore, the 3.6-fold enhanced expression level of a difficult-to-express nicotinate dehydrogenase from Comamonas testosteroni JA1 verified the efficiency of the T7-like expression system in P. putida KT2440. Taken together, we constructed and optimized the T7-like and T7 expression system in P. putida, thus providing a set of applicable chassis and corresponding plasmids to improve recombinant expression level, expecting to be used for difficult-to-express proteins.
Collapse
Affiliation(s)
- Tianxin Liang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jun Sun
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Shuyun Ju
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Shenyi Su
- Hwa Chong Institution, Singapore, Singapore
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
|
25
|
Akkaya Ö, Aparicio T, Pérez-Pantoja D, de Lorenzo V. The faulty SOS response of Pseudomonas putida KT2440 stems from an inefficient RecA-LexA interplay. Environ Microbiol 2021; 23:1608-1619. [PMID: 33393180 DOI: 10.1111/1462-2920.15384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022]
Abstract
Despite its environmental robustness Pseudomonas putida strain KT2440 is very sensitive to DNA damage and displays poor homologous recombination efficiencies. To gain an insight into this deficiency isogenic ∆recA and ∆lexA1 derivatives of prophage-free strain P. putida EM173 were generated and responses of the recA and lexA1 promoters to DNA damage tested with GFP reporter technology. Basal expression of recA and lexA1 of P. putida were high in the absence of DNA damage and only moderately induced by norfloxacin. A similar behaviour was observed when equivalent GFP fusions to the recA and lexA promoters of E. coli were placed in P. putida EM173. In contrast, all SOS promoters were subject to strong repression in E. coli, which was released only when cells were treated with the antibiotic. Replacement of P. putida's native LexA1 and RecA by E. coli homologues did not improve the responsiveness of the indigenous functions to DNA damage. Taken together, it seems that P. putida fails to mount a strong SOS response due to the inefficacy of the crucial RecA-LexA interplay largely tractable to the weakness of the corresponding promoters and the inability of the repressor to shut them down entirely in the absence of DNA damage.
Collapse
Affiliation(s)
- Özlem Akkaya
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, 28049, Spain.,Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
| | - Tomás Aparicio
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, 28049, Spain
| | - Danilo Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
26
|
|
27
|
Dvořák P, Bayer EA, de Lorenzo V. Surface Display of Designer Protein Scaffolds on Genome-Reduced Strains of Pseudomonas putida. ACS Synth Biol 2020; 9:2749-2764. [PMID: 32877604 DOI: 10.1021/acssynbio.0c00276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The bacterium Pseudomonas putida KT2440 is gaining considerable interest as a microbial platform for biotechnological valorization of polymeric organic materials, such as lignocellulosic residues or plastics. However, P. putida on its own cannot make much use of such complex substrates, mainly because it lacks an efficient extracellular depolymerizing apparatus. We seek to address this limitation by adopting a recombinant cellulosome strategy for this host. In this work, we report an essential step in this endeavor-a display of designer enzyme-anchoring protein "scaffoldins", encompassing cohesin binding domains from divergent cellulolytic bacterial species on the P. putida surface. Two P. putida chassis strains, EM42 and EM371, with streamlined genomes and differences in the composition of the outer membrane were employed in this study. Scaffoldin variants were optimally delivered to their surface with one of four tested autotransporter systems (Ag43 from Escherichia coli), and the efficient display was confirmed by extracellular attachment of chimeric β-glucosidase and fluorescent proteins. Our results not only highlight the value of cell surface engineering for presentation of recombinant proteins on the envelope of Gram-negative bacteria but also pave the way toward designer cellulosome strategies tailored for P. putida.
Collapse
Affiliation(s)
- Pavel Dvořák
- Department of Experimental Biology (Section of Microbiology), Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología CNB-CSIC, Cantoblanco, Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
28
|
Martínez-García E, Fraile S, Rodríguez Espeso D, Vecchietti D, Bertoni G, de Lorenzo V. Naked Bacterium: Emerging Properties of a Surfome-Streamlined Pseudomonas putida Strain. ACS Synth Biol 2020; 9:2477-2492. [PMID: 32786355 DOI: 10.1021/acssynbio.0c00272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Environmental bacteria are most often endowed with native surface-attachment programs that frequently conflict with efforts to engineer biofilms and synthetic communities with given tridimensional architectures. In this work, we report the editing of the genome of Pseudomonas putida KT2440 for stripping the cells of most outer-facing structures of the bacterial envelope that mediate motion, binding to surfaces, and biofilm formation. To this end, 23 segments of the P. putida chromosome encoding a suite of such functions were deleted, resulting in the surface-naked strain EM371, the physical properties of which changed dramatically in respect to the wild type counterpart. As a consequence, surface-edited P. putida cells were unable to form biofilms on solid supports and, because of the swimming deficiency and other alterations, showed a much faster sedimentation in liquid media. Surface-naked bacteria were then used as carriers of interacting partners (e.g., Jun-Fos domains) ectopically expressed by means of an autotransporter display system on the now easily accessible cell envelope. Abstraction of individual bacteria as adhesin-coated spherocylinders enabled rigorous quantitative description of the multicell interplay brought about by thereby engineered physical interactions. The model was then applied to parametrize the data extracted from automated analysis of confocal microscopy images of the experimentally assembled bacterial flocks for analyzing their structure and distribution. The resulting data not only corroborated the value of P. putida EM371 over the parental strain as a platform for display artificial adhesins but also provided a strategy for rational engineering of catalytic communities.
Collapse
Affiliation(s)
- Esteban Martínez-García
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Sofía Fraile
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - David Rodríguez Espeso
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Davide Vecchietti
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Giovanni Bertoni
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
29
|
de Lorenzo V, Krasnogor N, Schmidt M. For the sake of the Bioeconomy: define what a Synthetic Biology Chassis is! N Biotechnol 2020; 60:44-51. [PMID: 32889152 DOI: 10.1016/j.nbt.2020.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
At the onset of the 4th Industrial Revolution, the role of synthetic biology (SynBio) as a fuel for the bioeconomy requires clarification of the terms typically adopted by this growing scientific-technical field. The concept of the chassis as a defined, reusable biological frame where non-native components can be plugged in and out to create new functionalities lies at the boundary between frontline bioengineering and more traditional recombinant DNA technology. As synthetic biology leaves academic laboratories and starts penetrating industrial and environmental realms regulatory agencies demand clear definitions and descriptions of SynBio constituents, processes and products. In this article, the state of the ongoing discussion on what is a chassis is reviewed, a non-equivocal nomenclature for the jargon used is proposed and objective criteria are recommended for distinguishing SynBio agents from traditional GMOs. The use of genomic barcodes as unique identifiers is strongly advocated. Finally the soil bacterium Pseudomonas putida is shown as an example of the roadmap that one environmental isolate may go through to become a bona fide SynBio chassis.
Collapse
Affiliation(s)
- Víctor de Lorenzo
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC) Madrid 28049, Spain.
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Biosystems (ICOS) research group, Newcastle University, Newcastle Upon Tyne NE4 5TG UK
| | | |
Collapse
|
30
|
Weimer A, Kohlstedt M, Volke DC, Nikel PI, Wittmann C. Industrial biotechnology of Pseudomonas putida: advances and prospects. Appl Microbiol Biotechnol 2020; 104:7745-7766. [PMID: 32789744 PMCID: PMC7447670 DOI: 10.1007/s00253-020-10811-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 08/02/2020] [Indexed: 11/17/2022]
Abstract
Pseudomonas putida is a Gram-negative, rod-shaped bacterium that can be encountered in diverse ecological habitats. This ubiquity is traced to its remarkably versatile metabolism, adapted to withstand physicochemical stress, and the capacity to thrive in harsh environments. Owing to these characteristics, there is a growing interest in this microbe for industrial use, and the corresponding research has made rapid progress in recent years. Hereby, strong drivers are the exploitation of cheap renewable feedstocks and waste streams to produce value-added chemicals and the steady progress in genetic strain engineering and systems biology understanding of this bacterium. Here, we summarize the recent advances and prospects in genetic engineering, systems and synthetic biology, and applications of P. putida as a cell factory. KEY POINTS: • Pseudomonas putida advances to a global industrial cell factory. • Novel tools enable system-wide understanding and streamlined genomic engineering. • Applications of P. putida range from bioeconomy chemicals to biosynthetic drugs.
Collapse
Affiliation(s)
- Anna Weimer
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany.
| |
Collapse
|
31
|
Common problems associated with the microbial productions of aromatic compounds and corresponding metabolic engineering strategies. Biotechnol Adv 2020; 41:107548. [DOI: 10.1016/j.biotechadv.2020.107548] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 01/06/2023]
|
32
|
Gauttam R, Mukhopadhyay A, Singer SW. Construction of a novel dual-inducible duet-expression system for gene (over)expression in Pseudomonas putida. Plasmid 2020; 110:102514. [PMID: 32504628 DOI: 10.1016/j.plasmid.2020.102514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/01/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Pseudomonas putida is a widely used host for metabolic engineering and synthetic biology. However, the use of P. putida has been hampered by the availability of a limited set of expression vectors for producing heterologous proteins. To widen the scope of expression vectors for gene co-expression studies, a previously established dual-inducible expression vector pRG_Duet2 developed for Corynebacterium glutamicum has been modified for use in P. putida. This expression vector, named pRGPDuo2, harbors two origins of replication, colE1 for replication in E. coli and pRO1600 for replication in P. putida. Two multiple cloning sites (MCS1 and MCS2) in pRGPDuo2 are individually controlled by inducible promoters Ptac or PtetR/tetA. Functional validation of pRGPDuo2 was confirmed by the co-expression of genes for the fluorescent proteins namely, superfolder green fluorescent protein (sfGFP), and red fluorescent protein (RFP). Moreover, the strength of the fluorescence signal was dependent on the inducer concentrations present in the culture medium. The expression vector pRGPDuo2 is an attractive addition to the existing repertoire of expression plasmids for expression profiling and adds to the tools available for P. putida metabolic engineering.
Collapse
Affiliation(s)
- Rahul Gauttam
- The Joint BioEnergy Institute, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- The Joint BioEnergy Institute, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven W Singer
- The Joint BioEnergy Institute, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
33
|
Loeschcke A, Thies S. Engineering of natural product biosynthesis in Pseudomonas putida. Curr Opin Biotechnol 2020; 65:213-224. [PMID: 32498036 DOI: 10.1016/j.copbio.2020.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/01/2020] [Accepted: 03/30/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Germany.
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Germany.
| |
Collapse
|
34
|
Nitschel R, Ankenbauer A, Welsch I, Wirth NT, Massner C, Ahmad N, McColm S, Borges F, Fotheringham I, Takors R, Blombach B. Engineering Pseudomonas putida KT2440 for the production of isobutanol. Eng Life Sci 2020; 20:148-159. [PMID: 32874178 PMCID: PMC7447888 DOI: 10.1002/elsc.201900151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 11/06/2022] Open
Abstract
We engineered P. putida for the production of isobutanol from glucose by preventing product and precursor degradation, inactivation of the soluble transhydrogenase SthA, overexpression of the native ilvC and ilvD genes, and implementation of the feedback-resistant acetolactate synthase AlsS from Bacillus subtilis, ketoacid decarboxylase KivD from Lactococcus lactis, and aldehyde dehydrogenase YqhD from Escherichia coli. The resulting strain P. putida Iso2 produced isobutanol with a substrate specific product yield (Y Iso/S) of 22 ± 2 mg per gram of glucose under aerobic conditions. Furthermore, we identified the ketoacid decarboxylase from Carnobacterium maltaromaticum to be a suitable alternative for isobutanol production, since replacement of kivD from L. lactis in P. putida Iso2 by the variant from C. maltaromaticum yielded an identical YIso/S. Although P. putida is regarded as obligate aerobic, we show that under oxygen deprivation conditions this bacterium does not grow, remains metabolically active, and that engineered producer strains secreted isobutanol also under the non-growing conditions.
Collapse
Affiliation(s)
- Robert Nitschel
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Andreas Ankenbauer
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Ilona Welsch
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Nicolas T. Wirth
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Christoph Massner
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Naveed Ahmad
- Ingenza Ltd., Roslin Innovation CentreCharnock Bradley Building, Easter Bush CampusRoslinUK
| | - Stephen McColm
- Ingenza Ltd., Roslin Innovation CentreCharnock Bradley Building, Easter Bush CampusRoslinUK
| | - Frédéric Borges
- Laboratoire d'Ingénierie des Biomolécules (LIBio)Université de LorraineNancyFrance
| | - Ian Fotheringham
- Ingenza Ltd., Roslin Innovation CentreCharnock Bradley Building, Easter Bush CampusRoslinUK
| | - Ralf Takors
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Bastian Blombach
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
- Microbial Biotechnology, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
| |
Collapse
|
35
|
Volke DC, Friis L, Wirth NT, Turlin J, Nikel PI. Synthetic control of plasmid replication enables target- and self-curing of vectors and expedites genome engineering of Pseudomonas putida. Metab Eng Commun 2020; 10:e00126. [PMID: 32215253 PMCID: PMC7090339 DOI: 10.1016/j.mec.2020.e00126] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/23/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023] Open
Abstract
Genome engineering of non-conventional microorganisms calls for the development of dedicated synthetic biology tools. Pseudomonas putida is a Gram-negative, non-pathogenic soil bacterium widely used for metabolic engineering owing to its versatile metabolism and high levels of tolerance to different types of stress. Genome editing of P. putida largely relies on homologous recombination events, assisted by helper plasmid-based expression of genes encoding DNA modifying enzymes. Plasmid curing from selected isolates is the most tedious and time-consuming step of this procedure, and implementing commonly used methods to this end in P. putida (e.g. temperature-sensitive replicons) is often impractical. To tackle this issue, we have developed a toolbox for both target- and self-curing of plasmid DNA in Pseudomonas species. Our method enables plasmid-curing in a simple cultivation step by combining in vivo digestion of vectors by the I-SceI homing nuclease with synthetic control of plasmid replication, triggered by the addition of a cheap chemical inducer (3-methylbenzoate) to the medium. The system displays an efficiency of vector curing >90% and the screening of plasmid-free clones is greatly facilitated by the use of fluorescent markers that can be selected according to the application intended. Furthermore, quick genome engineering of P. putida using self-curing plasmids is demonstrated through genome reduction of the platform strain EM42 by eliminating all genes encoding β-lactamases, the catabolic ben gene cluster, and the pyoverdine synthesis machinery. Physiological characterization of the resulting streamlined strain, P. putida SEM10, revealed advantageous features that could be exploited for metabolic engineering. Plasmid-curing is the most time-consuming step in genome engineering approaches. We have developed a system for easy target- and self-curing of plasmid DNA. Synthetic control of replication and highly-specific in vivo DNA digestion were used. Plasmid curing with this system displays an efficiency >90% in a 24-h cultivation. Quick genome engineering facilitated genome reduction of P. putida.
Collapse
Affiliation(s)
- Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Laura Friis
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Nicolas T Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Justine Turlin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| |
Collapse
|
36
|
Abstract
Pseudomonas putidais a fast-growing bacterium found mostly in temperate soil and water habitats. The metabolic versatility ofP. putidamakes this organism attractive for biotechnological applications such as biodegradation of environmental pollutants and synthesis of added-value chemicals (biocatalysis). This organism has been extensively studied in respect to various stress responses, mechanisms of genetic plasticity and transcriptional regulation of catabolic genes.P. putidais able to colonize the surface of living organisms, but is generally considered to be of low virulence. A number ofP. putidastrains are able to promote plant growth. The aim of this review is to give historical overview of the discovery of the speciesP. putidaand isolation and characterization ofP. putidastrains displaying potential for biotechnological applications. This review also discusses some major findings inP. putidaresearch encompassing regulation of catabolic operons, stress-tolerance mechanisms and mechanisms affecting evolvability of bacteria under conditions of environmental stress.
Collapse
|
37
|
Hueso-Gil A, Nyerges Á, Pál C, Calles B, de Lorenzo V. Multiple-Site Diversification of Regulatory Sequences Enables Interspecies Operability of Genetic Devices. ACS Synth Biol 2020; 9:104-114. [PMID: 31794196 DOI: 10.1021/acssynbio.9b00375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The features of the light-responsive cyanobacterial CcaSR regulatory module that determine interoperability of this optogenetic device between Escherichia coli and Pseudomonas putida have been examined. For this, all structural parts (i.e., ho1 and pcyA genes for synthesis of phycocyanobilin, the ccaS/ccaR system from Synechocystis, and its cognate downstream promoter) were maintained but their expression levels and stoichiometry diversified by (i) reassembling them together in a single broad host range, standardized vector and (ii) subjecting the noncoding regulatory sequences to multiple cycles of directed evolution with random genomic mutations (DIvERGE), a recombineering method that intensifies mutation rates within discrete DNA segments. Once passed to P. putida, various clones displayed a wide dynamic range, insignificant leakiness, and excellent capacity in response to green light. Inspection of the evolutionary intermediates pinpointed translational control as the main bottleneck for interoperability and suggested a general approach for easing the exchange of genetic cargoes between different species, i.e., optimization of relative expression levels and upturning of subcomplex stoichiometry.
Collapse
Affiliation(s)
- Angeles Hueso-Gil
- Systems Biology Program, Centro Nacional de Biotecnología, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ákos Nyerges
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged H-6726, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged H-6726, Hungary
| | - Belén Calles
- Systems Biology Program, Centro Nacional de Biotecnología, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
38
|
Wirth NT, Kozaeva E, Nikel PI. Accelerated genome engineering of Pseudomonas putida by I-SceI-mediated recombination and CRISPR-Cas9 counterselection. Microb Biotechnol 2020; 13:233-249. [PMID: 30861315 PMCID: PMC6922521 DOI: 10.1111/1751-7915.13396] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas species have become reliable platforms for bioproduction due to their capability to tolerate harsh conditions imposed by large-scale bioprocesses and their remarkable resistance to diverse physicochemical stresses. The last few years have brought forth a variety of synthetic biology tools for the genetic manipulation of pseudomonads, but most of them are either applicable only to obtain certain types of mutations, lack efficiency, or are not easily accessible to be used in different Pseudomonas species (e.g. natural isolates). In this work, we describe a versatile, robust and user-friendly procedure that facilitates virtually any kind of genomic manipulation in Pseudomonas species in 3-5 days. The protocol presented here is based on DNA recombination forced by double-stranded DNA cuts (through the activity of the I-SceI homing meganuclease from yeast) followed by highly efficient counterselection of mutants (aided by a synthetic CRISPR-Cas9 device). The individual parts of the genome engineering toolbox, tailored for knocking genes in and out, have been standardized to enable portability and easy exchange of functional gene modules as needed. The applicability of the procedure is illustrated both by eliminating selected genomic regions in the platform strain P. putida KT2440 (including difficult-to-delete genes) and by integrating different reporter genes (comprising novel variants of fluorescent proteins) into a defined landing site in the target chromosome.
Collapse
Affiliation(s)
- Nicolas T. Wirth
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark2800Kongens LyngbyDenmark
| | - Ekaterina Kozaeva
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark2800Kongens LyngbyDenmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark2800Kongens LyngbyDenmark
| |
Collapse
|
39
|
Ryu MH, Zhang J, Toth T, Khokhani D, Geddes BA, Mus F, Garcia-Costas A, Peters JW, Poole PS, Ané JM, Voigt CA. Control of nitrogen fixation in bacteria that associate with cereals. Nat Microbiol 2019; 5:314-330. [DOI: 10.1038/s41564-019-0631-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022]
|
40
|
Pseudomonas putida in the quest of programmable chemistry. Curr Opin Biotechnol 2019; 59:111-121. [DOI: 10.1016/j.copbio.2019.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/15/2019] [Accepted: 03/12/2019] [Indexed: 11/19/2022]
|
41
|
Wynands B, Otto M, Runge N, Preckel S, Polen T, Blank LM, Wierckx N. Streamlined Pseudomonas taiwanensis VLB120 Chassis Strains with Improved Bioprocess Features. ACS Synth Biol 2019; 8:2036-2050. [PMID: 31465206 DOI: 10.1021/acssynbio.9b00108] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Microbes harbor many traits that are dispensable or even unfavorable under industrial and laboratory settings. The elimination of such traits could improve the host's efficiency, genetic stability, and robustness, thereby increasing the predictability and boosting its performance as a microbial cell factory. We engineered solvent-tolerant Pseudomonas taiwanensis VLB120 to yield streamlined chassis strains with higher growth rates and biomass yields, enhanced solvent tolerance, and improved process performance. In total, the genome was reduced by up to 10%. This was achieved by the elimination of genes that enable the cell to swim and form biofilms and by the deletion of the megaplasmid pSTY and large proviral segments. The resulting strain GRC1 had a 15% higher growth rate and biomass yield than the wildtype. However, this strain lacks the pSTY-encoded efflux pump TtgGHI, rendering it solvent-sensitive. Through reintegration of ttgGHI by chromosomal insertion without (GRC2) and with (GRC3) the corresponding regulator genes, the solvent-tolerant phenotype was enhanced. The generated P. taiwanensis GRC strains enlarge the repertoire of streamlined chassis with enhanced key performance indicators, making them attractive hosts for biotechnological applications. The different solvent tolerance levels of GRC1, GRC2, and GRC3 enable the selection of a fitting host platform in relation to the desired process requirements in a chassis à la carte principle. This was demonstrated in a metabolic engineering approach for the production of phenol from glycerol. The streamlined producer GRC1Δ5-TPL38 outperformed the equivalent nonstreamlined producer VLB120Δ5-TPL38 concerning phenol titer, rate, and yield, thereby highlighting the added value of the streamlined chassis.
Collapse
Affiliation(s)
- Benedikt Wynands
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Maike Otto
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Nadine Runge
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Sarah Preckel
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Tino Polen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Lars M. Blank
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Nick Wierckx
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
42
|
Nora LC, Westmann CA, Guazzaroni ME, Siddaiah C, Gupta VK, Silva-Rocha R. Recent advances in plasmid-based tools for establishing novel microbial chassis. Biotechnol Adv 2019; 37:107433. [PMID: 31437573 DOI: 10.1016/j.biotechadv.2019.107433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/11/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022]
Abstract
A key challenge for domesticating alternative cultivable microorganisms with biotechnological potential lies in the development of innovative technologies. Within this framework, a myriad of genetic tools has flourished, allowing the design and manipulation of complex synthetic circuits and genomes to become the general rule in many laboratories rather than the exception. More recently, with the development of novel technologies such as DNA automated synthesis/sequencing and powerful computational tools, molecular biology has entered the synthetic biology era. In the beginning, most of these technologies were established in traditional microbial models (known as chassis in the synthetic biology framework) such as Escherichia coli and Saccharomyces cerevisiae, enabling fast advances in the field and the validation of fundamental proofs of concept. However, it soon became clear that these organisms, although extremely useful for prototyping many genetic tools, were not ideal for a wide range of biotechnological tasks due to intrinsic limitations in their molecular/physiological properties. Over the last decade, researchers have been facing the great challenge of shifting from these model systems to non-conventional chassis with endogenous capacities for dealing with specific tasks. The key to address these issues includes the generation of narrow and broad host plasmid-based molecular tools and the development of novel methods for engineering genomes through homologous recombination systems, CRISPR/Cas9 and other alternative methods. Here, we address the most recent advances in plasmid-based tools for the construction of novel cell factories, including a guide for helping with "build-your-own" microbial host.
Collapse
Affiliation(s)
- Luísa Czamanski Nora
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Cauã Antunes Westmann
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - María-Eugenia Guazzaroni
- Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | | | - Vijai Kumar Gupta
- ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Rafael Silva-Rocha
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil.
| |
Collapse
|
43
|
Sánchez-Pascuala A, Fernández-Cabezón L, de Lorenzo V, Nikel PI. Functional implementation of a linear glycolysis for sugar catabolism in Pseudomonas putida. Metab Eng 2019; 54:200-211. [DOI: 10.1016/j.ymben.2019.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/23/2023]
|
44
|
Fernández‐Cabezón L, Cros A, Nikel PI. Evolutionary Approaches for Engineering Industrially Relevant Phenotypes in Bacterial Cell Factories. Biotechnol J 2019; 14:e1800439. [DOI: 10.1002/biot.201800439] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/08/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Lorena Fernández‐Cabezón
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark 2800 Kongens Lyngby Denmark
| | - Antonin Cros
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark 2800 Kongens Lyngby Denmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark 2800 Kongens Lyngby Denmark
| |
Collapse
|
45
|
Volke DC, Turlin J, Mol V, Nikel PI. Physical decoupling of XylS/Pm regulatory elements and conditional proteolysis enable precise control of gene expression in Pseudomonas putida. Microb Biotechnol 2019; 13:222-232. [PMID: 30864281 PMCID: PMC6922516 DOI: 10.1111/1751-7915.13383] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 01/28/2023] Open
Abstract
Most of the gene expression systems available for Gram‐negative bacteria are afflicted by relatively high levels of basal (i.e. leaky) expression of the target gene(s). This occurrence affects the system dynamics, ultimately reducing the output and productivity of engineered pathways and synthetic circuits. In order to circumvent this problem, we have designed a novel expression system based on the well‐known XylS/Pm transcriptional regulator/promoter pair from the soil bacterium Pseudomonas putida mt‐2, in which the key functional elements are physically decoupled. By integrating the xylS gene into the chromosome of the platform strain KT2440, while placing the Pm promoter into a set of standard plasmid vectors, the inducibility of the system (i.e. the output difference between the induced and uninduced state) improved up to 170‐fold. We further combined this modular system with an extra layer of post‐translational control by means of conditional proteolysis. In this setup, the target gene is tagged with a synthetic motif dictating protein degradation. When the system features were characterized using the monomeric superfolder GFP as a model protein, the basal levels of fluorescence were brought down to zero (i.e. below the limit of detection). In all, these novel expression systems constitute an alternative tool to altogether suppress leaky gene expression, and they can be easily adapted to other vector formats and plugged‐in into different Gram‐negative bacterial species at the user's will.
Collapse
Affiliation(s)
- Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Justine Turlin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Viviënne Mol
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| |
Collapse
|
46
|
Calero P, Nikel PI. Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms. Microb Biotechnol 2019; 12:98-124. [PMID: 29926529 PMCID: PMC6302729 DOI: 10.1111/1751-7915.13292] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/27/2022] Open
Abstract
The last few years have witnessed an unprecedented increase in the number of novel bacterial species that hold potential to be used for metabolic engineering. Historically, however, only a handful of bacteria have attained the acceptance and widespread use that are needed to fulfil the needs of industrial bioproduction - and only for the synthesis of very few, structurally simple compounds. One of the reasons for this unfortunate circumstance has been the dearth of tools for targeted genome engineering of bacterial chassis, and, nowadays, synthetic biology is significantly helping to bridge such knowledge gap. Against this background, in this review, we discuss the state of the art in the rational design and construction of robust bacterial chassis for metabolic engineering, presenting key examples of bacterial species that have secured a place in industrial bioproduction. The emergence of novel bacterial chassis is also considered at the light of the unique properties of their physiology and metabolism, and the practical applications in which they are expected to outperform other microbial platforms. Emerging opportunities, essential strategies to enable successful development of industrial phenotypes, and major challenges in the field of bacterial chassis development are also discussed, outlining the solutions that contemporary synthetic biology-guided metabolic engineering offers to tackle these issues.
Collapse
Affiliation(s)
- Patricia Calero
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark2800Kongens LyngbyDenmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark2800Kongens LyngbyDenmark
| |
Collapse
|
47
|
Nikel PI, de Lorenzo V. Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans-metabolism. Metab Eng 2018; 50:142-155. [DOI: 10.1016/j.ymben.2018.05.005] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022]
|
48
|
Refactoring the upper sugar metabolism of Pseudomonas putida for co-utilization of cellobiose, xylose, and glucose. Metab Eng 2018; 48:94-108. [DOI: 10.1016/j.ymben.2018.05.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/15/2018] [Accepted: 05/31/2018] [Indexed: 01/02/2023]
|
49
|
Górski A, Międzybrodzki R, Łobocka M, Głowacka-Rutkowska A, Bednarek A, Borysowski J, Jończyk-Matysiak E, Łusiak-Szelachowska M, Weber-Dąbrowska B, Bagińska N, Letkiewicz S, Dąbrowska K, Scheres J. Phage Therapy: What Have We Learned? Viruses 2018; 10:E288. [PMID: 29843391 PMCID: PMC6024844 DOI: 10.3390/v10060288] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/11/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023] Open
Abstract
In this article we explain how current events in the field of phage therapy may positively influence its future development. We discuss the shift in position of the authorities, academia, media, non-governmental organizations, regulatory agencies, patients, and doctors which could enable further advances in the research and application of the therapy. In addition, we discuss methods to obtain optimal phage preparations and suggest the potential of novel applications of phage therapy extending beyond its anti-bacterial action.
Collapse
Affiliation(s)
- Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Nowogrodzka Street 59, 02-006 Warsaw, Poland.
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Nowogrodzka Street 59, 02-006 Warsaw, Poland.
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego Street 5 A, 02-106 Warsaw, Poland.
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland.
| | - Aleksandra Głowacka-Rutkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego Street 5 A, 02-106 Warsaw, Poland.
| | - Agnieszka Bednarek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego Street 5 A, 02-106 Warsaw, Poland.
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Nowogrodzka Street 59, 02-006 Warsaw, Poland.
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Marzanna Łusiak-Szelachowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Natalia Bagińska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Medical Sciences Institute, Katowice School of Economics, Harcerzy Września Street 3, 40-659 Katowice, Poland.
| | - Krystyna Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Research and Development Center, Regional Specialized Hospital, Kamieńskiego 73a, 51-124 Wrocław, Poland.
| | - Jacques Scheres
- National Institute of Public Health NIZP, Chocimska Street 24, 00-971 Warsaw, Poland.
| |
Collapse
|
50
|
Markerless gene knockout and integration to express heterologous biosynthetic gene clusters in Pseudomonas putida. Metab Eng 2018; 47:463-474. [PMID: 29751103 DOI: 10.1016/j.ymben.2018.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/05/2018] [Accepted: 05/06/2018] [Indexed: 11/22/2022]
Abstract
Pseudomonas putida has gained much interest among metabolic engineers as a workhorse for producing valuable natural products. While a few gene knockout tools for P. putida have been reported, integration of heterologous genes into the chromosome of P. putida, an essential strategy to develop stable industrial strains producing heterologous bioproducts, requires development of a more efficient method. Current methods rely on time-consuming homologous recombination techniques and transposon-mediated random insertions. Here we report a RecET recombineering system for markerless integration of heterologous genes into the P. putida chromosome. The efficiency and capacity of the recombineering system were first demonstrated by knocking out various genetic loci on the P. putida chromosome with knockout lengths widely spanning 0.6-101.7 kb. The RecET recombineering system developed here allowed successful integration of biosynthetic gene clusters for four proof-of-concept bioproducts, including protein, polyketide, isoprenoid, and amino acid derivative, into the target genetic locus of P. putida chromosome. The markerless recombineering system was completed by combining Cre/lox system and developing efficient plasmid curing systems, generating final strains free of antibiotic markers and plasmids. This markerless recombineering system for efficient gene knockout and integration will expedite metabolic engineering of P. putida, a bacterial host strain of increasing academic and industrial interest.
Collapse
|