1
|
Miller ST, Macdonald CB, Raman S. Understanding, inhibiting, and engineering membrane transporters with high-throughput mutational screens. Cell Chem Biol 2025; 32:529-541. [PMID: 40168989 DOI: 10.1016/j.chembiol.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/20/2025] [Accepted: 03/10/2025] [Indexed: 04/03/2025]
Abstract
Promiscuous membrane transporters play vital roles across domains of life, mediating the uptake and efflux of structurally and chemically diverse substrates. Although many transporter structures have been solved, the fundamental rules of polyspecific transport remain inscrutable. In recent years, high-throughput genetic screens have solidified as powerful tools for comprehensive, unbiased measurements of variant function and hypothesis generation, but have had infrequent application and limited impact in the transporter field. In this primer, we describe the principles of high-throughput screening methods available for studying polyspecific transporters and comment on the necessity and potential of high-throughput methods for deciphering these transporters in particular. We present several screening approaches which could provide a fundamental understanding of the molecular basis of function and promiscuity in transporters. We further posit how this knowledge can be leveraged to design inhibitors that combat multidrug resistance and engineer transporters as needed tools for synthetic biology and biotechnology applications.
Collapse
Affiliation(s)
- Silas T Miller
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Christian B Macdonald
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Srivatsan Raman
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
2
|
Elshobary ME, Badawy NK, Ashraf Y, Zatioun AA, Masriya HH, Ammar MM, Mohamed NA, Mourad S, Assy AM. Combating Antibiotic Resistance: Mechanisms, Multidrug-Resistant Pathogens, and Novel Therapeutic Approaches: An Updated Review. Pharmaceuticals (Basel) 2025; 18:402. [PMID: 40143178 PMCID: PMC11944582 DOI: 10.3390/ph18030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
The escalating global health crisis of antibiotic resistance, driven by the rapid emergence of multidrug-resistant (MDR) bacterial pathogens, necessitates urgent and innovative countermeasures. This review comprehensively examines the diverse mechanisms employed by bacteria to evade antibiotic action, including alterations in cell membrane permeability, efflux pump overexpression, biofilm formation, target site modifications, and the enzymatic degradation of antibiotics. Specific focus is given to membrane transport systems such as ATP-binding cassette (ABC) transporters, resistance-nodulation-division (RND) efflux pumps, major facilitator superfamily (MFS) transporters, multidrug and toxic compound extrusion (MATE) systems, small multidrug resistance (SMR) families, and proteobacterial antimicrobial compound efflux (PACE) families. Additionally, the review explores the global burden of MDR pathogens and evaluates emerging therapeutic strategies, including quorum quenching (QQ), probiotics, postbiotics, synbiotics, antimicrobial peptides (AMPs), stem cell applications, immunotherapy, antibacterial photodynamic therapy (aPDT), and bacteriophage. Furthermore, this review discusses novel antimicrobial agents, such as animal-venom-derived compounds and nanobiotics, as promising alternatives to conventional antibiotics. The interplay between clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) in bacterial adaptive immunity is analyzed, revealing opportunities for targeted genetic interventions. By synthesizing current advancements and emerging strategies, this review underscores the necessity of interdisciplinary collaboration among biomedical scientists, researchers, and the pharmaceutical industry to drive the development of novel antibacterial agents. Ultimately, this comprehensive analysis provides a roadmap for future research, emphasizing the urgent need for sustainable and cooperative approaches to combat antibiotic resistance and safeguard global health.
Collapse
Affiliation(s)
- Mostafa E. Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Aquaculture Research, Alfred Wegener Institute (AWI)—Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 27570 Bremerhaven, Germany
| | - Nadia K. Badawy
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Yara Ashraf
- Applied and Analytical Microbiology Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Asmaa A. Zatioun
- Microbiology and Chemistry Department, Faculty of Science, Damanhour University, Damanhour 22514, Egypt
| | - Hagar H. Masriya
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed M. Ammar
- Microbiology and Biochemistry Program, Faculty of Science, Benha University-Obour Campus, Benha 13518, Egypt
| | | | - Sohaila Mourad
- Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Abdelrahman M. Assy
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
3
|
Chaudhari BY, Pradhan AG, Joshi RS. Metabolic gatekeepers: Dynamic roles of sugar transporters in insect metabolism and physiology. INSECT MOLECULAR BIOLOGY 2025; 34:1-18. [PMID: 39394882 DOI: 10.1111/imb.12963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024]
Abstract
Sugars play multiple critical roles in insects, serving as energy sources, carbon skeletons, osmolytes and signalling molecules. The transport of sugars from source to sink via membrane proteins is essential for the uptake, distribution and utilization of sugars across various tissues. Sugar supply and distribution are crucial for insect development, flight, diapause and reproduction. Insect sugar transporters (STs) share significant structural and functional similarities with those in mammals and other higher eukaryotes. However, they exhibit unique characteristics, including differential regulation, substrate selectivity and kinetics. Here, we have discussed structural diversity, evolutionary trends, expression dynamics, mechanisms of action and functional significance of insect STs. The sequence and structural diversity of insect STs, highlighted by the analysis of conserved domains and evolutionary patterns, underpins their functional differentiation and divergence. The review emphasizes the importance of STs in insect metabolism, physiology and stress tolerance. It also discusses how variations in transporter regulation, expression, selectivity and activity contribute to functional differences. Furthermore, we have underlined the potential and necessity of studying these mechanisms and roles to gain a deeper understanding of insect glycobiology. Understanding the regulation and function of sugar transporters is vital for comprehending insect metabolism and physiological potential. This review provides valuable insights into the diverse functionalities of insect STs and their significant roles in metabolism and physiology.
Collapse
Affiliation(s)
- Bhagyashri Y Chaudhari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aditya G Pradhan
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | - Rakesh S Joshi
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Belka D, Ormsbee HA, Schuler AJ. Secondary transport mechanisms in amino acid fed enhanced biological phosphorus removal. CHEMOSPHERE 2025; 371:144013. [PMID: 39730088 DOI: 10.1016/j.chemosphere.2024.144013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/29/2024]
Abstract
Enhanced biological phosphorus removal (EBPR) water resource recovery facilities (WRRFs) often fail to meet phosphorus discharge permit limits, indicating a need to improve EBPR to reduce environmental phosphorus discharges. EBPR designs are largely based on the Accumulibacter polyphosphate accumulating organism (PAO) metabolism, while understudied Tetrasphaera PAOs are equally important to EBPR in many facilities worldwide. Anaerobic organic carbon competition is believed to be a key driver of EBPR reliability. However, the relationship between Tetrasphaera PAOs' organic carbon uptake mechanisms and their energy metabolism must be fully understood to help reduce EBPR WRRF process upsets, achieve consistently low effluent P concentrations, and inform optimization strategies. We evaluated amino acid uptake mechanisms by monitoring inorganic phosphate, pH, and Na + changes in anaerobic batch tests of a Tetrasphaera PAO-enriched culture over an initial pH range from 4.5 to 8.8 using anionic aspartate and neutral glycine as sole organic carbon sources. Using amino acids with different charges allowed us to determine that H+-driven rather than Na+-driven secondary transport was the most likely mechanism used by our Tetrasphaera-enriched culture. Meanwhile, phosphate releases increased alkalinity by the same amount as reducing 4.9 to 7.7 mg-/L of nitrate nitrogen over the initial pH range from 6.0 to 8.0, suggesting that the H+ loop created by the secondary transport of amino acids and phosphate plays an important role in anaerobic pH equilibrium and could help provide a stabilizing effect in full-scale EBPR WRRFs where amino acid-utilizing PAOs are the main contributors to EBPR.
Collapse
Affiliation(s)
- Derek Belka
- Gerald May Department of Civil, Construction, and Environmental Engineering, The University of New Mexico, Albuquerque, NM, 87131, United States
| | - Haley A Ormsbee
- Gerald May Department of Civil, Construction, and Environmental Engineering, The University of New Mexico, Albuquerque, NM, 87131, United States
| | - Andrew J Schuler
- Gerald May Department of Civil, Construction, and Environmental Engineering, The University of New Mexico, Albuquerque, NM, 87131, United States.
| |
Collapse
|
5
|
Ramón A, Sanguinetti M, Silva Santos LH, Amillis S. Understanding fungal and plant active urea transport systems: Keys from Aspergillus nidulans and beyond. Biochem Biophys Res Commun 2024; 735:150801. [PMID: 39437702 DOI: 10.1016/j.bbrc.2024.150801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Urea is present in all ecosystems, as a result of the metabolism of different organisms and also of human activity, being the world's most common form of nitrogen fertilizer. Fungi and plants can use urea as a nitrogen source, taking it up from the environment through specialized active transport proteins. These proteins belong to a subfamily of urea/H+ symporters included in the Solute:Sodium Symporter (SSS) family of transporters. In this review we summarize the current knowledge on this group of transporters, based on our previous studies on Aspergillus nidulans UreA. We delve into its transcriptional and post-translational regulation, structure-function relationships, transport mechanism, and certain aspects of its biogenesis. Recent findings suggest that this urea transporter subfamily is more expanded than originally thought, with representatives found in organisms as diverse as Archaea and mollusks, which raises questions on evolutionary aspects. A. nidulans ureA knockout strains provide a valuable platform for expressing urea transporters from diverse sources, facilitating their characterization and functional analysis. In this context, given the close relationship between plant and fungal active urea transporters, this knowledge could serve to develop strategies to improve the efficiency of applied urea as fertilizer.
Collapse
Affiliation(s)
- Ana Ramón
- Sección Bioquímica, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá 4225 CP 11400, Montevideo, Uruguay.
| | - Manuel Sanguinetti
- Sección Bioquímica, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá 4225 CP 11400, Montevideo, Uruguay.
| | | | - Sotiris Amillis
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784, Athens, Greece; Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna, (BOKU), Campus Tulln, Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria.
| |
Collapse
|
6
|
Patiño-Ruiz MF, Anshari ZR, Gaastra B, Slotboom DJ, Poolman B. Chemiosmotic nutrient transport in synthetic cells powered by electrogenic antiport coupled to decarboxylation. Nat Commun 2024; 15:7976. [PMID: 39266519 PMCID: PMC11392934 DOI: 10.1038/s41467-024-52085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
Cellular homeostasis depends on the supply of metabolic energy in the form of ATP and electrochemical ion gradients. The construction of synthetic cells requires a constant supply of energy to drive membrane transport and metabolism. Here, we provide synthetic cells with long-lasting metabolic energy in the form of an electrochemical proton gradient. Leveraging the L-malate decarboxylation pathway we generate a stable proton gradient and electrical potential in lipid vesicles by electrogenic L-malate/L-lactate exchange coupled to L-malate decarboxylation. By co-reconstitution with the transporters GltP and LacY, the synthetic cells maintain accumulation of L-glutamate and lactose over periods of hours, mimicking nutrient feeding in living cells. We couple the accumulation of lactose to a metabolic network for the generation of intermediates of the glycolytic and pentose phosphate pathways. This study underscores the potential of harnessing a proton motive force via a simple metabolic network, paving the way for the development of more complex synthetic systems.
Collapse
Affiliation(s)
- Miyer F Patiño-Ruiz
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Zaid Ramdhan Anshari
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Bauke Gaastra
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Dirk J Slotboom
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
7
|
Awtrey NC, Beckstein O. Kinetic Diagram Analysis: A Python Library for Calculating Steady-State Observables of Biochemical Systems Analytically. J Chem Theory Comput 2024; 20:7646-7666. [PMID: 39160681 PMCID: PMC11530140 DOI: 10.1021/acs.jctc.4c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Kinetic diagrams are commonly used to represent biochemical systems in order to study phenomena such as free energy transduction and ion selectivity. While numerical methods are commonly used to analyze such kinetic networks, the diagram method by King, Altman and Hill makes it possible to construct exact algebraic expressions for steady-state observables in terms of the rate constants of the kinetic diagram. However, manually obtaining these expressions becomes infeasible for models of even modest complexity as the number of the required intermediate diagrams grows with the factorial of the number of states in the diagram. We developed Kinetic Diagram Analysis (KDA), a Python library that programmatically generates the relevant diagrams and expressions from a user-defined kinetic diagram. KDA outputs symbolic expressions for state probabilities and cycle fluxes at steady-state that can be symbolically manipulated and evaluated to quantify macroscopic system observables. We demonstrate the KDA approach for examples drawn from the biophysics of active secondary transmembrane transporters. For a generic 6-state antiporter model, we show how the introduction of a single leakage transition reduces transport efficiency by quantifying substrate turnover. We apply KDA to a real-world example, the 8-state free exchange model of the small multidrug resistance transporter EmrE of Hussey et al. (J. Gen. Physiol., 2020, 152, e201912437), where a change in transporter phenotype is achieved by biasing two different subsets of kinetic rates: alternating access and substrate unbinding rates. KDA is made available as open source software under the GNU General Public License version 3.
Collapse
Affiliation(s)
- Nikolaus Carl Awtrey
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Oliver Beckstein
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
- Center for Biological Physics, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
8
|
Carl Awtrey N, Beckstein O. Kinetic Diagram Analysis: A Python Library for Calculating Steady-State Observables of Biochemical Systems Analytically. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596119. [PMID: 38854140 PMCID: PMC11160680 DOI: 10.1101/2024.05.27.596119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Kinetic diagrams are commonly used to represent biochemical systems in order to study phenomena such as free energy transduction and ion selectivity. While numerical methods are commonly used to analyze such kinetic networks, the diagram method by King, Altman and Hill makes it possible to construct exact algebraic expressions for steady-state observables in terms of the rate constants of the kinetic diagram. However, manually obtaining these expressions becomes infeasible for models of even modest complexity as the number of the required intermediate diagrams grows with the factorial of the number of states in the diagram. We developed Kinetic Diagram Analysis (KDA), a Python library that programmatically generates the relevant diagrams and expressions from a user-defined kinetic diagram. KDA outputs symbolic expressions for state probabilities and cycle fluxes at steady-state that can be symbolically manipulated and evaluated to quantify macroscopic system observables. We demonstrate the KDA approach for examples drawn from the biophysics of active secondary transmembrane transporters. For a generic 6-state antiporter model, we show how the introduction of a single leakage transition reduces transport efficiency by quantifying substrate turnover. We apply KDA to a real-world example, the 8-state free exchange model of the small multidrug resistance transporter EmrE of Hussey et al (J General Physiology 152 (2020), e201912437), where a change in transporter phenotype is achieved by biasing two different subsets of kinetic rates: alternating access and substrate unbinding rates. KDA is made available as open source software under the GNU General Public License version 3.
Collapse
Affiliation(s)
| | - Oliver Beckstein
- Department of Physics, Arizona State University, Tempe AZ, USA
- Center for Biological Physics, Arizona State University, Tempe AZ, USA
| |
Collapse
|
9
|
George A, Zuckerman DM. From Average Transient Transporter Currents to Microscopic Mechanism─A Bayesian Analysis. J Phys Chem B 2024; 128:1830-1842. [PMID: 38373358 DOI: 10.1021/acs.jpcb.3c07025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Electrophysiology studies of secondary active transporters have revealed quantitative mechanistic insights over many decades of research. However, the emergence of new experimental and analytical approaches calls for investigation of the capabilities and limitations of the newer methods. We examine the ability of solid-supported membrane electrophysiology (SSME) to characterize discrete-state kinetic models with >10 rate constants. We use a Bayesian framework applied to synthetic data for three tasks: to quantify and check (i) the precision of parameter estimates under different assumptions, (ii) the ability of computation to guide the selection of experimental conditions, and (iii) the ability of our approach to distinguish among mechanisms based on SSME data. When the general mechanism, i.e., event order, is known in advance, we show that a subset of kinetic parameters can be "practically identified" within ∼1 order of magnitude, based on SSME current traces that visually appear to exhibit simple exponential behavior. This remains true even when accounting for systematic measurement bias and realistic uncertainties in experimental inputs (concentrations) are incorporated into the analysis. When experimental conditions are optimized or different experiments are combined, the number of practically identifiable parameters can be increased substantially. Some parameters remain intrinsically difficult to estimate through SSME data alone, suggesting that additional experiments are required to fully characterize parameters. We also demonstrate the ability to perform model selection and determine the order of events when that is not known in advance, comparing Bayesian and maximum-likelihood approaches. Finally, our studies elucidate good practices for the increasingly popular but subtly challenging Bayesian calculations for structural and systems biology.
Collapse
Affiliation(s)
- August George
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Daniel M Zuckerman
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon 97239, United States
| |
Collapse
|
10
|
Drew D, Boudker O. Ion and lipid orchestration of secondary active transport. Nature 2024; 626:963-974. [PMID: 38418916 DOI: 10.1038/s41586-024-07062-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
Transporting small molecules across cell membranes is an essential process in cell physiology. Many structurally diverse, secondary active transporters harness transmembrane electrochemical gradients of ions to power the uptake or efflux of nutrients, signalling molecules, drugs and other ions across cell membranes. Transporters reside in lipid bilayers on the interface between two aqueous compartments, where they are energized and regulated by symported, antiported and allosteric ions on both sides of the membrane and the membrane bilayer itself. Here we outline the mechanisms by which transporters couple ion and solute fluxes and discuss how structural and mechanistic variations enable them to meet specific physiological needs and adapt to environmental conditions. We then consider how general bilayer properties and specific lipid binding modulate transporter activity. Together, ion gradients and lipid properties ensure the effective transport, regulation and distribution of small molecules across cell membranes.
Collapse
Affiliation(s)
- David Drew
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Paul A, Shukla D. Oligomerization of Monoamine Transporters. Subcell Biochem 2024; 104:119-137. [PMID: 38963486 DOI: 10.1007/978-3-031-58843-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Transporters of the monoamine transporter (MAT) family regulate the uptake of important neurotransmitters like dopamine, serotonin, and norepinephrine. The MAT family functions using the electrochemical gradient of ions across the membrane and comprises three transporters, dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET). MAT transporters have been observed to exist in monomeric states to higher-order oligomeric states. Structural features, allosteric modulation, and lipid environment regulate the oligomerization of MAT transporters. NET and SERT oligomerization are regulated by levels of PIP2 present in the membrane. The kink present in TM12 in the MAT family is crucial for dimer interface formation. Allosteric modulation in the dimer interface hinders dimer formation. Oligomerization also influences the transporters' function, trafficking, and regulation. This chapter will focus on recent studies on monoamine transporters and discuss the factors affecting their oligomerization and its impact on their function.
Collapse
Affiliation(s)
- Arnav Paul
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, Center for Biophysics and Quantitative Biology, Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
12
|
Stephen J, Salam F, Lekshmi M, Kumar SH, Varela MF. The Major Facilitator Superfamily and Antimicrobial Resistance Efflux Pumps of the ESKAPEE Pathogen Staphylococcus aureus. Antibiotics (Basel) 2023; 12:343. [PMID: 36830254 PMCID: PMC9952236 DOI: 10.3390/antibiotics12020343] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The ESKAPEE bacterial pathogen Staphylococcus aureus has posed a serious public health concern for centuries. Throughout its evolutionary course, S. aureus has developed strains with resistance to antimicrobial agents. The bacterial pathogen has acquired multidrug resistance, causing, in many cases, untreatable infectious diseases and raising serious public safety and healthcare concerns. Amongst the various mechanisms for antimicrobial resistance, integral membrane proteins that serve as secondary active transporters from the major facilitator superfamily constitute a chief system of multidrug resistance. These MFS transporters actively export structurally different antimicrobial agents from the cells of S. aureus. This review article discusses the S. aureus-specific MFS multidrug efflux pump systems from a molecular mechanistic perspective, paying particular attention to structure-function relationships, modulation of antimicrobial resistance mediated by MFS drug efflux pumps, and direction for future investigation.
Collapse
Affiliation(s)
- Jerusha Stephen
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Fathima Salam
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Manjusha Lekshmi
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Sanath H. Kumar
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Manuel F. Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA
| |
Collapse
|
13
|
Cellier MFM. Nramp: Deprive and conquer? Front Cell Dev Biol 2022; 10:988866. [PMID: 36313567 PMCID: PMC9606685 DOI: 10.3389/fcell.2022.988866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Solute carriers 11 (Slc11) evolved from bacterial permease (MntH) to eukaryotic antibacterial defense (Nramp) while continuously mediating proton (H+)-dependent manganese (Mn2+) import. Also, Nramp horizontal gene transfer (HGT) toward bacteria led to mntH polyphyly. Prior demonstration that evolutionary rate-shifts distinguishing Slc11 from outgroup carriers dictate catalytic specificity suggested that resolving Slc11 family tree may provide a function-aware phylogenetic framework. Hence, MntH C (MC) subgroups resulted from HGTs of prototype Nramp (pNs) parologs while archetype Nramp (aNs) correlated with phagocytosis. PHI-Blast based taxonomic profiling confirmed MntH B phylogroup is confined to anaerobic bacteria vs. MntH A (MA)’s broad distribution; suggested niche-related spread of MC subgroups; established that MA-variant MH, which carries ‘eukaryotic signature’ marks, predominates in archaea. Slc11 phylogeny shows MH is sister to Nramp. Site-specific analysis of Slc11 charge network known to interact with the protonmotive force demonstrates sequential rate-shifts that recapitulate Slc11 evolution. 3D mapping of similarly coevolved sites across Slc11 hydrophobic core revealed successive targeting of discrete areas. The data imply that pN HGT could advantage recipient bacteria for H+-dependent Mn2+ acquisition and Alphafold 3D models suggest conformational divergence among MC subgroups. It is proposed that Slc11 originated as a bacterial stress resistance function allowing Mn2+-dependent persistence in conditions adverse for growth, and that archaeal MH could contribute to eukaryogenesis as a Mn2+ sequestering defense perhaps favoring intracellular growth-competent bacteria.
Collapse
|
14
|
Frallicciardi J, Gabba M, Poolman B. Determining small-molecule permeation through lipid membranes. Nat Protoc 2022; 17:2620-2646. [PMID: 36002767 DOI: 10.1038/s41596-022-00734-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022]
Abstract
The passive permeability of cell membranes is of key importance in biology, biomedical research and biotechnology as it determines the extent to which various molecules such as drugs, products of metabolism, and toxins can enter or leave the cell unaided by dedicated transport proteins. The quantification of passive solute permeation is possible with radio-isotope distribution experiments, spectroscopic measurements and molecular dynamics simulations. This protocol describes stopped-flow fluorimetry measurements performed on lipid vesicles and living yeast cells to estimate the osmotic permeability of water and solutes across (bio)membranes. Encapsulation of the fluorescent dye calcein into lipid vesicles allows monitoring of volume changes upon osmotic shifts of the medium via (de)quenching of the fluorophore, which we interpret using a well-defined physical model that takes the dynamics of the vesicles into account to calculate the permeability coefficients of solutes. We also present analogous procedures to probe weak acid and base permeability in vesicles and cells by using the read-out of encapsulated or expressed pH-sensitive probes. We describe the preparation of synthetic vesicles of varying lipid composition and determination of vesicle size distribution by dynamic light scattering. Data on membrane permeation are obtained using either conventional or stopped-flow kinetic fluorescence measurements on instruments available in most research institutes and are analyzed with a suite of user-friendly MATLAB scripts ( https://doi.org/10.5281/zenodo.6511116 ). Collectively, these procedures provide a comprehensive toolbox for determining membrane permeability coefficients in a variety of experimental systems, and typically take 2-3 d.
Collapse
Affiliation(s)
| | - Matteo Gabba
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
15
|
Mattam AJ, Chaudhari YB, Velankar HR. Factors regulating cellulolytic gene expression in filamentous fungi: an overview. Microb Cell Fact 2022; 21:44. [PMID: 35317826 PMCID: PMC8939176 DOI: 10.1186/s12934-022-01764-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/27/2022] [Indexed: 12/19/2022] Open
Abstract
The growing demand for biofuels such as bioethanol has led to the need for identifying alternative feedstock instead of conventional substrates like molasses, etc. Lignocellulosic biomass is a relatively inexpensive feedstock that is available in abundance, however, its conversion to bioethanol involves a multistep process with different unit operations such as size reduction, pretreatment, saccharification, fermentation, distillation, etc. The saccharification or enzymatic hydrolysis of cellulose to glucose involves a complex family of enzymes called cellulases that are usually fungal in origin. Cellulose hydrolysis requires the synergistic action of several classes of enzymes, and achieving the optimum secretion of these simultaneously remains a challenge. The expression of fungal cellulases is controlled by an intricate network of transcription factors and sugar transporters. Several genetic engineering efforts have been undertaken to modulate the expression of cellulolytic genes, as well as their regulators. This review, therefore, focuses on the molecular mechanism of action of these transcription factors and their effect on the expression of cellulases and hemicellulases.
Collapse
Affiliation(s)
- Anu Jose Mattam
- Hindustan Petroleum Green R and D Centre (HPGRDC), KIADB Industrial Area, Tarabanahalli, Devanagundi, Hoskote, Bangalore, 560067, India
| | - Yogesh Babasaheb Chaudhari
- Hindustan Petroleum Green R and D Centre (HPGRDC), KIADB Industrial Area, Tarabanahalli, Devanagundi, Hoskote, Bangalore, 560067, India
| | - Harshad Ravindra Velankar
- Hindustan Petroleum Green R and D Centre (HPGRDC), KIADB Industrial Area, Tarabanahalli, Devanagundi, Hoskote, Bangalore, 560067, India.
| |
Collapse
|
16
|
Beckstein O, Naughton F. General principles of secondary active transporter function. BIOPHYSICS REVIEWS 2022; 3:011307. [PMID: 35434715 PMCID: PMC8984959 DOI: 10.1063/5.0047967] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/23/2022] [Indexed: 04/13/2023]
Abstract
Transport of ions and small molecules across the cell membrane against electrochemical gradients is catalyzed by integral membrane proteins that use a source of free energy to drive the energetically uphill flux of the transported substrate. Secondary active transporters couple the spontaneous influx of a "driving" ion such as Na+ or H+ to the flux of the substrate. The thermodynamics of such cyclical non-equilibrium systems are well understood, and recent work has focused on the molecular mechanism of secondary active transport. The fact that these transporters change their conformation between an inward-facing and outward-facing conformation in a cyclical fashion, called the alternating access model, is broadly recognized as the molecular framework in which to describe transporter function. However, only with the advent of high resolution crystal structures and detailed computer simulations, it has become possible to recognize common molecular-level principles between disparate transporter families. Inverted repeat symmetry in secondary active transporters has shed light onto how protein structures can encode a bi-stable two-state system. Based on structural data, three broad classes of alternating access transitions have been described as rocker-switch, rocking-bundle, and elevator mechanisms. More detailed analysis indicates that transporters can be understood as gated pores with at least two coupled gates. These gates are not just a convenient cartoon element to illustrate a putative mechanism but map to distinct parts of the transporter protein. Enumerating all distinct gate states naturally includes occluded states in the alternating access picture and also suggests what kind of protein conformations might be observable. By connecting the possible conformational states and ion/substrate bound states in a kinetic model, a unified picture emerges in which the symporter, antiporter, and uniporter functions are extremes in a continuum of functionality. As usual with biological systems, few principles and rules are absolute and exceptions are discussed as well as how biological complexity may be integrated in quantitative kinetic models that may provide a bridge from the structure to function.
Collapse
Affiliation(s)
- Oliver Beckstein
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | | |
Collapse
|
17
|
Wu H, Liu S, Su P, Xie Z, Gui T, Zhao L, Liu Y, Chen L. Molecular insight into coordination sites for substrates and their coupling kinetics in Na
+
/HCO
3
−
cotransporter NBCe1. J Physiol 2022; 600:3083-3111. [DOI: 10.1113/jp282034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/03/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Han Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education School of Life Science & Technology Huazhong University of Science & Technology Wuhan 430074 China
| | - Shiyong Liu
- School of Physics Huazhong University of Science and Technology Wuhan 430074 China
| | - Pan Su
- Key Laboratory of Molecular Biophysics of Ministry of Education School of Life Science & Technology Huazhong University of Science & Technology Wuhan 430074 China
| | - Zhang‐Dong Xie
- Key Laboratory of Molecular Biophysics of Ministry of Education School of Life Science & Technology Huazhong University of Science & Technology Wuhan 430074 China
| | - Tian‐Xiang Gui
- Key Laboratory of Molecular Biophysics of Ministry of Education School of Life Science & Technology Huazhong University of Science & Technology Wuhan 430074 China
| | - Lei Zhao
- Department of Obstetrics Maternal and Child Health Hospital of Hubei Province Wuhan 430070 China
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education School of Life Science & Technology Huazhong University of Science & Technology Wuhan 430074 China
| | - Li‐Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education School of Life Science & Technology Huazhong University of Science & Technology Wuhan 430074 China
| |
Collapse
|
18
|
Swanson JMJ. Multiscale kinetic analysis of proteins. Curr Opin Struct Biol 2022; 72:169-175. [PMID: 34923310 PMCID: PMC9288830 DOI: 10.1016/j.sbi.2021.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 02/03/2023]
Abstract
The stochasticity of molecular motion results in the existence of multiple kinetically relevant pathways in many biomolecular mechanisms. Because it is highly demanding to characterize them for complex systems, mechanisms are often described with a single-pathway perspective. However, kinetic network analysis and sub-ensemble experimental insight are increasingly demonstrating not only the existence of competing pathways but also the importance of kinetic selection in biology. This review focuses on advances in multiscale kinetic analysis of proteins, which connects molecular level information from simulations to macroscopic data to characterize mechanistic reaction networks and the reactive flux through them. We describe a range of methods used and highlight several examples where kinetic modeling has revealed functional importance of pathway heterogeneity.
Collapse
|
19
|
Dubey S, Majumder P, Penmatsa A, Sardesai AA. Topological analyses of the L-lysine exporter LysO reveal a critical role for a conserved pair of intramembrane solvent-exposed acidic residues. J Biol Chem 2021; 297:101168. [PMID: 34487760 PMCID: PMC8498466 DOI: 10.1016/j.jbc.2021.101168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
LysO, a prototypical member of the LysO family, mediates export of L-lysine (Lys) and resistance to the toxic Lys antimetabolite, L-thialysine (Thl) in Escherichia coli. Here, we have addressed unknown aspects of LysO function pertaining to its membrane topology and the mechanism by which it mediates Lys/Thl export. Using substituted cysteine (Cys) accessibility, here we delineated the membrane topology of LysO. Our studies support a model in which both the N- and C-termini of LysO are present at the periplasmic face of the membrane with a transmembrane (TM) domain comprising eight TM segments (TMSs) between them. In addition, a feature of intramembrane solvent exposure in LysO is inferred with the identification of membrane-located solvent-exposed Cys residues. Isosteric substitutions of a pair of conserved acidic residues, one E233, located in the solvent-exposed TMS7 and the other D261, in a solvent-exposed intramembrane segment located between TMS7 and TMS8, abolished LysO function in vivo. Thl, but not Lys, elicited proton release in inside-out membrane vesicles, a process requiring the presence of both E233 and D261. We postulate that Thl may be exported in antiport with H+ and that Lys may be a low-affinity export substrate. Our findings are compatible with a physiological scenario wherein in vivo LysO exports the naturally occurring antimetabolite Thl with higher affinity over the essential cellular metabolite Lys, thus affording protection from Thl toxicity and limiting wasteful export of Lys.
Collapse
Affiliation(s)
- Swati Dubey
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India; Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Puja Majumder
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Aravind Penmatsa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Abhijit A Sardesai
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.
| |
Collapse
|
20
|
Thomas NE, Feng W, Henzler-Wildman KA. A solid-supported membrane electrophysiology assay for efficient characterization of ion-coupled transport. J Biol Chem 2021; 297:101220. [PMID: 34562455 PMCID: PMC8517846 DOI: 10.1016/j.jbc.2021.101220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/03/2022] Open
Abstract
Transport stoichiometry determination can provide great insight into the mechanism and function of ion-coupled transporters. Traditional reversal potential assays are a reliable, general method for determining the transport stoichiometry of ion-coupled transporters, but the time and material costs of this technique hinder investigations of transporter behavior under multiple experimental conditions. Solid-supported membrane electrophysiology (SSME) allows multiple recordings of liposomal or membrane samples adsorbed onto a sensor and is sensitive enough to detect transport currents from moderate-flux transporters that are inaccessible to traditional electrophysiology techniques. Here, we use SSME to develop a new method for measuring transport stoichiometry with greatly improved throughput. Using this technique, we were able to verify the recent report of a fixed 2:1 stoichiometry for the proton:guanidinium antiporter Gdx, reproduce the 1H+:2Cl- antiport stoichiometry of CLC-ec1, and confirm loose proton:nitrate coupling for CLC-ec1. Furthermore, we were able to demonstrate quantitative exchange of internal contents of liposomes adsorbed onto SSME sensors to allow multiple experimental conditions to be tested on a single sample. Our SSME method provides a fast, easy, general method for measuring transport stoichiometry, which will facilitate future mechanistic and functional studies of ion-coupled transporters.
Collapse
Affiliation(s)
- Nathan E Thomas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wei Feng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
21
|
Drew D, North RA, Nagarathinam K, Tanabe M. Structures and General Transport Mechanisms by the Major Facilitator Superfamily (MFS). Chem Rev 2021; 121:5289-5335. [PMID: 33886296 PMCID: PMC8154325 DOI: 10.1021/acs.chemrev.0c00983] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/12/2022]
Abstract
The major facilitator superfamily (MFS) is the largest known superfamily of secondary active transporters. MFS transporters are responsible for transporting a broad spectrum of substrates, either down their concentration gradient or uphill using the energy stored in the electrochemical gradients. Over the last 10 years, more than a hundred different MFS transporter structures covering close to 40 members have provided an atomic framework for piecing together the molecular basis of their transport cycles. Here, we summarize the remarkable promiscuity of MFS members in terms of substrate recognition and proton coupling as well as the intricate gating mechanisms undergone in achieving substrate translocation. We outline studies that show how residues far from the substrate binding site can be just as important for fine-tuning substrate recognition and specificity as those residues directly coordinating the substrate, and how a number of MFS transporters have evolved to form unique complexes with chaperone and signaling functions. Through a deeper mechanistic description of glucose (GLUT) transporters and multidrug resistance (MDR) antiporters, we outline novel refinements to the rocker-switch alternating-access model, such as a latch mechanism for proton-coupled monosaccharide transport. We emphasize that a full understanding of transport requires an elucidation of MFS transporter dynamics, energy landscapes, and the determination of how rate transitions are modulated by lipids.
Collapse
Affiliation(s)
- David Drew
- Department
of Biochemistry and Biophysics, Stockholm
University, SE 106 91 Stockholm, Sweden
| | - Rachel A. North
- Department
of Biochemistry and Biophysics, Stockholm
University, SE 106 91 Stockholm, Sweden
| | - Kumar Nagarathinam
- Center
of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, D-23538, Lübeck, Germany
| | - Mikio Tanabe
- Structural
Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
22
|
Molecular Mechanism of Nramp-Family Transition Metal Transport. J Mol Biol 2021; 433:166991. [PMID: 33865868 DOI: 10.1016/j.jmb.2021.166991] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
The Natural resistance-associated macrophage protein (Nramp) family of transition metal transporters enables uptake and trafficking of essential micronutrients that all organisms must acquire to survive. Two decades after Nramps were identified as proton-driven, voltage-dependent secondary transporters, multiple Nramp crystal structures have begun to illustrate the fine details of the transport process and provide a new framework for understanding a wealth of preexisting biochemical data. Here we review the relevant literature pertaining to Nramps' biological roles and especially their conserved molecular mechanism, including our updated understanding of conformational change, metal binding and transport, substrate selectivity, proton transport, proton-metal coupling, and voltage dependence. We ultimately describe how the Nramp family has adapted the LeuT fold common to many secondary transporters to provide selective transition-metal transport with a mechanism that deviates from the canonical model of symport.
Collapse
|
23
|
Effect of Oligosaccharide Degree of Polymerization on the Induction of Xylan-Degrading Enzymes by Fusarium oxysporum f. sp. Lycopersici. Molecules 2020; 25:molecules25245849. [PMID: 33322262 PMCID: PMC7764074 DOI: 10.3390/molecules25245849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/15/2023] Open
Abstract
Xylan is one of the most abundant carbohydrates on Earth. Complete degradation of xylan is achieved by the collaborative action of endo-β-1,4-xylanases and β-d-xylosidases and a number of accessories enzymes. In filamentous fungi, the xylanolytic system is controlled through induction and repression. However, the exact mechanism remains unclear. Substrates containing xylan promote the induction of xylanases, which release xylooligosaccharides. These, in turn, induce expression of xylanase-encoding genes. Here, we aimed to determine which xylan degradation products acted as inducers, and whether the size of the released oligomer correlated with its induction strength. To this end, we compared xylanase production by different inducers, such as sophorose, lactose, cellooligosaccharides, and xylooligosaccharides in Fusarium oxysporum f. sp. lycopersici. Results indicate that xylooligosaccharides are more effective than other substrates at inducing endoxylanase and β-xylosidases. Moreover, we report a correlation between the degree of xylooligosaccharide polymerization and induction efficiency of each enzyme. Specifically, xylotetraose is the best inducer of endoxylanase, xylohexaose of extracellular β-xylosidase, and xylobiose of cell-bound β-xylosidase.
Collapse
|
24
|
Energy coupling of membrane transport and efficiency of sucrose dissimilation in yeast. Metab Eng 2020; 65:243-254. [PMID: 33279674 DOI: 10.1016/j.ymben.2020.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 11/22/2022]
Abstract
Proton coupled transport of α-glucosides via Mal11 into Saccharomyces cerevisiae costs one ATP per imported molecule. Targeted mutation of all three acidic residues in the active site resulted in sugar uniport, but expression of these mutant transporters in yeast did not enable growth on sucrose. We then isolated six unique transporter variants of these mutants by directed evolution of yeast for growth on sucrose. In three variants, new acidic residues emerged near the active site that restored proton-coupled sucrose transport, whereas the other evolved transporters still catalysed sucrose uniport. The localization of mutations and transport properties of the mutants enabled us to propose a mechanistic model of proton-coupled sugar transport by Mal11. Cultivation of yeast strains expressing one of the sucrose uniporters in anaerobic, sucrose-limited chemostat cultures indicated an increase in the efficiency of sucrose dissimilation by 21% when additional changes in strain physiology were taken into account. We thus show that a combination of directed and evolutionary engineering results in more energy efficient sucrose transport, as a starting point to engineer yeast strains with increased yields for industrially relevant products.
Collapse
|
25
|
A systems-biology approach to molecular machines: Exploration of alternative transporter mechanisms. PLoS Comput Biol 2020; 16:e1007884. [PMID: 32614821 PMCID: PMC7331975 DOI: 10.1371/journal.pcbi.1007884] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/17/2020] [Indexed: 02/04/2023] Open
Abstract
Motivated by growing evidence for pathway heterogeneity and alternative functions of molecular machines, we demonstrate a computational approach for investigating two questions: (1) Are there multiple mechanisms (state-space pathways) by which a machine can perform a given function, such as cotransport across a membrane? (2) How can additional functionality, such as proofreading/error-correction, be built into machine function using standard biochemical processes? Answers to these questions will aid both the understanding of molecular-scale cell biology and the design of synthetic machines. Focusing on transport in this initial study, we sample a variety of mechanisms by employing Metropolis Markov chain Monte Carlo. Trial moves adjust transition rates among an automatically generated set of conformational and binding states while maintaining fidelity to thermodynamic principles and a user-supplied fitness/functionality goal. Each accepted move generates a new model. The simulations yield both single and mixed reaction pathways for cotransport in a simple environment with a single substrate along with a driving ion. In a “competitive” environment including an additional decoy substrate, several qualitatively distinct reaction pathways are found which are capable of extremely high discrimination coupled to a leak of the driving ion, akin to proofreading. The array of functional models would be difficult to find by intuition alone in the complex state-spaces of interest. Molecular machines, which operate on the nanoscale, are proteins/complexes that perform remarkable tasks such as the selective absorption of nutrients into the cell by transporters. These complex machines are often described using a fairly simple set of states and transitions that may not account for the stochasticity and heterogeneity generally expected at the nanoscale at body temperature. New tools are needed to study the full array of possibilities. This study presents a novel in silico method to systematically generate testable molecular-machine kinetic models and explore alternative mechanisms, applied first to membrane transport proteins. Our initial results suggest these transport machines may contain mechanisms which ‘detoxify’ the cell of an unwanted toxin, as well as significantly discriminate against the import of the toxin. This novel approach should aid the experimental study of key physiological processes such as renal glucose re-absorption, rational drug design, and potentially the development of synthetic machines.
Collapse
|
26
|
Bisignano P, Lee MA, George A, Zuckerman DM, Grabe M, Rosenberg JM. A kinetic mechanism for enhanced selectivity of membrane transport. PLoS Comput Biol 2020; 16:e1007789. [PMID: 32614861 PMCID: PMC7331977 DOI: 10.1371/journal.pcbi.1007789] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/13/2020] [Indexed: 01/06/2023] Open
Abstract
Membrane transport is generally thought to occur via an alternating access mechanism in which the transporter adopts at least two states, accessible from two different sides of the membrane to exchange substrates from the extracellular environment and the cytoplasm or from the cytoplasm and the intracellular matrix of the organelles (only in eukaryotes). In recent years, a number of high resolution structures have supported this general framework for a wide class of transport molecules, although additional states along the transport pathway are emerging as critically important. Given that substrate binding is often weak in order to enhance overall transport rates, there exists the distinct possibility that transporters may transport the incorrect substrate. This is certainly the case for many pharmaceutical compounds that are absorbed in the gut or cross the blood brain barrier through endogenous transporters. Docking studies on the bacterial sugar transporter vSGLT reveal that many highly toxic compounds are compatible with binding to the orthosteric site, further motivating the selective pressure for additional modes of selectivity. Motivated by recent work in which we observed failed substrate delivery in a molecular dynamics simulation where the energized ion still goes down its concentration gradient, we hypothesize that some transporters evolved to harness this 'slip' mechanism to increase substrate selectivity and reduce the uptake of toxic molecules. Here, we test this idea by constructing and exploring a kinetic transport model that includes a slip pathway. While slip reduces the overall productive flux, when coupled with a second toxic molecule that is more prone to slippage, the overall substrate selectivity dramatically increases, suppressing the accumulation of the incorrect compound. We show that the mathematical framework for increased substrate selectivity in our model is analogous to the classic proofreading mechanism originally proposed for tRNA synthase; however, because the transport cycle is reversible we identified conditions in which the selectivity is essentially infinite and incorrect substrates are exported from the cell in a 'detoxification' mode. The cellular consequences of proofreading and membrane slippage are discussed as well as the impact on future drug development.
Collapse
Affiliation(s)
- Paola Bisignano
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Michael A. Lee
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - August George
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Daniel M. Zuckerman
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Michael Grabe
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - John M. Rosenberg
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
27
|
Grabe M, Zuckerman DM, Rosenberg JM. EmrE reminds us to expect the unexpected in membrane transport. J Gen Physiol 2020; 152:132728. [PMID: 31816640 PMCID: PMC7034101 DOI: 10.1085/jgp.201912467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Grabe et al. celebrate a new mathematical model of the multidrug transporter EmrE, constructed from NMR and stop flow kinetic data.
Collapse
Affiliation(s)
- Michael Grabe
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Daniel M Zuckerman
- Oregon Health & Science University Center for Spatial Systems, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR
| | - John M Rosenberg
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
28
|
Jiang T, Wen PC, Trebesch N, Zhao Z, Pant S, Kapoor K, Shekhar M, Tajkhorshid E. Computational Dissection of Membrane Transport at a Microscopic Level. Trends Biochem Sci 2020; 45:202-216. [PMID: 31813734 PMCID: PMC7024014 DOI: 10.1016/j.tibs.2019.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 01/28/2023]
Abstract
Membrane transporters are key gatekeeper proteins at cellular membranes that closely control the traffic of materials. Their function relies on structural rearrangements of varying degrees that facilitate substrate translocation across the membrane. Characterizing these functionally important molecular events at a microscopic level is key to our understanding of membrane transport, yet challenging to achieve experimentally. Recent advances in simulation technology and computing power have rendered molecular dynamics (MD) simulation a powerful biophysical tool to investigate a wide range of dynamical events spanning multiple spatial and temporal scales. Here, we review recent studies of diverse membrane transporters using computational methods, with an emphasis on highlighting the technical challenges, key lessons learned, and new opportunities to illuminate transporter structure and function.
Collapse
Affiliation(s)
- Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Po-Chao Wen
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Noah Trebesch
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhiyu Zhao
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Karan Kapoor
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mrinal Shekhar
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
29
|
Hussey GA, Thomas NE, Henzler-Wildman KA. Highly coupled transport can be achieved in free-exchange transport models. J Gen Physiol 2020; 152:e201912437. [PMID: 31816638 PMCID: PMC7034097 DOI: 10.1085/jgp.201912437] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/04/2019] [Indexed: 02/04/2023] Open
Abstract
Secondary active transporters couple the transport of an ion species down its concentration gradient to the uphill transport of another substrate. Despite the importance of secondary active transport to multidrug resistance, metabolite transport, and nutrient acquisition, among other biological processes, the microscopic steps of the coupling mechanism are not well understood. Often, transport models illustrate coupling mechanisms through a limited number of "major" conformations or states, yet recent studies have indicated that at least some transporters violate these models. The small multidrug resistance transporter EmrE has been shown to couple proton influx to multidrug efflux via a mechanism that incorporates both "major" and "minor" conformational states and transitions. The resulting free exchange transport model includes multiple leak pathways and theoretically allows for both exchange and cotransport of ion and substrate. To better understand how coupled transport can be achieved in such a model, we numerically simulate a free-exchange model of transport to determine the step-by-step requirements for coupled transport. We find that only moderate biasing of rate constants for key transitions produce highly efficient net transport approaching a perfectly coupled, stoichiometric model. We show how a free-exchange model can enable complex phenotypes, including switching transport direction with changing environmental conditions or substrates. This research has broad implications for synthetic biology, as it demonstrates the utility of free-exchange transport models and the fine tuning required for perfectly coupled transport.
Collapse
|
30
|
Bozzi AT, Bane LB, Zimanyi CM, Gaudet R. Unique structural features in an Nramp metal transporter impart substrate-specific proton cotransport and a kinetic bias to favor import. J Gen Physiol 2019; 151:1413-1429. [PMID: 31619456 PMCID: PMC6888756 DOI: 10.1085/jgp.201912428] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/26/2019] [Indexed: 01/01/2023] Open
Abstract
Natural resistance-associated macrophage protein (Nramp) transporters enable uptake of essential transition metal micronutrients in numerous biological contexts. These proteins are believed to function as secondary transporters that harness the electrochemical energy of proton gradients by "coupling" proton and metal transport. Here we use the Deinococcus radiodurans (Dra) Nramp homologue, for which we have determined crystal structures in multiple conformations, to investigate mechanistic details of metal and proton transport. We untangle the proton-metal coupling behavior of DraNramp into two distinct phenomena: ΔpH stimulation of metal transport rates and metal stimulation of proton transport. Surprisingly, metal type influences substrate stoichiometry, leading to manganese-proton cotransport but cadmium uniport, while proton uniport also occurs. Additionally, a physiological negative membrane potential is required for high-affinity metal uptake. To begin to understand how Nramp's structure imparts these properties, we target a conserved salt-bridge network that forms a proton-transport pathway from the metal-binding site to the cytosol. Mutations to this network diminish voltage and ΔpH dependence of metal transport rates, alter substrate selectivity, perturb or eliminate metal-stimulated proton transport, and erode the directional bias favoring outward-to-inward metal transport under physiological-like conditions. Thus, this unique salt-bridge network may help Nramp-family transporters maximize metal uptake and reduce deleterious back-transport of acquired metals. We provide a new mechanistic model for Nramp proton-metal cotransport and propose that functional advantages may arise from deviations from the traditional model of symport.
Collapse
Affiliation(s)
- Aaron T Bozzi
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| | - Lukas B Bane
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| | - Christina M Zimanyi
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| |
Collapse
|
31
|
Abstract
We review the mechanisms responsible for amino acid homeostasis in Saccharomyces cerevisiae and other fungi. Amino acid homeostasis is essential for cell growth and survival. Hence, the de novo synthesis reactions, metabolic conversions, and transport of amino acids are tightly regulated. Regulation varies from nitrogen pool sensing to control by individual amino acids and takes place at the gene (transcription), protein (posttranslational modification and allostery), and vesicle (trafficking and endocytosis) levels. The pools of amino acids are controlled via import, export, and compartmentalization. In yeast, the majority of the amino acid transporters belong to the APC (amino acid-polyamine-organocation) superfamily, and the proteins couple the uphill transport of amino acids to the electrochemical proton gradient. Although high-resolution structures of yeast amino acid transporters are not available, homology models have been successfully exploited to determine and engineer the catalytic and regulatory functions of the proteins. This has led to a further understanding of the underlying mechanisms of amino acid sensing and subsequent downregulation of transport. Advances in optical microscopy have revealed a new level of regulation of yeast amino acid transporters, which involves membrane domain partitioning. The significance and the interrelationships of the latest discoveries on amino acid homeostasis are put in context.
Collapse
|
32
|
Varela MF, Kumar S. Strategies for discovery of new molecular targets for anti-infective drugs. Curr Opin Pharmacol 2019; 48:57-68. [PMID: 31146204 DOI: 10.1016/j.coph.2019.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 12/29/2022]
Abstract
Multidrug resistant bacterial pathogens as causative agents of infectious disease are a primary public health concern. Clinical efficacy of antimicrobial chemotherapy toward bacterial infection has been compromised in cases where causative agents are resistant to multiple structurally distinct antimicrobial agents. Modification of extant antimicrobial agents that exploit conventional bacterial targets have been developed since the advent of the antimicrobial era. This approach, while successful in certain cases, nonetheless suffers overall from the costs of development and rapid emergence of bacterial variants with confounding resistances to modified agents. Thus, additional strategies toward discovery of new molecular targets have been developed based on bioinformatics analyses and comparative genomics. These and other strategies meant to identify new molecular targets represent promising avenues for reducing emergence of bacterial infections. This short review considers these strategies for discovery of new molecular targets within bacterial pathogens.
Collapse
Affiliation(s)
- Manuel F Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Sanath Kumar
- Post Harvest Technology, ICAR-Central Institute of Fisheries Education, Seven Bungalows, Andheri (W), Mumbai, 400016, India
| |
Collapse
|
33
|
Structural basis for the delivery of activated sialic acid into Golgi for sialyation. Nat Struct Mol Biol 2019; 26:415-423. [PMID: 31133698 DOI: 10.1038/s41594-019-0225-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/09/2019] [Indexed: 01/08/2023]
Abstract
The decoration of secretory glycoproteins and glycolipids with sialic acid is critical to many physiological and pathological processes. Sialyation is dependent on a continuous supply of sialic acid into Golgi organelles in the form of CMP-sialic acid. Translocation of CMP-sialic acid into Golgi is carried out by the CMP-sialic acid transporter (CST). Mutations in human CST are linked to glycosylation disorders, and CST is important for glycopathway engineering, as it is critical for sialyation efficiency of therapeutic glycoproteins. The mechanism of how CMP-sialic acid is recognized and translocated across Golgi membranes in exchange for CMP is poorly understood. Here we have determined the crystal structure of a Zea mays CST in complex with CMP. We conclude that the specificity of CST for CMP-sialic acid is established by the recognition of the nucleotide CMP to such an extent that they are mechanistically capable of both passive and coupled antiporter activity.
Collapse
|
34
|
Majumder P, Khare S, Athreya A, Hussain N, Gulati A, Penmatsa A. Dissection of Protonation Sites for Antibacterial Recognition and Transport in QacA, a Multi-Drug Efflux Transporter. J Mol Biol 2019; 431:2163-2179. [PMID: 30910733 PMCID: PMC7212025 DOI: 10.1016/j.jmb.2019.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 01/05/2023]
Abstract
QacA is a drug:H+ antiporter with 14 transmembrane helices that confers antibacterial resistance to methicillin-resistant Staphylococcus aureus strains, with homologs in other pathogenic organisms. It is a highly promiscuous antiporter, capable of H+-driven efflux of a wide array of cationic antibacterial compounds and dyes. Our study, using a homology model of QacA, reveals a group of six protonatable residues in its vestibule. Systematic mutagenesis resulted in the identification of D34 (TM1), and a cluster of acidic residues in TM13 including E407 and D411 and D323 in TM10, as being crucial for substrate recognition and transport of monovalent and divalent cationic antibacterial compounds. The transport and binding properties of QacA and its mutants were explored using whole cells, inside-out vesicles, substrate-induced H+ release and microscale thermophoresis-based assays. The activity of purified QacA was also observed using proteoliposome-based substrate-induced H+ transport assay. Our results identify two sites, D34 and D411 as vital players in substrate recognition, while E407 facilitates substrate efflux as a protonation site. We also observe that E407 plays an additional role as a substrate recognition site for the transport of dequalinium, a divalent quaternary ammonium compound. These observations rationalize the promiscuity of QacA for diverse substrates. The study unravels the role of acidic residues in QacA with implications for substrate recognition, promiscuity and processive transport in multidrug efflux transporters, related to QacA.
Collapse
Affiliation(s)
- Puja Majumder
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Shashank Khare
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Arunabh Athreya
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Nazia Hussain
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Ashutosh Gulati
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Aravind Penmatsa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|