1
|
Domaradzki J, Jahanshahi R, Walkowiak MP, Walkowiak D. Assessment of biobank awareness among medical students in Iran. J Community Genet 2025; 16:183-193. [PMID: 39838158 PMCID: PMC11979032 DOI: 10.1007/s12687-025-00769-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Despite the rise of research biobanks in the Middle East, they continue to struggle with the limited number of donors. Although qualified healthcare professionals may address it, the awareness of biobanks among future physicians is low. This paper assesses the attitudes towards research biobanks among Iranian medical students. METHODS 459 medical students completed an anonymous self-administered online questionnaire regarding the knowledge and attitudes of future physicians towards biobanking. RESULTS This study demonstrates that almost half of the students had not heard about biobanks, and one-third had mixed feelings about biobank research. The majority declared a willingness to share their biological material for biobank research and declared altruistic motivation. Students' willingness to donate was influenced by the type of tissues, the purpose of biobank research and trust in biobanks, which influenced their preference for a study-specific consent model. Students expressed concern over biospecimens' unethical or commercial use and data safety. CONCLUSION This research shows that promoting knowledge about biobank-based research among future physicians in Iran is crucial.
Collapse
Affiliation(s)
- Jan Domaradzki
- Department of Social Sciences and Humanities, Poznan University of Medical Sciences, Poznań, Poland.
| | - Reza Jahanshahi
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Marcin Piotr Walkowiak
- Department of Preventive Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Dariusz Walkowiak
- Department of Organization and Management in Health Care, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
2
|
Antona A, Bettio V, Venetucci J, Cracas SV, Mazzucco E, Garro G, Varalda M, Fontanarosa C, Spinelli M, Amoresano A, Rolla R, Capello D. Evaluating Cryopreservation Methods in Biobanking: Impacts on Biomarker Integrity and Omics Data Reliability. Biopreserv Biobank 2025. [PMID: 40098524 DOI: 10.1089/bio.2024.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Objectives: Personalized medicine emphasizes prevention and early diagnosis by developing genetic screening and biomarker assessment tools. Biobanks, including University of Piemonte Orientale (UPO) Biobank, support this effort by providing high-quality biological samples collected, processed, and stored using optimized standardized protocols. To determine the optimal long-term storage conditions for biospecimens used in biomedical research, we evaluated plasma and serum samples cryopreserved using two storage methods, cryovials and straws, across various analytical methodologies with differing sensitivity and robustness. Design and Methods: Plasma and serum samples cryopreserved in liquid nitrogen in vials and straw at the UPO Biobank were subjected to multiple analyses including standard biochemical laboratory analysis, targeted lipidomics, untargeted proteomics, and targeted metabolites quantification through mass spectrometry-based analytical techniques. Results: Our data demonstrate the robustness and applicability of both storage methods for standard laboratory analyses in evaluating clinically relevant markers in plasma and serum. Lipidomic analysis revealed slight disparities in lipid abundance, though these differences were mostly confined to specific lipid species, particularly fatty acids. Conversely, proteomic and metabolomic analyses uncovered variations in abundance in a significant, albeit limited, fraction of analytes between vials and straw-derived samples. Conclusions: By highlighting similarities and differences in samples stored in these conditions, this study provides significant insights into optimizing biobanking practices and understanding the factors that influence the integrity of cryopreserved biospecimens and the reliability of the data derived from them. Both straws and vials are convenient and efficient cryopreservation methods, essentially equivalent for samples dedicated to robust and relatively low-sensitive standardized analyses. However, our findings emphasize the need for caution when interpreting omics data from samples subjected to different cryopreservation methods, as subtle variations can arise even with different types of containers.
Collapse
Affiliation(s)
- Annamaria Antona
- Department of Translational Medicine (DIMET), Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
| | - Valentina Bettio
- Department of Translational Medicine (DIMET), Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
- UPO Biobank, University of Piemonte Orientale, Novara, Italy
| | - Jacopo Venetucci
- Department of Translational Medicine (DIMET), Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
| | - Silvia Vittoria Cracas
- Department of Translational Medicine (DIMET), Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
- Department of Sustainable Development and Ecological Transition (DISSTE), University of Piemonte Orientale, Vercelli, Italy
| | | | - Giulia Garro
- Department of Translational Medicine (DIMET), Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
- UPO Biobank, University of Piemonte Orientale, Novara, Italy
| | - Marco Varalda
- Department of Translational Medicine (DIMET), Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
| | - Carolina Fontanarosa
- Department of Chemical Sciences, University of Naples "Federico II," Naples, Italy
| | - Michele Spinelli
- Department of Physical and Mental Health and Preventive Medicine School of Medicine and Surgery, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples "Federico II," Naples, Italy
| | - Roberta Rolla
- Clinical Chemistry, Azienda Ospedaliera-Universitaria "Maggiore della Carità," University of Piemonte Orientale, Novara, Italy
| | - Daniela Capello
- Department of Translational Medicine (DIMET), Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
- UPO Biobank, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
3
|
Borkhataria CH, Sharma S, Vaja P, Tank C, Mori D, Patel K, Kyada A. Quality management, ethical considerations, and emerging challenges in genomics and biobanking: A comprehensive review. Clin Chim Acta 2025; 569:120161. [PMID: 39864572 DOI: 10.1016/j.cca.2025.120161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
The integration of genomics into personalized medicine has the potential to transform healthcare by customizing treatments according to individual genetic profiles. This paper examines the diverse applications of genomics, including the identification of disease susceptibility, improvement of diagnostic methods, optimization of drug therapies, and monitoring of treatment responses. It also explores the expanding global market for genetic testing and the increasing implementation of whole-genome sequencing in clinical practice, with a focus on pilot programs that are advancing comprehensive genomic analysis. Despite challenges such as high costs, data interpretation complexities, and ethical concerns, significant efforts are being made to address these issues. Additionally, the creation of biobanks as vital resources for preserving high-quality biosamples and supporting research highlights the critical need for infrastructure development in genomics. By fostering interdisciplinary collaboration and establishing robust ethical and regulatory frameworks, personalized medicine can ensure equitable access to tailored therapies and enhance health outcomes for everyone. This abstract provides an overview of the transformative potential of genomics and personalized medicine in ushering in a new era of precision healthcare.
Collapse
Affiliation(s)
| | - Shweta Sharma
- B K Mody Government Pharmacy College Rajkot Gujarat India
| | - Payal Vaja
- School of Pharmacy, Dr. Subhash University Junagadh Gujarat India
| | | | - Dhaval Mori
- B K Mody Government Pharmacy College Rajkot Gujarat India
| | | | - Ashishkumar Kyada
- Department of Pharmaceutical Sciences, Marwadi University Rajkot Gujarat India
| |
Collapse
|
4
|
Jacobs JJL, Beekers I, Verkouter I, Richards LB, Vegelien A, Bloemsma LD, Bongaerts VAMC, Cloos J, Erkens F, Gradowska P, Hort S, Hudecek M, Juan M, Maitland-van der Zee AH, Navarro-Velázquez S, Ngai LL, Rafiq QA, Sanges C, Tettero J, van Os HJA, Vos RC, de Wit Y, van Dijk S. A data management system for precision medicine. PLOS DIGITAL HEALTH 2025; 4:e0000464. [PMID: 39787064 PMCID: PMC11717228 DOI: 10.1371/journal.pdig.0000464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/27/2024] [Indexed: 01/12/2025]
Abstract
Precision, or personalised medicine has advanced requirements for medical data management systems (MedDMSs). MedDMS for precision medicine should be able to process hundreds of parameters from multiple sites, be adaptable while remaining in sync at multiple locations, real-time syncing to analytics and be compliant with international privacy legislation. This paper describes the LogiqSuite software solution, aimed to support a precision medicine solution at the patient care (LogiqCare), research (LogiqScience) and data science (LogiqAnalytics) level. LogiqSuite is certified and compliant with international medical data and privacy legislations. This paper evaluates a MedDMS in five types of use cases for precision medicine, ranging from data collection to algorithm development and from implementation to integration with real-world data. The MedDMS is evaluated in seven precision medicine data science projects in prehospital triage, cardiovascular disease, pulmonology, and oncology. The P4O2 consortium uses the MedDMS as an electronic case report form (eCRF) that allows real-time data management and analytics in long covid and pulmonary diseases. In an acute myeloid leukaemia, study data from different sources were integrated to facilitate easy descriptive analytics for various research questions. In the AIDPATH project, LogiqCare is used to process patient data, while LogiqScience is used for pseudonymous CAR-T cell production for cancer treatment. In both these oncological projects the data in LogiqAnalytics is also used to facilitate machine learning to develop new prediction models for clinical-decision support (CDS). The MedDMS is also evaluated for real-time recording of CDS data from U-Prevent for cardiovascular risk management and from the Stroke Triage App for prehospital triage. The MedDMS is discussed in relation to other solutions for privacy-by-design, integrated data stewardship and real-time data analytics in precision medicine. LogiqSuite is used for multi-centre research study data registrations and monitoring, data analytics in interdisciplinary consortia, design of new machine learning / artificial intelligence (AI) algorithms, development of new or updated prediction models, integration of care with advanced therapy production, and real-world data monitoring in using CDS tools. The integrated MedDMS application supports data management for care and research in precision medicine.
Collapse
Affiliation(s)
| | - Inés Beekers
- Clinical Care & Research, ORTEC B.V., Zoetermeer, The Netherlands
| | - Inge Verkouter
- Clinical Care & Research, ORTEC B.V., Zoetermeer, The Netherlands
| | - Levi B. Richards
- Clinical Care & Research, ORTEC B.V., Zoetermeer, The Netherlands
| | - Alexandra Vegelien
- Clinical Care & Research, ORTEC B.V., Zoetermeer, The Netherlands
- Faculty of Mathematics, VU, Amsterdam, The Netherlands
| | | | - Vera A. M. C. Bongaerts
- Public Health & Primary Care, and Health Campus The Hague, Leiden University Medical Center, The Hague, The Netherlands
| | | | - Frederik Erkens
- Department Production Metrology, Fraunhofer Institute for Production Technology IPT, Aachen, Germany
| | - Patrycja Gradowska
- HOVON Foundation, Rotterdam, The Netherlands; Department of Haematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Simon Hort
- Adaptive Produktionssteuerung, Fraunhofer Institute for Production Technology IPT, Aachen, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, University Clinic Würzburg, Würzburg, Germany
| | - Manel Juan
- Fundació Clínic per a la Recerca Biomèdica—Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Immunology department, Hospital Clinic of Barcelona, Barcelona, Spain
- HSJD-Clinic Immunotherapy platform, Barcelona, Spain
| | | | - Sergio Navarro-Velázquez
- Fundació Clínic per a la Recerca Biomèdica—Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Immunology department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Lok Lam Ngai
- Department of Haematology, Amsterdam UMC, The Netherlands
| | - Qasim A. Rafiq
- Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| | - Carmen Sanges
- Medizinische Klinik und Poliklinik II, University Clinic Würzburg, Würzburg, Germany
| | - Jesse Tettero
- Department of Haematology, Amsterdam UMC, The Netherlands
| | - Hendrikus J. A. van Os
- Public Health & Primary Care, and Health Campus The Hague, Leiden University Medical Center, The Hague, The Netherlands
- National eHealth Living Lab, Leiden, The Netherlands
| | - Rimke C. Vos
- Public Health & Primary Care, and Health Campus The Hague, Leiden University Medical Center, The Hague, The Netherlands
| | - Yolanda de Wit
- Department of Pulmonary Medicine, Amsterdam UMC, The Netherlands
| | - Steven van Dijk
- Clinical Care & Research, ORTEC B.V., Zoetermeer, The Netherlands
| |
Collapse
|
5
|
Valdés E, Lecaros JA. Biobanks and data interoperability in Latin America: engendering high-quality evidence for the global research ecosystem. Front Med (Lausanne) 2024; 11:1481891. [PMID: 39736978 PMCID: PMC11683061 DOI: 10.3389/fmed.2024.1481891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Currently, each biobank in Latin America operates with its own set of standards for database creation and management, resulting in a lack of regional and international interoperability. Furthermore, regulations concerning data protection, curation, and the transfer of biological samples and associated data vary significantly from country to country, by complicating efforts to create a unified data-sharing platform. To address these challenges, Latin America should promote the development of an integrated regional network of biobanks to generate high-quality evidence within the global research ecosystem. This initiative will combine regulatory science—focused on interoperability standards across semantic, technical, legal, and organizational dimensions—and meta-science, which assesses the quality of scientific practice. Evidence indicates that harmonized standards in biobanks lead to higher-quality, more reliable data, thereby facilitating the reproducibility of scientific studies. This paper aims to identify and address existing regulatory, policy, and infrastructure gaps in Latin America to establish harmonized interoperability criteria essential for reproducing biomedical studies. Additionally, it seeks to propose minimum standards for regulating biobank networks, which will promote the development of medical products on a global scale, thereby engendering high quality evidence for the global research ecosystem and enhancing Latin America’s integration into it.
Collapse
Affiliation(s)
- Erick Valdés
- Institute of Sciences and Innovation in Medicine, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | | |
Collapse
|
6
|
Shi J, Guo Y, He N, Xia W, Liu H, Li H. Data Governance and Distribution of Biobank: A Case from a Chinese Cancer Hospital. Biopreserv Biobank 2024. [PMID: 39670819 DOI: 10.1089/bio.2024.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
Objectives: To facilitate the regionalization, specialization, and digitization of biobanks, three issues regarding data collection and application must be addressed (1) integration and distribution of data governance, (2) efficiency and efficacy of data governance, and (3) sustainability of data governance. Methods: We collaborated with stakeholders to identify priorities and assess infrastructure needs through the continuous evaluation and analysis of projects. We developed data management solutions, catalogs, and data models to optimize and support data collection, distribution, and application. Furthermore, ontologies were used to facilitate data integration from multiple sources, and Minimum Information About BIobank Data Sharing (MIABIS) was defined as accessible to all patients. To enhance data integrity, we conducted retrospective and prospective follow-up studies. Results: We completed infrastructure upgrades to match technical solutions and research demands. An information management software with six primary functional divisions was developed for data governance. We optimized the database structure and changed the biospecimen accumulation model from biospecimen-based to patient-centered and service-oriented. Subsequently, we specified 85 attributes of MIABIS to describe the biobank contents. A dual-pillar approach was adopted to expand the biobank's data in collaboration with other institutions, and MIABIS served as a bridge for both vertical and horizontal networks. From 2003 to 2021, we collected a total of 156,997 patient biospecimens/data from 20 cancer types, matching 53,113 cases from follow-up surveys. In addition, we supplied more than 40,000 biospecimens/data points for above 300 scientific research projects. Conclusions: An appropriate information platform for a biobank is fundamental to data collection, distribution, and application, particularly in the context of data-intensive research. We implemented a standardized scientific data structure to fulfill the research requirements. The sustainable development of a biobank depends on a scientific, standardized, and service-oriented data governance approach, along with the efficient utilization of emerging technologies.
Collapse
Affiliation(s)
- Jingjing Shi
- Cancer Biobank, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yan Guo
- Cancer Biobank, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Na He
- Cancer Biobank, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Wenbin Xia
- Cancer Biobank, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Hongkun Liu
- Cancer Biobank, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Haixin Li
- Cancer Biobank, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| |
Collapse
|
7
|
Gharib E. Closing Editorial: Colorectal Cancer-A Molecular Genetics Perspective. Int J Mol Sci 2024; 25:12604. [PMID: 39684316 DOI: 10.3390/ijms252312604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, ranking third in incidence and second in mortality among all cancers [...].
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
8
|
Alkhatib R, Gaede KI. Data Management in Biobanking: Strategies, Challenges, and Future Directions. BIOTECH 2024; 13:34. [PMID: 39311336 PMCID: PMC11417763 DOI: 10.3390/biotech13030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/26/2024] Open
Abstract
Biobanking plays a pivotal role in biomedical research by providing standardized processing, precise storing, and management of biological sample collections along with the associated data. Effective data management is a prerequisite to ensure the integrity, quality, and accessibility of these resources. This review provides a current landscape of data management in biobanking, discussing key challenges, existing strategies, and potential future directions. We explore multiple aspects of data management, including data collection, storage, curation, sharing, and ethical considerations. By examining the evolving technologies and methodologies in biobanking, we aim to provide insights into addressing the complexities and maximizing the utility of biobank data for research and clinical applications.
Collapse
Affiliation(s)
- Ramez Alkhatib
- Biomaterial Bank Nord, Research Center Borstel Leibniz Lung Center, Parkallee 35, 23845 Borstel, Germany;
- German Centre for Lung Research (DZL), Airway Research Centre North (ARCN), 22927 Großhansdorf, Germany
| | - Karoline I. Gaede
- Biomaterial Bank Nord, Research Center Borstel Leibniz Lung Center, Parkallee 35, 23845 Borstel, Germany;
- German Centre for Lung Research (DZL), Airway Research Centre North (ARCN), 22927 Großhansdorf, Germany
- PopGen 2.0 Biobanking Network (P2N), University Hospital Schleswig-Holstein, Campus Kiel, Kiel University, 24105 Kiel, Germany
| |
Collapse
|
9
|
Grasso-Cladera A, Bremer M, Ladouce S, Parada F. A systematic review of mobile brain/body imaging studies using the P300 event-related potentials to investigate cognition beyond the laboratory. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:631-659. [PMID: 38834886 DOI: 10.3758/s13415-024-01190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/06/2024]
Abstract
The P300 ERP component, related to the onset of task-relevant or infrequent stimuli, has been widely used in the Mobile Brain/Body Imaging (MoBI) literature. This systematic review evaluates the quality and breadth of P300 MoBI studies, revealing a maturing field with well-designed research yet grappling with standardization and global representation challenges. While affirming the reliability of measuring P300 ERP components in mobile settings, the review identifies significant hurdles in standardizing data cleaning and processing techniques, impacting comparability and reproducibility. Geographical disparities emerge, with studies predominantly in the Global North and a dearth of research from the Global South, emphasizing the need for broader inclusivity to counter the WEIRD bias in psychology. Collaborative projects and mobile EEG systems showcase the feasibility of reaching diverse populations, which is essential to advance precision psychiatry and to integrate varied data streams. Methodologically, a trend toward ecological validity is noted, shifting from lab-based to real-world settings with portable EEG system advancements. Future hardware developments are expected to balance signal quality and sensor intrusiveness, enriching data collection in everyday contexts. Innovative methodologies reflect a move toward more natural experimental settings, prompting critical questions about the applicability of traditional ERP markers, such as the P300 outside structured paradigms. The review concludes by highlighting the crucial role of integrating mobile technologies, physiological sensors, and machine learning to advance cognitive neuroscience. It advocates for an operational definition of ecological validity to bridge the gap between controlled experiments and the complexity of embodied cognitive experiences, enhancing both theoretical understanding and practical application in study design.
Collapse
Affiliation(s)
| | - Marko Bremer
- Facultad de Psicología, Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Diego Portales University, Santiago, Chile
- Facultad de Psicología, Programa de Magíster en Neurociencia Social, Diego Portales University, Santiago, Chile
| | - Simon Ladouce
- Department Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Francisco Parada
- Facultad de Psicología, Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Diego Portales University, Santiago, Chile.
| |
Collapse
|
10
|
Goossens C, Tambay V, Raymond VA, Rousseau L, Turcotte S, Bilodeau M. Impact of the delay in cryopreservation timing during biobanking procedures on human liver tissue metabolomics. PLoS One 2024; 19:e0304405. [PMID: 38857235 PMCID: PMC11164386 DOI: 10.1371/journal.pone.0304405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 05/10/2024] [Indexed: 06/12/2024] Open
Abstract
The liver is a highly specialized organ involved in regulating systemic metabolism. Understanding metabolic reprogramming of liver disease is key in discovering clinical biomarkers, which relies on robust tissue biobanks. However, sample collection and storage procedures pose a threat to obtaining reliable results, as metabolic alterations may occur during sample handling. This study aimed to elucidate the impact of pre-analytical delay during liver resection surgery on liver tissue metabolomics. Patients were enrolled for liver resection during which normal tissue was collected and snap-frozen at three timepoints: before transection, after transection, and after analysis in Pathology. Metabolomics analyses were performed using 1H Nuclear Magnetic Resonance (NMR) and Liquid Chromatography-Mass Spectrometry (LC-MS). Time at cryopreservation was the principal variable contributing to differences between liver specimen metabolomes, which superseded even interindividual variability. NMR revealed global changes in the abundance of an array of metabolites, namely a decrease in most metabolites and an increase in β-glucose and lactate. LC-MS revealed that succinate, alanine, glutamine, arginine, leucine, glycerol-3-phosphate, lactate, AMP, glutathione, and NADP were enhanced during cryopreservation delay (all p<0.05), whereas aspartate, iso(citrate), ADP, and ATP, decreased (all p<0.05). Cryopreservation delays occurring during liver tissue biobanking significantly alter an array of metabolites. Indeed, such alterations compromise the integrity of metabolomic data from liver specimens, underlining the importance of standardized protocols for tissue biobanking in hepatology.
Collapse
Affiliation(s)
- Corentine Goossens
- Laboratoire d’Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Vincent Tambay
- Laboratoire d’Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Valérie-Ann Raymond
- Laboratoire d’Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Louise Rousseau
- Biobanque et Base de Données Hépatopancréatobiliaire, Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC, Canada
| | - Simon Turcotte
- Biobanque et Base de Données Hépatopancréatobiliaire, Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC, Canada
- Département de Chirurgie, Service de Transplantation Hépatique et de Chirurgie Hépatopancréatobiliaire, Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC, Canada
| | - Marc Bilodeau
- Laboratoire d’Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
11
|
Alebouyeh M, Almasian Tehrani N, Fallah F, Azimi L, Sadredinamin M, Yousefi N, Ghandchi G, Haji Molla Hoseini M. Protective effects of different lyoprotectants on survival of clinical bacterial isolates in a hospital biobank. Cryobiology 2024; 115:104891. [PMID: 38522663 DOI: 10.1016/j.cryobiol.2024.104891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Nowadays the significant role of biobanks in medical, diagnostic, industrial, and environmental research is well known. Bacterial biobanks could be used as a good resource for designing new treatments, biomedical and industrial researches, and laboratory diagnostics. To have a collection of bacteria from clinical samples and maintain their long-term viability, their preservation needs appropriate protective agents, like cryoprotectants and lyoprotectants. In this study, we collected and characterized Gram-negative and Gram-positive bacteria carrying important antibiotic resistance markers from different clinical samples of hospitalized children. Sucrose (10%), skimmed milk (10%), skimmed milk plus sodium glutamate (10% + 1%), and bovine serum albumin (BSA, 10%) were used as lyoprotectants during the freeze-drying procedure. The survival rate of the lyophilized samples was calculated by dilution plating and measuring the colony forming unit (CFU) after 3 months of storage. The culture analysis results indicated that 25 of the 27 studied bacterial genera (Dilutions 10-3 to 10-6), including Shigella, Methicillin-resistant S. aureus, Acinetobacter spp., Escherichia spp., Pseudomonas spp., Klebsiella spp., Enterococcus spp., were recovered in cultured fractions from all preservation conditions, while 2 genera were only detected in a single preservation condition (2/27, 7.4%). Based on the results, sucrose (10%) and skimmed milk (10%) presented the most protective features. The survival rates varied significantly according to types of the bacteria. Collectively, our results showed a diversity in the recovery of different bacterial genera after lyophilization. While statistically no significant difference was detected among the studied protective agents, sucrose (10%) and skimmed milk (10%) exhibited more effective lyoprotective properties for both Gram-positive and Gram-negative bacteria among the clinical isolates in our study.
Collapse
Affiliation(s)
- Masoud Alebouyeh
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Almasian Tehrani
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Leila Azimi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrzad Sadredinamin
- Department of Medical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Yousefi
- Department of Medical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazale Ghandchi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Haji Molla Hoseini
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Rischke S, Gurke R, Bennett A, Behrens F, Geisslinger G, Hahnefeld L. ALISTER - Application for lipid stability evaluation and research. Clin Chim Acta 2024; 557:117858. [PMID: 38492658 DOI: 10.1016/j.cca.2024.117858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND AND AIMS In lipidomic and metabolomic studies, pre-analytical pitfalls enhance the risk of misusing resources such as time and money, as samples that are analyzed may not yield accurate or reliable data due to poor sample handling. Guidance and pre-analytic know-how are necessary for translation of omics technologies into routine clinical testing. The present work aims to enable decision making regarding sample stability in every phase of lipidomics- and metabolomics-centered studies. MATERIALS AND METHODS Data of multiple pre-analytic studies were aggregated into a database. Flexible approaches for evaluating these data were implemented in an RShiny-based web-application, tailored towards broad applicability in clinical and bioanalytic research. RESULTS Our "Application for lipid stability evaluation & research" - ALISTER facilitates decision making on blood sample stability during lipidomic and metabolomic studies, such as biomarker research, analysis of biobank samples and clinical testing. The interactive tool gives sampling recommendations when planning sample collection or aids in the assessment of sample quality of experiments retrospectively. CONCLUSION ALISTER is available for use under https://itmp.shinyapps.io/alister/. The application enables and simplifies data-driven decision making concerning pre-analytic blood sample handling and fits the needs of clinical investigations from multiple perspectives.
Collapse
Affiliation(s)
- Samuel Rischke
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Robert Gurke
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Alexandre Bennett
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Frank Behrens
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Department of Rheumatology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Lisa Hahnefeld
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Brancato V, Esposito G, Coppola L, Cavaliere C, Mirabelli P, Scapicchio C, Borgheresi R, Neri E, Salvatore M, Aiello M. Standardizing digital biobanks: integrating imaging, genomic, and clinical data for precision medicine. J Transl Med 2024; 22:136. [PMID: 38317237 PMCID: PMC10845786 DOI: 10.1186/s12967-024-04891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/14/2024] [Indexed: 02/07/2024] Open
Abstract
Advancements in data acquisition and computational methods are generating a large amount of heterogeneous biomedical data from diagnostic domains such as clinical imaging, pathology, and next-generation sequencing (NGS), which help characterize individual differences in patients. However, this information needs to be available and suitable to promote and support scientific research and technological development, supporting the effective adoption of the precision medicine approach in clinical practice. Digital biobanks can catalyze this process, facilitating the sharing of curated and standardized imaging data, clinical, pathological and molecular data, crucial to enable the development of a comprehensive and personalized data-driven diagnostic approach in disease management and fostering the development of computational predictive models. This work aims to frame this perspective, first by evaluating the state of standardization of individual diagnostic domains and then by identifying challenges and proposing a possible solution towards an integrative approach that can guarantee the suitability of information that can be shared through a digital biobank. Our analysis of the state of the art shows the presence and use of reference standards in biobanks and, generally, digital repositories for each specific domain. Despite this, standardization to guarantee the integration and reproducibility of the numerical descriptors generated by each domain, e.g. radiomic, pathomic and -omic features, is still an open challenge. Based on specific use cases and scenarios, an integration model, based on the JSON format, is proposed that can help address this problem. Ultimately, this work shows how, with specific standardization and promotion efforts, the digital biobank model can become an enabling technology for the comprehensive study of diseases and the effective development of data-driven technologies at the service of precision medicine.
Collapse
Affiliation(s)
| | - Giuseppina Esposito
- Bio Check Up S.R.L, 80121, Naples, Italy
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131, Naples, Italy
| | | | | | - Peppino Mirabelli
- UOS Laboratori di Ricerca e Biobanca, AORN Santobono-Pausilipon, Via Teresa Ravaschieri, 8, 80122, Naples, Italy
| | - Camilla Scapicchio
- Academic Radiology, Department of Translational Research, University of Pisa, via Roma, 67, 56126, Pisa, Italy
| | - Rita Borgheresi
- Academic Radiology, Department of Translational Research, University of Pisa, via Roma, 67, 56126, Pisa, Italy
| | - Emanuele Neri
- Academic Radiology, Department of Translational Research, University of Pisa, via Roma, 67, 56126, Pisa, Italy
| | | | | |
Collapse
|
14
|
Lauschke VM, Zhou Y, Ingelman-Sundberg M. Pharmacogenomics Beyond Single Common Genetic Variants: The Way Forward. Annu Rev Pharmacol Toxicol 2024; 64:33-51. [PMID: 37506333 DOI: 10.1146/annurev-pharmtox-051921-091209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Interindividual variability in genes encoding drug-metabolizing enzymes, transporters, receptors, and human leukocyte antigens has a major impact on a patient's response to drugs with regard to efficacy and safety. Enabled by both technological and conceptual advances, the field of pharmacogenomics is developing rapidly. Major progress in omics profiling methods has enabled novel genotypic and phenotypic characterization of patients and biobanks. These developments are paralleled by advances in machine learning, which have allowed us to parse the immense wealth of data and establish novel genetic markers and polygenic models for drug selection and dosing. Pharmacogenomics has recently become more widespread in clinical practice to personalize treatment and to develop new drugs tailored to specific patient populations. In this review, we provide an overview of the latest developments in the field and discuss the way forward, including how to address the missing heritability, develop novel polygenic models, and further improve the clinical implementation of pharmacogenomics.
Collapse
Affiliation(s)
- Volker M Lauschke
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden;
- Tübingen University, Tübingen, Germany
| | - Yitian Zhou
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden;
- Tübingen University, Tübingen, Germany
| | | |
Collapse
|
15
|
Bettio V, Mazzucco E, Aleni C, Cracas S, Rinaldi C, Antona A, Varalda M, Venetucci J, Ferrante D, Rimedio A, Capello D. UPO Biobank: The Challenge of Integrating Biobanking into the Academic Environment to Support Translational Research. J Pers Med 2023; 13:911. [PMID: 37373900 DOI: 10.3390/jpm13060911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Biobanks are driving motors of precision and personalized medicine by providing high-quality biological material/data through the standardization and harmonization of their collection, preservation, and distribution. UPO Biobank was established in 2020 as an institutional, disease, and population biobank within the University of Piemonte Orientale (UPO) for the promotion and support of high-quality, multidisciplinary studies. UPO Biobank collaborates with UPO researchers, sustaining academic translational research, and supports the Novara Cohort Study, a longitudinal cohort study involving the population in the Novara area that will collect data and biological specimens that will be available for epidemiological, public health, and biological studies on aging. UPO Biobank has been developed by implementing the quality standards for the field and the ethical and legal issues and normative about privacy protection, data collection, and sharing. As a member of the "Biobanking and Biomolecular Resources Research Infrastructure" (BBMRI) network, UPO Biobank aims to expand its activity worldwide and launch cooperation with new national and international partners and researchers. The objective of this manuscript is to report an institutional and operational experience through the description of the technical and procedural solutions and ethical and scientific implications associated with the establishment of this university research biobank.
Collapse
Affiliation(s)
- Valentina Bettio
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Eleonora Mazzucco
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Chiara Aleni
- Department of Sustainable Development and Ecological Transition, University of Piemonte Orientale, 13100 Vercelli, Italy
| | - Silvia Cracas
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Carmela Rinaldi
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy
- Learning and Research Area, A.O.U. Maggiore della Carità, 28100 Novara, Italy
| | - Annamaria Antona
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Marco Varalda
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Jacopo Venetucci
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Ferrante
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Antonio Rimedio
- Ethics Committee of the University "Hospital Major of Charity" in Novara, Local Health Authorities Biella, 28100 Novara, Italy
| | - Daniela Capello
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
16
|
Rahman M, Schellhorn HE. Metabolomics of infectious diseases in the era of personalized medicine. Front Mol Biosci 2023; 10:1120376. [PMID: 37275959 PMCID: PMC10233009 DOI: 10.3389/fmolb.2023.1120376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Infectious diseases continue to be a major cause of morbidity and mortality worldwide. Diseases cause perturbation of the host's immune system provoking a response that involves genes, proteins and metabolites. While genes are regulated by epigenetic or other host factors, proteins can undergo post-translational modification to enable/modify function. As a result, it is difficult to correlate the disease phenotype based solely on genetic and proteomic information only. Metabolites, however, can provide direct information on the biochemical activity during diseased state. Therefore, metabolites may, potentially, represent a phenotypic signature of a diseased state. Measuring and assessing metabolites in large scale falls under the omics technology known as "metabolomics". Comprehensive and/or specific metabolic profiling in biological fluids can be used as biomarkers of disease diagnosis. In addition, metabolomics together with genomics can be used to differentiate patients with differential treatment response and development of host targeted therapy instead of pathogen targeted therapy where pathogens are more prone to mutation and lead to antimicrobial resistance. Thus, metabolomics can be used for patient stratification, personalized drug formulation and disease control and management. Currently, several therapeutics and in vitro diagnostics kits have been approved by US Food and Drug Administration (FDA) for personalized treatment and diagnosis of infectious diseases. However, the actual number of therapeutics or diagnostics kits required for tailored treatment is limited as metabolomics and personalized medicine require the involvement of personnel from multidisciplinary fields ranging from technological development, bioscience, bioinformatics, biostatistics, clinicians, and biotechnology companies. Given the significance of metabolomics, in this review, we discussed different aspects of metabolomics particularly potentials of metabolomics as diagnostic biomarkers and use of small molecules for host targeted treatment for infectious diseases, and their scopes and challenges in personalized medicine.
Collapse
|
17
|
LaLonde-Paul D, Mouttham L, Promislow DEL, Castelhano MG. Banking on a new understanding: translational opportunities from veterinary biobanks. GeroScience 2023:10.1007/s11357-023-00763-z. [PMID: 36890420 PMCID: PMC10400517 DOI: 10.1007/s11357-023-00763-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 01/03/2023] [Indexed: 03/10/2023] Open
Abstract
Current advances in geroscience are due in part to the discovery of biomarkers with high predictive ability in short-lived laboratory animals such as flies and mice. These model species, however, do not always adequately reflect human physiology and disease, highlighting the need for a more comprehensive and relevant model of human aging. Domestic dogs offer a solution to this obstacle, as they share many aspects not only of the physiological and pathological trajectories of their human counterpart, but also of their environment. Furthermore, they age at a considerably faster rate. Studying aging in the companion dog provides an opportunity to better understand the biological and environmental determinants of healthy lifespan in our pets, and to translate those findings to human aging. Biobanking, the systematic collection, processing, storage, and distribution of biological material and associated data has contributed to basic, clinical, and translational research by streamlining the management of high-quality biospecimens for biomarker discovery and validation. In this review, we discuss how veterinary biobanks can support research on aging, particularly when integrated into large-scale longitudinal studies. As an example of this concept, we introduce the Dog Aging Project Biobank.
Collapse
Affiliation(s)
- D LaLonde-Paul
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - L Mouttham
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - D E L Promislow
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Biology, University of Washington, Seattle, WA, USA
| | - M G Castelhano
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
18
|
Laufs D, Peters M, Schultz C. Data platforms for open life sciences-A systematic analysis of management instruments. PLoS One 2022; 17:e0276204. [PMID: 36282849 PMCID: PMC9595524 DOI: 10.1371/journal.pone.0276204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
Open data platforms are interfaces between data demand of and supply from their users. Yet, data platform providers frequently struggle to aggregate data to suit their users' needs and to establish a high intensity of data exchange in a collaborative environment. Here, using open life science data platforms as an example for a diverse data structure, we systematically categorize these platforms based on their technology intermediation and the range of domains they cover to derive general and specific success factors for their management instruments. Our qualitative content analysis is based on 39 in-depth interviews with experts employed by data platforms and external stakeholders. We thus complement peer initiatives which focus solely on data quality, by additionally highlighting the data platforms' role to enable data utilization for innovative output. Based on our analysis, we propose a clearly structured and detailed guideline for seven management instruments. This guideline helps to establish and operationalize data platforms and to best exploit the data provided. Our findings support further exploitation of the open innovation potential in the life sciences and beyond.
Collapse
Affiliation(s)
- Daniel Laufs
- Technology Management Research Group, Faculty of Business, Economics and Social Sciences, Kiel University, Kiel, SH, Germany
| | - Mareike Peters
- Technology Management Research Group, Faculty of Business, Economics and Social Sciences, Kiel University, Kiel, SH, Germany
| | - Carsten Schultz
- Technology Management Research Group, Faculty of Business, Economics and Social Sciences, Kiel University, Kiel, SH, Germany
| |
Collapse
|
19
|
Dagher G. Quality matters: International standards for biobanking. Cell Prolif 2022; 55:e13282. [PMID: 35709534 PMCID: PMC9357355 DOI: 10.1111/cpr.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/19/2022] [Accepted: 04/10/2022] [Indexed: 11/29/2022] Open
Abstract
Human biospecimens provide the basis for research, leading to a better understanding of human disease biology and discovery of new treatments that are tailored to individual patients with cancer or other common complex diseases. The collection, processing, preservation, storage and providing access to these resources are key activities of biobanks. Biobanks must ensure proper quality of samples and data, ethical and legal compliance as well as transparent and efficient access procedures. The standards for biobanking outlined herein are intended to be implemented in biobanks and to supply researchers with high‐quality samples fitted for an intended use.
Collapse
Affiliation(s)
- Georges Dagher
- INSERM, Paris, France.,Stem Cell Lab, Chinese Academy of Sciences, Beijing, China.,Graz Medical University, Graz, Austria.,Milano-Bicocca University, Milan, Italy
| |
Collapse
|
20
|
Gonzalez-Reymundez A, Grueneberg A, Lu G, Alves FC, Rincon G, Vazquez AI. MOSS: multi-omic integration with sparse value decomposition. Bioinformatics 2022; 38:2956-2958. [PMID: 35561193 PMCID: PMC9113319 DOI: 10.1093/bioinformatics/btac179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 02/03/2023] Open
Abstract
SUMMARY This article presents multi-omic integration with sparse value decomposition (MOSS), a free and open-source R package for integration and feature selection in multiple large omics datasets. This package is computationally efficient and offers biological insight through capabilities, such as cluster analysis and identification of informative omic features. AVAILABILITY AND IMPLEMENTATION https://CRAN.R-project.org/package=MOSS. SUPPLEMENTARY INFORMATION Supplementary information can be found at https://github.com/agugonrey/GonzalezReymundez2021.
Collapse
Affiliation(s)
| | - Alexander Grueneberg
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Guanqi Lu
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Filipe Couto Alves
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Gonzalo Rincon
- Genus PLC Inc., Genome Sciences R&D, De Forest, WI 53532, USA
| | - Ana I Vazquez
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
21
|
Matera-Witkiewicz A, Krupińska M, Sitek P, Laskowski M, Zagórska K, Gleńska-Olender J. Quality Management in Polish Biobanking Network-Current Status Before the Implementation of Unified and Harmonized Integrated Quality Management System. Front Med (Lausanne) 2022; 8:780294. [PMID: 35083242 PMCID: PMC8786035 DOI: 10.3389/fmed.2021.780294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
In 2017, Polish Biobanking Network was established in Poland, within BBMRI.pl project titled "Organization of Polish Biobanking Network within the Biobanking and Biomolecular Resources Research Infrastructure BBMRI-ERIC" as a strategic scientific infrastructure concept. One of the key elements of the project was the verification of the current status of QMS in the Polish biobanking institutions and the implementation of common solutions. The main goal was to indicate the current QMS level and determine the starting points for QMS development for each biobank of the Polish Biobanking Network (PBN). Within 3 years, 35 audit visits were performed. The current status and the level of QMS implementation in each biobank were assessed. Five hundred and seventy recommendations were prepared. The data was analyzed using Fischer Exact test to determine whether or not a significant association was observed. Three areas of analysis were covered: (1) BBMRI.pl status, (2) QMS implementation level and (3) private/public party, respectively. The results were discussed within 15 areas. Concluding remarks showed that some differences were observed in the case of subgroups analysis. There is convergence in QMS within the biobanks where Tissue Banks are located. Moreover, some discrepancies between the QMS implementation level in BBMRI.pl Consortium biobanks and PBN biobanks are observed. Nevertheless, the consortium members are obliged to prepare other biobanks willing to enter the PBN as Members/Observers or which already are in the PBN, so that they can meet the requirements of the quality management system that will enable efficient management of biobanking processes in these units. That is why some actions within BBMRI.pl projects are organized to help the whole biobanking community in Poland implement the harmonized solution.
Collapse
Affiliation(s)
- Agnieszka Matera-Witkiewicz
- Screening Biological Activity Assays and Collection of Biological Material Laboratory, Faculty of Pharmacy, Wroclaw Medical University Biobank, Wroclaw Medical University, Wroclaw, Poland.,BBMRI.pl Consortium, Wroclaw, Poland
| | - Magdalena Krupińska
- Screening Biological Activity Assays and Collection of Biological Material Laboratory, Faculty of Pharmacy, Wroclaw Medical University Biobank, Wroclaw Medical University, Wroclaw, Poland.,BBMRI.pl Consortium, Wroclaw, Poland
| | - Patrycja Sitek
- Screening Biological Activity Assays and Collection of Biological Material Laboratory, Faculty of Pharmacy, Wroclaw Medical University Biobank, Wroclaw Medical University, Wroclaw, Poland.,BBMRI.pl Consortium, Wroclaw, Poland
| | - Michał Laskowski
- Screening Biological Activity Assays and Collection of Biological Material Laboratory, Faculty of Pharmacy, Wroclaw Medical University Biobank, Wroclaw Medical University, Wroclaw, Poland.,BBMRI.pl Consortium, Wroclaw, Poland
| | - Karolina Zagórska
- Screening Biological Activity Assays and Collection of Biological Material Laboratory, Faculty of Pharmacy, Wroclaw Medical University Biobank, Wroclaw Medical University, Wroclaw, Poland.,BBMRI.pl Consortium, Wroclaw, Poland
| | - Joanna Gleńska-Olender
- Screening Biological Activity Assays and Collection of Biological Material Laboratory, Faculty of Pharmacy, Wroclaw Medical University Biobank, Wroclaw Medical University, Wroclaw, Poland.,BBMRI.pl Consortium, Wroclaw, Poland
| |
Collapse
|
22
|
Ghini V, Abuja PM, Polasek O, Kozera L, Laiho P, Anton G, Zins M, Klovins J, Metspalu A, Wichmann HE, Gieger C, Luchinat C, Zatloukal K, Turano P. Impact of the pre-examination phase on multicenter metabolomic studies. N Biotechnol 2022; 68:37-47. [PMID: 35066155 DOI: 10.1016/j.nbt.2022.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 01/23/2023]
Abstract
The development of metabolomics in clinical applications has been limited by the lack of validation in large multicenter studies. Large population cohorts and their biobanks are a valuable resource for acquiring insights into molecular disease mechanisms. Nevertheless, most of their collections are not tailored for metabolomics and have been created without specific attention to the pre-analytical requirements for high-quality metabolome assessment. Thus, comparing samples obtained by different pre-analytical procedures remains a major challenge. Here, 1H NMR-based analyses are used to demonstrate how human serum and plasma samples collected with different operating procedures within several large European cohort studies from the Biobanking and Biomolecular Resources Infrastructure - Large Prospective Cohorts (BBMRI-LPC) consortium can be easily revealed by supervised multivariate statistical analyses at the initial stages of the process, to avoid biases in the downstream analysis. The inter-biobank differences are discussed in terms of deviations from the validated CEN/TS 16945:2016 / ISO 23118:2021 norms. It clearly emerges that biobanks must adhere to the evidence-based guidelines in order to support wider-scale application of metabolomics in biomedicine, and that NMR spectroscopy is informative in comparing the quality of different sample sources in multi cohort/center studies.
Collapse
Affiliation(s)
- Veronica Ghini
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), via Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy; Center of Magnetic Resonance (CERM), University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy; Department of Chemistry, University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy
| | - Peter M Abuja
- Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, A-8010, Graz, Austria
| | - Ozren Polasek
- Department for Large Population Studies, University of Split, Šoltanska 2, HR-21000, Split, Croatia; Gen-info Ltd, Ružmarinka ul. 17, 10000, Zagreb, Croatia
| | - Lukasz Kozera
- BBMRI-ERIC, Neue Stiftingtalstrasse 2/B/6, 8010, Graz, Austria
| | - Päivi Laiho
- Institute for Molecular Medicine Finland, National Institute for Health and Welfare, THL, University of Helsinki, 00290, Helsinki, Finland
| | - Gabriele Anton
- Molecular Epidemiology, Helmholtz-Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Marie Zins
- Population-based Epidemiological Cohorts Unit-UMS 11, Inserm, 16 Avenue Paul Vaillant Couturier, 94800, Villejuif, France
| | - Janis Klovins
- Latvian Biomedical Research and Study Centre, Rātsupītes iela 1, Kurzemes rajons, Rīga, LV-1067, Latvia
| | - Andres Metspalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia
| | - H-Erich Wichmann
- Institute of Epidemiology, Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Claudio Luchinat
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), via Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy; Center of Magnetic Resonance (CERM), University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy; Department of Chemistry, University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy
| | - Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, A-8010, Graz, Austria.
| | - Paola Turano
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), via Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy; Center of Magnetic Resonance (CERM), University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy; Department of Chemistry, University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy.
| |
Collapse
|
23
|
Kopylova OV, Ershova AI, Pokrovskaya MS, Meshkov AN, Efimova IA, Serebryanskaya ZZ, Blokhina AV, Borisova AL, Kondratskaya VA, Limonova AS, Smetnev SА, Skirko OP, Shalnova SА, Metelskaya VA, Kontsevaya AV, Drapkina OM. Population-nosological research biobank of the National Medical Research Center for Therapy and Preventive Medicine: analysis of biosamples, principles of collecting and storing information. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2022. [DOI: 10.15829/1728-8800-2021-3119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Aim. To analyze the structure of clinical data, as well as the principles of collecting and storing related data of the biobank of the National Medical Research Center for Therapy and Preventive Medicine (hereinafter Biobank).Material and methods. The analysis was carried out using the documentation available in the Biobank, as well as the databases used in its work. The paper presents clinical data on biosamples available in the Biobank as of August 18, 2021.Results. At the time of analysis, the Biobank had 373547 samples collected from 54192 patients within 37 research projects. The article presents the analysis of data representation and quantitative assessment of the presence/absence of common diagnoses in clinical projects. Approaches to documenting clinical information associated with biological samples stored in the Biobank were assessed. The methods and tools used for standardization and automation of processes used in the Biobank were substantiated.Conclusion. The Biobank of the National Medical Research Center for Therapy and Preventive Medicine is the largest research biobank in Russia, which meets all modern international requirements and is one of the key structures that improve the research quality and intensify their conduct both within the one center and in cooperation with other biobanks and scientific institutions. The collection and systematic storage of clinical abstracts of biological samples is an integral and most important part of the Biobank’s work.
Collapse
Affiliation(s)
- O. V. Kopylova
- National Medical Research Center for Therapy and Preventive Medicine
| | - A. I. Ershova
- National Medical Research Center for Therapy and Preventive Medicine
| | - M. S. Pokrovskaya
- National Medical Research Center for Therapy and Preventive Medicine
| | - A. N. Meshkov
- National Medical Research Center for Therapy and Preventive Medicine
| | - I. A. Efimova
- National Medical Research Center for Therapy and Preventive Medicine
| | | | - A. V. Blokhina
- National Medical Research Center for Therapy and Preventive Medicine
| | - A. L. Borisova
- National Medical Research Center for Therapy and Preventive Medicine
| | | | - A. S. Limonova
- National Medical Research Center for Therapy and Preventive Medicine
| | - S. А. Smetnev
- National Medical Research Center for Therapy and Preventive Medicine
| | - O. P. Skirko
- National Medical Research Center for Therapy and Preventive Medicine
| | - S. А. Shalnova
- National Medical Research Center for Therapy and Preventive Medicine
| | - V. A. Metelskaya
- National Medical Research Center for Therapy and Preventive Medicine
| | | | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| |
Collapse
|
24
|
Umpeleva TV, Vakhrusheva DV, Skornyakov SN. Biobank as a key component of supporting research in phthisiology and infectious diseases. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2022. [DOI: 10.15829/1728-8800-2021-3084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Conducting fundamental and clinical research in the field of tuberculosis is an important step towards reducing related morbidity and mortality, but access to a sufficient number of high-quality samples required for research is an unsolved problem in Russia. This review is devoted to biobanking as a key component of modern research in personalized medicine, as well as to the status and prospects for developing this area in phthisiology and infectious diseases combined with tuberculosis.
Collapse
Affiliation(s)
- T. V. Umpeleva
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases
| | - D. V. Vakhrusheva
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases
| | - S. N. Skornyakov
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases
| |
Collapse
|
25
|
Merino Martinez R, Müller H, Negru S, Ormenisan A, Arroyo Mühr LS, Zhang X, Trier Møller F, Clements MS, Kozlakidis Z, Pimenoff VN, Wilkowski B, Boeckhout M, Öhman H, Chong S, Holzinger A, Lehtinen M, van Veen EB, Bała P, Widschwendter M, Dowling J, Törnroos J, Snyder MP, Dillner J. Human exposome assessment platform. Environ Epidemiol 2021; 5:e182. [PMID: 34909561 PMCID: PMC8663864 DOI: 10.1097/ee9.0000000000000182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/14/2021] [Indexed: 11/26/2022] Open
Abstract
The Human Exposome Assessment Platform (HEAP) is a research resource for the integrated and efficient management and analysis of human exposome data. The project will provide the complete workflow for obtaining exposome actionable knowledge from population-based cohorts. HEAP is a state-of-the-science service composed of computational resources from partner institutions, accessed through a software framework that provides the world's fastest Hadoop platform for data warehousing and applied artificial intelligence (AI). The software, will provide a decision support system for researchers and policymakers. All the data managed and processed by HEAP, together with the analysis pipelines, will be available for future research. In addition, the platform enables adding new data and analysis pipelines. HEAP's final product can be deployed in multiple instances to create a network of shareable and reusable knowledge on the impact of exposures on public health.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Frederik Trier Møller
- Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | | | - Zisis Kozlakidis
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Ville N. Pimenoff
- Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, University of Oulu, Oulu, Finland
- Tampere University, Tampere, Finland
| | | | | | - Hanna Öhman
- Faculty of Medicine, University of Oulu, Oulu, Finland
- Biobank Borealis of Northern Finland, Oulu University Hospital, Oulu, Finland
| | - Steven Chong
- Danish National Biobank, Statens Serum Institut, Copenhagen, Denmark
| | | | - Matti Lehtinen
- Karolinska Institutet, Stockholm, Sweden
- Tampere University, Tampere, Finland
| | | | | | - Martin Widschwendter
- Research Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
26
|
Zendehboudi T, Afshar AR, Khoradmehr A, Azari H, Farjam M, Tamadon A. Marine Biobank: From Protection of Genetic Resources to Biomedical Entrepreneurship. IRANIAN SOUTH MEDICAL JOURNAL 2021; 24:242-264. [DOI: 10.52547/ismj.24.4.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
|
27
|
Chen L, Qu J, Mei Q, Chen X, Fang Y, Chen L, Li Y, Xiang C. Small extracellular vesicles from menstrual blood-derived mesenchymal stem cells (MenSCs) as a novel therapeutic impetus in regenerative medicine. Stem Cell Res Ther 2021; 12:433. [PMID: 34344458 PMCID: PMC8330084 DOI: 10.1186/s13287-021-02511-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023] Open
Abstract
Menstrual blood-derived mesenchymal stem cells (MenSCs) have great potential in regenerative medicine. MenSC has received increasing attention owing to its impressive therapeutic effects in both preclinical and clinical trials. However, the study of MenSC-derived small extracellular vesicles (EVs) is still in its initial stages, in contrast to some common MSC sources (e.g., bone marrow, umbilical cord, and adipose tissue). We describe the basic characteristics and biological functions of MenSC-derived small EVs. We also demonstrate the therapeutic potential of small EVs in fulminant hepatic failure, myocardial infarction, pulmonary fibrosis, prostate cancer, cutaneous wound, type-1 diabetes mellitus, aged fertility, and potential diseases. Subsequently, novel hotspots with respect to MenSC EV-based therapy are proposed to overcome current challenges. While complexities regarding the therapeutic potential of MenSC EVs continue to be unraveled, advances are rapidly emerging in both basic science and clinical medicine. MenSC EV-based treatment has great potential for treating a series of diseases as a novel therapeutic strategy in regenerative medicine.
Collapse
Affiliation(s)
- Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Jingjing Qu
- Department of Respiratory Disease, Thoracic Disease Centre, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Quanhui Mei
- Department of Intensive Care Unit, The First People's Hospital of Changde City, Changde, Hunan, 415000, People's Republic of China
| | - Xin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yangxin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Lu Chen
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, 311215, People's Republic of China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
28
|
Annaratone L, De Palma G, Bonizzi G, Sapino A, Botti G, Berrino E, Mannelli C, Arcella P, Di Martino S, Steffan A, Daidone MG, Canzonieri V, Parodi B, Paradiso AV, Barberis M, Marchiò C. Basic principles of biobanking: from biological samples to precision medicine for patients. Virchows Arch 2021; 479:233-246. [PMID: 34255145 PMCID: PMC8275637 DOI: 10.1007/s00428-021-03151-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022]
Abstract
The term "biobanking" is often misapplied to any collection of human biological materials (biospecimens) regardless of requirements related to ethical and legal issues or the standardization of different processes involved in tissue collection. A proper definition of biobanks is large collections of biospecimens linked to relevant personal and health information (health records, family history, lifestyle, genetic information) that are held predominantly for use in health and medical research. In addition, the International Organization for Standardization, in illustrating the requirements for biobanking (ISO 20387:2018), stresses the concept of biobanks being legal entities driving the process of acquisition and storage together with some or all of the activities related to collection, preparation, preservation, testing, analysing and distributing defined biological material as well as related information and data. In this review article, we aim to discuss the basic principles of biobanking, spanning from definitions to classification systems, standardization processes and documents, sustainability and ethical and legal requirements. We also deal with emerging specimens that are currently being generated and shaping the so-called next-generation biobanking, and we provide pragmatic examples of cancer-associated biobanking by discussing the process behind the construction of a biobank and the infrastructures supporting the implementation of biobanking in scientific research.
Collapse
Affiliation(s)
- Laura Annaratone
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.,Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giuseppe De Palma
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Giuseppina Bonizzi
- Unit of Histopathology and Molecular Diagnostics, Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Anna Sapino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.,Department of Medical Sciences, University of Turin, Turin, Italy
| | - Gerardo Botti
- Istituto Nazionale Tumori, Fondazione G. Pascale, IRCCS, Naples, Italy
| | - Enrico Berrino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.,Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Pamela Arcella
- Department of Oncology, University of Turin, Turin, Italy
| | - Simona Di Martino
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy
| | | | - Vincenzo Canzonieri
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.,Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy
| | | | - Angelo Virgilio Paradiso
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Massimo Barberis
- Unit of Histopathology and Molecular Diagnostics, Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Caterina Marchiò
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy. .,Department of Medical Sciences, University of Turin, Turin, Italy.
| | | |
Collapse
|
29
|
Eder J, Shekhovtsov VA. Data quality for federated medical data lakes. INTERNATIONAL JOURNAL OF WEB INFORMATION SYSTEMS 2021. [DOI: 10.1108/ijwis-03-2021-0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
Medical research requires biological material and data collected through biobanks in reliable processes with quality assurance. Medical studies based on data with unknown or questionable quality are useless or even dangerous, as evidenced by recent examples of withdrawn studies. Medical data sets consist of highly sensitive personal data, which has to be protected carefully and is available for research only after the approval of ethics committees. The purpose of this research is to propose an architecture to support researchers to efficiently and effectively identify relevant collections of material and data with documented quality for their research projects while observing strict privacy rules.
Design/methodology/approach
Following a design science approach, this paper develops a conceptual model for capturing and relating metadata of medical data in biobanks to support medical research.
Findings
This study describes the landscape of biobanks as federated medical data lakes such as the collections of samples and their annotations in the European federation of biobanks (Biobanking and Biomolecular Resources Research Infrastructure – European Research Infrastructure Consortium, BBMRI-ERIC) and develops a conceptual model capturing schema information with quality annotation. This paper discusses the quality dimensions for data sets for medical research in-depth and proposes representations of both the metadata and data quality documentation with the aim to support researchers to effectively and efficiently identify suitable data sets for medical studies.
Originality/value
This novel conceptual model for metadata for medical data lakes has a unique focus on the high privacy requirements of the data sets contained in medical data lakes and also stands out in the detailed representation of data quality and metadata quality of medical data sets.
Collapse
|
30
|
Reihs R, Proynova R, Maqsood S, Ataian M, Lablans M, Quinlan PR, Lawrence E, Bowman E, van Enckevort E, Bučík DF, Müller H, Holub P. BBMRI-ERIC Negotiator: Implementing Efficient Access to Biobanks. Biopreserv Biobank 2021; 19:414-421. [PMID: 34182766 DOI: 10.1089/bio.2020.0144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Various biological resources, such as biobanks and disease-specific registries, have become indispensable resources to better understand the epidemiology and biological mechanisms of disease and are fundamental for advancing medical research. Nevertheless, biobanks and similar resources still face significant challenges to become more findable and accessible by users on both national and global scales. One of the main challenges for users is to find relevant resources using cataloging and search services such as the BBMRI-ERIC Directory, operated by European Research Infrastructure on Biobanking and Biomolecular Resources (BBMRI-ERIC), as these often do not contain the information needed by the researchers to decide if the resource has relevant material/data; these resources are only weakly characterized. Hence, the researcher is typically left with too many resources to explore and investigate. In addition, resources often have complex procedures for accessing holdings, particularly for depletable biological materials. This article focuses on designing a system for effective negotiation of access to holdings, in which a researcher can approach many resources simultaneously, while giving each resource team the ability to implement their own mechanisms to check if the material/data are available and to decide if access should be provided. The BBMRI-ERIC has developed and implemented an access and negotiation tool called the BBMRI-ERIC Negotiator. The Negotiator enables access negotiation to more than 600 biobanks from the BBMRI-ERIC Directory and other discovery services such as GBA/BBMRI-ERIC Locator or RD-Connect Finder. This article summarizes the principles that guided the design of the tool, the terminology used and underlying data model, request workflows, authentication and authorization mechanism(s), and the mechanisms and monitoring processes to stimulate the desired behavior of the resources: to effectively deliver access to biological material and data.
Collapse
Affiliation(s)
- Robert Reihs
- BBMRI-ERIC, Graz, Austria.,BBMRI.at and Medical University Graz, Graz, Austria
| | - Rumyana Proynova
- BBMRI.de/German Biobank Alliance and German Cancer Research Center, Heidelberg, Germany
| | - Saher Maqsood
- BBMRI.de/German Biobank Alliance and German Cancer Research Center, Heidelberg, Germany
| | - Maxmilian Ataian
- BBMRI.de/German Biobank Alliance and German Cancer Research Center, Heidelberg, Germany
| | - Martin Lablans
- BBMRI.de/German Biobank Alliance and German Cancer Research Center, Heidelberg, Germany
| | - Philip R Quinlan
- BBMRI.uk and University of Nottingham, Nottingham, United Kingdom
| | - Emma Lawrence
- BBMRI.uk and University College London, London, United Kingdom
| | - Erinna Bowman
- BBMRI.uk and University College London, London, United Kingdom
| | - Esther van Enckevort
- BBMRI.nl and University of Groningen and University Medical Center Groningen, The Netherlands
| | | | - Heimo Müller
- BBMRI-ERIC, Graz, Austria.,BBMRI.at and Medical University Graz, Graz, Austria
| | | |
Collapse
|
31
|
Tarling T, Matzke LAM, Rush A, Gali B, Byrne JA, Watson PH. Vignettes to Illustrate the Value of Tumor Biobanks in Cancer Research in Canada. Biopreserv Biobank 2021; 20:75-83. [PMID: 34165356 DOI: 10.1089/bio.2021.0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Tumor biobanks are a common research infrastructure. As a collection of biospecimens and annotated data collected to support a multitude of research projects, biobanks facilitate access to materials that are the critical fuel for the generation of data in up to 40% of cancer research publications. However, quantifying how to measure biobanks' impact and their value on the field of cancer research discoveries and findings, has not been well elucidated. Methods: We have used a qualitative case study approach to illustrate the impact of tumor biobanks. We assessed the impact of three research studies published between 2010 and 2012 that required easily accessible "classic" biobanks. Each study utilized preassembled collections of tumor biospecimens with associated patient outcomes data at the outset of the research project. We compared the resulting journal impact factor, altmetric and field-weighted citation impact factor scores for each article to a set of six "benchmark" articles that represent cancer research and treatment discoveries from the same time period and two sentinel scientific discovery articles. Results: We developed a value model using a literature search and design-thinking methodologies to illustrate the contributions of these "classic" model biobanks to these research studies. Assessment of the three example articles supported by biobanks demonstrates that the output can have impact that is comparable to the impact of a set of benchmark articles describing milestones in the field of cancer research and cancer care. Conclusions: These case studies illustrate the value of the sustained investment of funds, planning, time, and effort on the part of the biobanks before the conduct of the research study to be able to ultimately support high-value research. The "value" model will enable further discussion around impact and may be useful in better delineating qualitative metrics of biobank value in the future.
Collapse
Affiliation(s)
- Tamsin Tarling
- Office of Biobank Education and Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lise Anne Marie Matzke
- Office of Biobank Education and Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amanda Rush
- School of Medical Sciences, Faculty Medicine and Health, The Children's Hospital at Westmead Clinical School, The University of Sydney, New South Wales, Australia.,New South Wales Statewide Biobank, New South Wales Health Pathology, Camperdown, New South Wales, Australia
| | - Brent Gali
- Biobanking and Biospecimen Research Services, Deeley Research Center, BC Cancer Victoria Center, Victoria, British Columbia, Canada
| | - Jennifer A Byrne
- New South Wales Statewide Biobank, New South Wales Health Pathology, Camperdown, New South Wales, Australia
| | - Peter H Watson
- Office of Biobank Education and Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Biobanking and Biospecimen Research Services, Deeley Research Center, BC Cancer Victoria Center, Victoria, British Columbia, Canada.,Canadian Tissue Repository Network, BC Cancer Research Center, Vancouver, British Columbia, Canada
| |
Collapse
|
32
|
Rychnovská D. Anticipatory Governance in Biobanking: Security and Risk Management in Digital Health. SCIENCE AND ENGINEERING ETHICS 2021; 27:30. [PMID: 33881646 PMCID: PMC8058749 DOI: 10.1007/s11948-021-00305-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Although big-data research has met with multiple controversies in diverse fields, political and security implications of big data in life sciences have received less attention. This paper explores how threats and risks are anticipated and acted on in biobanking, which builds research repositories for biomedical samples and data. Focusing on the biggest harmonisation cluster of biomedical research in Europe, BBMRI-ERIC, the paper analyses different logics of risk in the anticipatory discourse on biobanking. Based on document analysis, interviews with ELSI experts, and field research, three types of framing of risk are reconstructed: data security, privacy, and data misuse. The paper finds that these logics downplay the broader social and political context and reflects on the limits of the practices of anticipatory governance in biobanking. It argues that this regime of governance can make it difficult for biobanks to address possible future challenges, such as access to biomedical data by authorities, pressures for integrating biobank data with other type of personal data, or their use for profiling beyond medical purposes. To address potential controversies and societal implications related to the use of big data in health research and medicine, the paper suggests to expand the vocabulary and practices of anticipatory governance, in the biobanking community and beyond.
Collapse
Affiliation(s)
- Dagmar Rychnovská
- Department of International Relations, University of Sussex, Brighton, UK.
| |
Collapse
|
33
|
History of the largest global biobanks, ethical challenges, registration, and biological samples ownership. J Public Health (Oxf) 2021. [DOI: 10.1007/s10389-021-01504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
34
|
Vargas RJ, Cobar OM. The Urgent Need for Management of Biological Samples and Data Accessibility in Latin America. Front Pharmacol 2021; 12:620043. [PMID: 33867983 PMCID: PMC8044957 DOI: 10.3389/fphar.2021.620043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/15/2021] [Indexed: 02/02/2023] Open
Affiliation(s)
- Rodrigo José Vargas
- Escuela de Estudios de Postgrado, Facultad de Ciencias Médicas, Universidad de San Carlos de Guatemala, Guatemala City, Guatemala.,Universidad Galileo, Guatemala City, Guatemala.,Latin American Network for the Implementation and Validation of Pharmacogenomic Clinical Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - Oscar M Cobar
- Escuela de Estudios de Postgrado, Facultad de Ciencias Médicas, Universidad de San Carlos de Guatemala, Guatemala City, Guatemala.,Latin American Network for the Implementation and Validation of Pharmacogenomic Clinical Guidelines (RELIVAF-CYTED), Madrid, Spain.,Universidad del Istmo, Fraijanes, Guatemala
| |
Collapse
|
35
|
Yang J, Zhou C, Fu J, Yang Q, He T, Tan Q, Lv Q. In situ Adipogenesis in Biomaterials Without Cell Seeds: Current Status and Perspectives. Front Cell Dev Biol 2021; 9:647149. [PMID: 33763426 PMCID: PMC7982583 DOI: 10.3389/fcell.2021.647149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/08/2021] [Indexed: 02/05/2023] Open
Abstract
For cosmetic and reconstructive purposes in the setting of small-volume adipose tissue damage due to aging, traumatic defects, oncological resections, and degenerative diseases, the current strategies for soft tissue replacement involve autologous fat grafts and tissue fillers with synthetic, bioactive, or tissue-engineered materials. However, they all have drawbacks such as volume shrinkage and foreign-body responses. Aiming to regenerate bioactive vascularized adipose tissue on biomaterial scaffolds, adipose tissue engineering (ATE) has emerged as a suitable substitute for soft tissue repair. The essential components of ATE include scaffolds as support, cells as raw materials for fat formation, and a tolerant local environment to allow regeneration to occur. The commonly loaded seeding cells are adipose-derived stem cells (ASCs), which are expected to induce stable and predictable adipose tissue formation. However, defects in stem cell enrichment, such as donor-site sacrifice, limit their wide application. As a promising alternative approach, cell-free bioactive scaffolds recruit endogenous cells for adipogenesis. In biomaterials without cell seeds, the key to sufficient adipogenesis relies on the recruitment of endogenous host cells and continuous induction of cell homing to scaffolds. Regeneration, rather than repair, is the fundamental dominance of an optimal mature product. To induce in situ adipogenesis, many researchers have focused on the mechanical and biochemical properties of scaffolds. In addition, efforts to regulate an angiogenic and adipogenic microenvironment in cell-free settings involve integrating growth factors or extracellular matrix (ECM) proteins onto bioactive scaffolds. Despite the theoretical feasibility and encouraging results in animal models, few of the reported cell-free biomaterials have been tested in humans, and failures of decellularized adipose tissues in adipogenesis have also been reported. In these cases, the most likely reason was the lack of supporting vasculature. This review summarizes the current status of biomaterials without cell seeds. Related mechanisms and influencing factors of in situ adipogenesis in cell-free biomaterials, dilemma in the development of biomaterials, and future perspectives are also addressed.
Collapse
Affiliation(s)
- Jiqiao Yang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast Disease, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Zhou
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyang Fu
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China
| | - Qianru Yang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tao He
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuwen Tan
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Lv
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Lucas S, Tencerova M, von der Weid B, Andersen TL, Attané C, Behler-Janbeck F, Cawthorn WP, Ivaska KK, Naveiras O, Podgorski I, Reagan MR, van der Eerden BCJ. Guidelines for Biobanking of Bone Marrow Adipose Tissue and Related Cell Types: Report of the Biobanking Working Group of the International Bone Marrow Adiposity Society. Front Endocrinol (Lausanne) 2021; 12:744527. [PMID: 34646237 PMCID: PMC8503265 DOI: 10.3389/fendo.2021.744527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Over the last two decades, increased interest of scientists to study bone marrow adiposity (BMA) in relation to bone and adipose tissue physiology has expanded the number of publications using different sources of bone marrow adipose tissue (BMAT). However, each source of BMAT has its limitations in the number of downstream analyses for which it can be used. Based on this increased scientific demand, the International Bone Marrow Adiposity Society (BMAS) established a Biobanking Working Group to identify the challenges of biobanking for human BMA-related samples and to develop guidelines to advance establishment of biobanks for BMA research. BMA is a young, growing field with increased interest among many diverse scientific communities. These bring new perspectives and important biological questions on how to improve and build an international community with biobank databases that can be used and shared all over the world. However, to create internationally accessible biobanks, several practical and legislative issues must be addressed to create a general ethical protocol used in all institutes, to allow for exchange of biological material internationally. In this position paper, the BMAS Biobanking Working Group describes similarities and differences of patient information (PIF) and consent forms from different institutes and addresses a possibility to create uniform documents for BMA biobanking purposes. Further, based on discussion among Working Group members, we report an overview of the current isolation protocols for human bone marrow adipocytes (BMAds) and bone marrow stromal cells (BMSCs, formerly mesenchymal), highlighting the specific points crucial for effective isolation. Although we remain far from a unified BMAd isolation protocol and PIF, we have summarized all of these important aspects, which are needed to build a BMA biobank. In conclusion, we believe that harmonizing isolation protocols and PIF globally will help to build international collaborations and improve the quality and interpretation of BMA research outcomes.
Collapse
Affiliation(s)
- Stephanie Lucas
- Marrow Adiposity and Bone Lab-MABLab ULR4490, Univ. Littoral Côte d’Opale, Boulogne-sur-Mer, Univ. Lille, CHU Lille, Lille, France
| | - Michaela Tencerova
- Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Benoit von der Weid
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Biomedical Sciences, Faculty of Biology and Medicine, Université de Lausanne, Lausanne, Switzerland
| | - Thomas Levin Andersen
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - Camille Attané
- Institute of Pharmacology and Structural Biology, Université de Toulouse, CNRS UMR 5089, Toulouse, France
- Equipe labellisée Ligue contre le cancer, Toulouse, France
| | - Friederike Behler-Janbeck
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - William P. Cawthorn
- British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Kaisa K. Ivaska
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Olaia Naveiras
- Department of Biomedical Sciences, Faculty of Biology and Medicine, Université de Lausanne, Lausanne, Switzerland
- Hematology Service, Departments of Oncology and Laboratory Medicine, Lausanne University Hospital (CHUV), Université de Lausanne, Lausanne, Switzerland
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, United States
| | - Michaela R. Reagan
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School for Biomedical Science, Tufts University, Boston, MA, United States
| | - Bram C. J. van der Eerden
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
- *Correspondence: Bram C. J. van der Eerden,
| |
Collapse
|
37
|
Loibner M, Langner C, Regitnig P, Gorkiewicz G, Zatloukal K. Biosafety Requirements for Autopsies of Patients with COVID-19: Example of a BSL-3 Autopsy Facility Designed for Highly Pathogenic Agents. Pathobiology 2020; 88:37-45. [PMID: 33296902 PMCID: PMC7801986 DOI: 10.1159/000513438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/27/2020] [Indexed: 11/30/2022] Open
Abstract
Information obtained from autopsies of patients infected with high-risk pathogens is an important pillar in managing a proper response to pandemics, particular in the early phase. This is due to the fact that autopsy allows efficient evaluation of comorbidities for risk assessment, as well as identification of key pathophysiological and molecular mechanisms in organs driving the severity of disease which might be important targets for therapeutic interventions. In the case of patients who have died of infection with unknown pathogens, isolation and culture of pathogens from the affected organs is another important opportunity for a proper response to (re)emerging infectious diseases. However, the situation of COVID-19 demonstrated that there were concerns about performing autopsies because of biosafety risks. In this review we compare requirements for biosafety level 3 (BSL-3) laboratories from the European Commission and the World Health Organization and summarize specific recommendations for postmortem analysis of COVID-19-deceased patients from the Centers for Disease Control and Prevention. Furthermore, we describe in detail a BSL-3 facility with enhanced protection of personnel and an environment that has been designed for performing autopsies, biobanking of collected tissue specimens, and culture of pathogens in cases of high-risk pathogen infections and report on the experience obtained in operating this facility in the context of COVID-19.
Collapse
Affiliation(s)
- Martina Loibner
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Christine Langner
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Peter Regitnig
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gregor Gorkiewicz
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Kurt Zatloukal
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria,
| |
Collapse
|
38
|
Baghbani T, Nikzad H, Azadbakht J, Izadpanah F, Haddad Kashani H. Dual and mutual interaction between microbiota and viral infections: a possible treat for COVID-19. Microb Cell Fact 2020; 19:217. [PMID: 33243230 PMCID: PMC7689646 DOI: 10.1186/s12934-020-01483-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
All of humans and other mammalian species are colonized by some types of microorganisms such as bacteria, archaea, unicellular eukaryotes like fungi and protozoa, multicellular eukaryotes like helminths, and viruses, which in whole are called microbiota. These microorganisms have multiple different types of interaction with each other. A plethora of evidence suggests that they can regulate immune and digestive systems and also play roles in various diseases, such as mental, cardiovascular, metabolic and some skin diseases. In addition, they take-part in some current health problems like diabetes mellitus, obesity, cancers and infections. Viral infection is one of the most common and problematic health care issues, particularly in recent years that pandemics like SARS and COVID-19 caused a lot of financial and physical damage to the world. There are plenty of articles investigating the interaction between microbiota and infectious diseases. We focused on stimulatory to suppressive effects of microbiota on viral infections, hoping to find a solution to overcome this current pandemic. Then we reviewed mechanistically the effects of both microbiota and probiotics on most of the viruses. But unlike previous studies which concentrated on intestinal microbiota and infection, our focus is on respiratory system's microbiota and respiratory viral infection, bearing in mind that respiratory system is a proper entry site and residence for viruses, and whereby infection, can lead to asymptomatic, mild, self-limiting, severe or even fatal infection. Finally, we overgeneralize the effects of microbiota on COVID-19 infection. In addition, we reviewed the articles about effects of the microbiota on coronaviruses and suggest some new therapeutic measures.
Collapse
Affiliation(s)
- Taha Baghbani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Azadbakht
- Department of Radiology, Faculty of Medicin, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Izadpanah
- Food and Drug Laboratory Research Center and Food and Drug Reference Control Laboratories Center, Food & Drug Administration of Iran, MOH & ME, Tehran, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
39
|
Matzke LA, Watson PH. Biobanking for Cancer Biomarker Research: Issues and Solutions. Biomark Insights 2020; 15:1177271920965522. [PMID: 33192050 PMCID: PMC7594219 DOI: 10.1177/1177271920965522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022] Open
Abstract
Biomarkers are critical tools that underpin precision medicine. However there has been slow progress and frequent failure of biomarker development. The root causes are multifactorial. Here, we focus on the need for fast, efficient, and reliable access to quality biospecimens as a critical area that impacts biomarker development. We discuss the past history of biobanking and the evolution of biobanking processes relevant to the specific area of cancer biomarker development as an example, and describe some solutions that can improve this area, thus potentially accelerating biomarker research.
Collapse
Affiliation(s)
- Lise A Matzke
- Office of Biobank Education and
Research, Department of Pathology and Laboratory Medicine, University of British
Columbia, Vancouver, British Columbia, Canada
- Biobanking and Biospecimen Research
Services, Deeley Research Centre, BC Cancer Agency, Victoria, British Columbia,
Canada
| | - Peter H Watson
- Office of Biobank Education and
Research, Department of Pathology and Laboratory Medicine, University of British
Columbia, Vancouver, British Columbia, Canada
- Biobanking and Biospecimen Research
Services, Deeley Research Centre, BC Cancer Agency, Victoria, British Columbia,
Canada
- Canadian Tissue Repository Network,
Vancouver, Canada
| |
Collapse
|
40
|
Kintossou AK, N'dri MK, Money M, Cissé S, Doumbia S, Soumahoro MK, Coulibaly AF, Djaman JA, Dosso M. Study of laboratory staff' knowledge of biobanking in Côte d'Ivoire. BMC Med Ethics 2020; 21:88. [PMID: 32917182 PMCID: PMC7488401 DOI: 10.1186/s12910-020-00533-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/06/2020] [Indexed: 12/23/2022] Open
Abstract
Background A biobank is a structure which collects and manages biological samples and their associated data. The collected samples will then be made available for various uses. The sharing of those samples raised ethical questions which have been answered through specific rules. Thus, a Biobank functioning under tight ethical rules would be immensely valuable from a scientific and an economic view point. In 2009, Côte d’Ivoire established a biobank, which has been chosen to house the regional biobank of Economic Community of West African States (ECOWAS) countries in 2018. To ensure optimal and efficient use of this biobank, the scientific community must be aware of its existence and its role. It was therefore necessary to evaluate the knowledge of laboratories staff on the role and activities of a biobank. Methods This descriptive study was done by questioning staff from laboratories working on human’s health, animals or plants. The laboratories were located in southern Côte d’Ivoire. Results A total of 205 people completed the questionnaire. Of these 205 people, 34.63% were biologists, 7.32% engineers, 48.78% technicians and 9.27% PhD students. The average length of work experience was 10.11 ± 7.83 years. In this study, 43.41% of the participants had never heard of biobanking. Only 48.78% of participants had a good understanding of the role of a biobank. Technicians and PhD students were less educated on the notion of biobank (p < 0.000001). Although biologists were more educated on this issue, 21.13% of them had a misconception of biobank. Good knowledge of the role of a biobank was not significantly related to the work experience’s length (p > 0.88). Conclusion The level of knowledge of laboratory staff about biobanking needs to be improved. Training on the role, activities and interests of the biobank is important.
Collapse
Affiliation(s)
- Ambroise Kouamé Kintossou
- Biobank, Pasteur Institute of Côte d'Ivoire, 01 BP 490, Abidjan, Côte d'Ivoire. .,Training and Research Unit of Biosciences, Felix Houphouët Boigny University, Abidjan, Côte d'Ivoire.
| | - Mathias Kouamé N'dri
- Department of Epidemiology and Clinical Research, Pasteur Institute of Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Marcelle Money
- Biobank, Pasteur Institute of Côte d'Ivoire, 01 BP 490, Abidjan, Côte d'Ivoire
| | - Souleymane Cissé
- Biobank, Pasteur Institute of Côte d'Ivoire, 01 BP 490, Abidjan, Côte d'Ivoire
| | - Simini Doumbia
- Biobank, Pasteur Institute of Côte d'Ivoire, 01 BP 490, Abidjan, Côte d'Ivoire
| | - Man-Koumba Soumahoro
- Department of Epidemiology and Clinical Research, Pasteur Institute of Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | | | - Joseph Allico Djaman
- Training and Research Unit of Biosciences, Felix Houphouët Boigny University, Abidjan, Côte d'Ivoire
| | - Mireille Dosso
- Biobank, Pasteur Institute of Côte d'Ivoire, 01 BP 490, Abidjan, Côte d'Ivoire.,Department of Epidemiology and Clinical Research, Pasteur Institute of Côte d'Ivoire, Abidjan, Côte d'Ivoire.,Training and Research Unit of Medical Sciences, Felix Houphouët Boigny University, Abidjan, Côte d'Ivoire
| |
Collapse
|