1
|
Peach LJ, Zhang H, Weaver BP, Boedicker JQ. Assessing spacer acquisition rates in E. coli type I-E CRISPR arrays. Front Microbiol 2025; 15:1498959. [PMID: 39902289 PMCID: PMC11788318 DOI: 10.3389/fmicb.2024.1498959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/19/2024] [Indexed: 02/05/2025] Open
Abstract
CRISPR/Cas is an adaptive defense mechanism protecting prokaryotes from viruses and other potentially harmful genetic elements. Through an adaptation process, short "spacer" sequences, captured from these elements and incorporated into a CRISPR array, provide target specificity for the immune response. CRISPR arrays and array expansion are also central to many emerging biotechnologies. The rates at which spacers integrate into native arrays within bacterial populations have not been quantified. Here, we measure naïve spacer acquisition rates in Escherichia coli Type I-E CRISPR, identify factors that affect these rates, and model this process fundamental to CRISPR/Cas defense. Prolonged Cas1-Cas2 expression produced fewer new spacers per cell on average than predicted by the model. Subsequent experiments revealed that this was due to a mean fitness reduction linked to array-expanded populations. In addition, the expression of heterologous non-homologous end-joining DNA-repair genes was found to augment spacer acquisition rates, translating to enhanced phage infection defense. Together, these results demonstrate the impact of intracellular factors that modulate spacer acquisition and identify an intrinsic fitness effect associated with array-expanded populations.
Collapse
Affiliation(s)
- Luke J. Peach
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Haoyun Zhang
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States
| | - Brian P. Weaver
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States
| | - James Q. Boedicker
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
2
|
Ni Y, Wang Y, Shi X, Yu F, Ruan Q, Tian N, He J, Wang X. Reducing competition between msd and genomic DNA improves retron editing efficiency. EMBO Rep 2024; 25:5316-5330. [PMID: 39501049 PMCID: PMC11624263 DOI: 10.1038/s44319-024-00311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 12/08/2024] Open
Abstract
Retrons, found in bacteria and used for defense against phages, generate a unique molecule known as multicopy single-stranded DNA (msDNA). This msDNA mimics Okazaki fragments during DNA replication, making it a promising tool for targeted gene editing in prokaryotes. However, existing retron systems often exhibit suboptimal editing efficiency. Here, we identify the msd gene in Escherichia coli, which encodes the noncoding RNA template for msDNA synthesis and carries the homologous sequence of the target gene to be edited, as a critical bottleneck. Sequence homology causes the msDNA to bind to the msd gene, thereby reducing its efficiency in editing the target gene. To address this issue, we engineer a retron system that tailors msDNA to the leading strand of the plasmid containing the msd gene. This strategy minimizes msd gene editing and reduces competition with target genes, significantly increasing msDNA availability. Our optimized system achieves very high retron editing efficiency, enhancing performance and expanding the potential for in vivo techniques that rely on homologous DNA synthesis.
Collapse
Affiliation(s)
- Yuyang Ni
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- College of Life Sciences, Shangrao Normal University, Shangrao, 334001, P. R. China
| | - Yifei Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Xinyu Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Fan Yu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Qingmin Ruan
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Na Tian
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Jin He
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Xun Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| |
Collapse
|
3
|
Hao K, Barrett M, Samadi Z, Zarezadeh A, McGrath Y, Askary A. Reconstructing signaling history of single cells with imaging-based molecular recording. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617908. [PMID: 39416000 PMCID: PMC11482953 DOI: 10.1101/2024.10.11.617908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The intensity and duration of biological signals encode information that allows a few pathways to regulate a wide array of cellular behaviors. Despite the central importance of signaling in biomedical research, our ability to quantify it in individual cells over time remains limited. Here, we introduce INSCRIBE, an approach for reconstructing signaling history in single cells using endpoint fluorescence images. By regulating a CRISPR base editor, INSCRIBE generates mutations in genomic target sequences, at a rate proportional to signaling activity. The number of edits is then recovered through a novel ratiometric readout strategy, from images of two fluorescence channels. We engineered human cell lines for recording WNT and BMP pathway activity, and demonstrated that INSCRIBE faithfully recovers both the intensity and duration of signaling. Further, we used INSCRIBE to study the variability of cellular response to WNT and BMP stimulation, and test whether the magnitude of response is a stable, heritable trait. We found a persistent memory in the BMP pathway. Progeny of cells with higher BMP response levels are likely to respond more strongly to a second BMP stimulation, up to 3 weeks later. Together, our results establish a scalable platform for genetic recording and in situ readout of signaling history in single cells, advancing quantitative analysis of cell-cell communication during development and disease.
Collapse
Affiliation(s)
- Kai Hao
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Mykel Barrett
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Zainalabedin Samadi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Amirhossein Zarezadeh
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Yuka McGrath
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Amjad Askary
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Liao H, Choi J, Shendure J. Molecular recording using DNA Typewriter. Nat Protoc 2024; 19:2833-2862. [PMID: 38844553 DOI: 10.1038/s41596-024-01003-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/15/2024] [Indexed: 10/09/2024]
Abstract
Recording molecular information to genomic DNA is a powerful means of investigating topics ranging from multicellular development to cancer evolution. With molecular recording based on genome editing, events such as cell divisions and signaling pathway activity drive specific alterations in a cell's DNA, marking the genome with information about a cell's history that can be read out after the fact. Although genome editing has been used for molecular recording, capturing the temporal relationships among recorded events in mammalian cells remains challenging. The DNA Typewriter system overcomes this limitation by leveraging prime editing to facilitate sequential insertions to an engineered genomic region. DNA Typewriter includes three distinct components: DNA Tape as the 'substrate' to which edits accrue in an ordered manner, the prime editor enzyme, and prime editing guide RNAs, which program insertional edits to DNA Tape. In this protocol, we describe general design considerations for DNA Typewriter, step-by-step instructions on how to perform recording experiments by using DNA Typewriter in HEK293T cells, and example scripts for analyzing DNA Typewriter data ( https://doi.org/10.6084/m9.figshare.22728758 ). This protocol covers two main applications of DNA Typewriter: recording sequential transfection events with programmed barcode insertions by using prime editing and recording lineage information during the expansion of a single cell to many. Compared with other methods that are compatible with mammalian cells, DNA Typewriter enables the recording of temporal information with higher recording capacities and can be completed within 4-6 weeks with basic expertise in molecular cloning, mammalian cell culturing and DNA sequencing data analysis.
Collapse
Affiliation(s)
- Hanna Liao
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Junhong Choi
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| |
Collapse
|
5
|
Jang H, Yim SS. Toward DNA-Based Recording of Biological Processes. Int J Mol Sci 2024; 25:9233. [PMID: 39273181 PMCID: PMC11394691 DOI: 10.3390/ijms25179233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Exploiting the inherent compatibility of DNA-based data storage with living cells, various cellular recording approaches have been developed for recording and retrieving biologically relevant signals in otherwise inaccessible locations, such as inside the body. This review provides an overview of the current state of engineered cellular memory systems, highlighting their design principles, advantages, and limitations. We examine various technologies, including CRISPR-Cas systems, recombinases, retrons, and DNA methylation, that enable these recording systems. Additionally, we discuss potential strategies for improving recording accuracy, scalability, and durability to address current limitations in the field. This emerging modality of biological measurement will be key to gaining novel insights into diverse biological processes and fostering the development of various biotechnological applications, from environmental sensing to disease monitoring and beyond.
Collapse
Affiliation(s)
- Hyeri Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sung Sun Yim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Graham JH, Schlachetzki JCM, Yang X, Breuss MW. Genomic Mosaicism of the Brain: Origin, Impact, and Utility. Neurosci Bull 2024; 40:759-776. [PMID: 37898991 PMCID: PMC11178748 DOI: 10.1007/s12264-023-01124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/16/2023] [Indexed: 10/31/2023] Open
Abstract
Genomic mosaicism describes the phenomenon where some but not all cells within a tissue harbor unique genetic mutations. Traditionally, research focused on the impact of genomic mosaicism on clinical phenotype-motivated by its involvement in cancers and overgrowth syndromes. More recently, we increasingly shifted towards the plethora of neutral mosaic variants that can act as recorders of cellular lineage and environmental exposures. Here, we summarize the current state of the field of genomic mosaicism research with a special emphasis on our current understanding of this phenomenon in brain development and homeostasis. Although the field of genomic mosaicism has a rich history, technological advances in the last decade have changed our approaches and greatly improved our knowledge. We will provide current definitions and an overview of contemporary detection approaches for genomic mosaicism. Finally, we will discuss the impact and utility of genomic mosaicism.
Collapse
Affiliation(s)
- Jared H Graham
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, 80045-2581, CO, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, 92093-0021, San Diego, CA, USA
| | - Xiaoxu Yang
- Department of Neurosciences, University of California San Diego, La Jolla, 92093-0021, San Diego, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, 92123, CA, USA
| | - Martin W Breuss
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, 80045-2581, CO, USA.
| |
Collapse
|
7
|
Zheng C, Liang H, Dai L, Yu J, Long C. Dissecting the CRISPR Cas1-Cas2 Protospacer Binding and Selection Mechanism by Using Molecular Dynamics Simulations. J Phys Chem B 2024; 128:3563-3574. [PMID: 38573978 DOI: 10.1021/acs.jpcb.3c07320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Cas1 and Cas2 are highly conserved proteins among the clustered regularly interspaced short palindromic repeat Cas (CRISPR-Cas) systems and play a crucial role in protospacer selection and integration. According to the double-forked CRISPR Cas1-Cas2 complex, we conducted extensive all-atom molecular dynamics simulations to investigate the protospacer DNA binding and recognition. Our findings revealed that single-point amino acid mutations in Cas1 or in Cas2 had little impact on the binding of the protospacer, both in the binding and precatalytic states. In contrast, multiple-point amino acid mutations, particularly G74A, P80L, and V89A mutations on Cas2 and Cas2' proteins (m-multiple1 system), significantly affected the protospacer binding and selection. Notably, mutations on Cas2 and Cas2' led to an increased number of hydrogen bonds (#HBs) between Cas2&Cas2' and the dsDNA in the m-multiple1 system compared with the wild-type system. And the strong electrostatic interactions between Cas1-Cas2 and the protospacer DNA (psDNA) in the m-multiple1 system again suggested the increase in the binding affinity of protospacer acquisition. Specifically, mutations in Cas2 and Cas2' can remotely make the protospacer adjacent motif complementary (PAMc) sequences better in recognition by the two active sites, while multiple mutations K211E, P202Q, P212L, R138L, V134A, A286T, P282H, and P294H on Cas1a/Cas1b&Cas1a'/Cas1b' (m-multiple2 system) decrease the #HBs and the electrostatic interactions and make the PAMc worse in recognition compared with the wild-type system.
Collapse
Affiliation(s)
- Chuanbo Zheng
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Hongqiong Liang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Liqiang Dai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Jin Yu
- Department of Physics and Astronomy, Department of Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California 92697, United States
| | - Chunhong Long
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
8
|
Pacesa M, Pelea O, Jinek M. Past, present, and future of CRISPR genome editing technologies. Cell 2024; 187:1076-1100. [PMID: 38428389 DOI: 10.1016/j.cell.2024.01.042] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
Genome editing has been a transformative force in the life sciences and human medicine, offering unprecedented opportunities to dissect complex biological processes and treat the underlying causes of many genetic diseases. CRISPR-based technologies, with their remarkable efficiency and easy programmability, stand at the forefront of this revolution. In this Review, we discuss the current state of CRISPR gene editing technologies in both research and therapy, highlighting limitations that constrain them and the technological innovations that have been developed in recent years to address them. Additionally, we examine and summarize the current landscape of gene editing applications in the context of human health and therapeutics. Finally, we outline potential future developments that could shape gene editing technologies and their applications in the coming years.
Collapse
Affiliation(s)
- Martin Pacesa
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Station 19, CH-1015 Lausanne, Switzerland
| | - Oana Pelea
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
9
|
Liu J, Cui L, Shi X, Yan J, Wang Y, Ni Y, He J, Wang X. Generation of DNAzyme in Bacterial Cells by a Bacterial Retron System. ACS Synth Biol 2024; 13:300-309. [PMID: 38171507 DOI: 10.1021/acssynbio.3c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
DNAzymes are catalytically active single-stranded DNAs in which DNAzyme 10-23 (Dz 10-23) consists of a catalytic core and a substrate-binding arm that reduces gene expression through sequence-specific mRNA cleavage. However, the in vivo application of Dz 10-23 depends on exogenous delivery, which leads to its inability to be synthesized and stabilized in vivo, thus limiting its application. As a unique reverse transcription system, the bacterial retron system can synthesize single-stranded DNA in vivo using ncRNA msr/msd as a template. The objective of this work is to reduce target gene expression using Dz 10-23 generated in vivo by the retron system. In this regard, we successfully generated Dz 10-23 by cloning the Dz 10-23 coding sequence into the retron msd gene and tested its ability to reduce specific gene expression by examining the mRNA levels of cfp encoding cyan fluorescence protein and other functional genes such as mreB and ftsZ. We found that Dz had different repressive effects when targeting different mRNA regions, and in general, the repressive effect was stronger when targeting downstream of mRNAs. Our results also suggested that the reduction effect was due to cleavage of the substrate mRNA by Dz 10-23 rather than the antisense effect of the substrate-binding arm. Therefore, this study not only provided a retron-based method for the intracellular generation of Dz 10-23 but also demonstrated that Dz 10-23 could reduce gene expression by cleaving target mRNAs in cells. We believe that this new strategy would have great potential in the regulation of gene expression.
Collapse
Affiliation(s)
- Jie Liu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lina Cui
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xinyu Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiahao Yan
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yifei Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuyang Ni
- College of Life Sciences, Shangrao Normal University, Shangrao 334001, PR China
| | - Jin He
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xun Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
10
|
Oh GS, An S, Kim S. Harnessing CRISPR-Cas adaptation for RNA recording and beyond. BMB Rep 2024; 57:40-49. [PMID: 38053290 PMCID: PMC10828431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 12/07/2023] Open
Abstract
Prokaryotes encode clustered regularly interspaced short palindromic repeat (CRISPR) arrays and CRISPR-associated (Cas) genes as an adaptive immune machinery. CRISPR-Cas systems effectively protect hosts from the invasion of foreign enemies, such as bacteriophages and plasmids. During a process called 'adaptation', non-self-nucleic acid fragments are acquired as spacers between repeats in the host CRISPR array, to establish immunological memory. The highly conserved Cas1-Cas2 complexes function as molecular recorders to integrate spacers in a time course manner, which can subsequently be expressed as crRNAs complexed with Cas effector proteins for the RNAguided interference pathways. In some of the RNA-targeting type III systems, Cas1 proteins are fused with reverse transcriptase (RT), indicating that RT-Cas1-Cas2 complexes can acquire RNA transcripts for spacer acquisition. In this review, we summarize current studies that focus on the molecular structure and function of the RT-fused Cas1-Cas2 integrase, and its potential applications as a directional RNA-recording tool in cells. Furthermore, we highlight outstanding questions for RT-Cas1-Cas2 studies and future directions for RNA-recording CRISPR technologies. [BMB Reports 2024; 57(1): 40-49].
Collapse
Affiliation(s)
- Gyeong-Seok Oh
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| | - Seongjin An
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Sungchul Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| |
Collapse
|
11
|
Oh GS, An S, Kim S. Harnessing CRISPR-Cas adaptation for RNA recording and beyond. BMB Rep 2024; 57:40-49. [PMID: 38053290 PMCID: PMC10828431 DOI: 10.5483/bmbrep.2023-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 03/09/2025] Open
Abstract
Prokaryotes encode clustered regularly interspaced short palindromic repeat (CRISPR) arrays and CRISPR-associated (Cas) genes as an adaptive immune machinery. CRISPR-Cas systems effectively protect hosts from the invasion of foreign enemies, such as bacteriophages and plasmids. During a process called 'adaptation', non-self-nucleic acid fragments are acquired as spacers between repeats in the host CRISPR array, to establish immunological memory. The highly conserved Cas1-Cas2 complexes function as molecular recorders to integrate spacers in a time course manner, which can subsequently be expressed as crRNAs complexed with Cas effector proteins for the RNAguided interference pathways. In some of the RNA-targeting type III systems, Cas1 proteins are fused with reverse transcriptase (RT), indicating that RT-Cas1-Cas2 complexes can acquire RNA transcripts for spacer acquisition. In this review, we summarize current studies that focus on the molecular structure and function of the RT-fused Cas1-Cas2 integrase, and its potential applications as a directional RNA-recording tool in cells. Furthermore, we highlight outstanding questions for RT-Cas1-Cas2 studies and future directions for RNA-recording CRISPR technologies. [BMB Reports 2024; 57(1): 40-49].
Collapse
Affiliation(s)
- Gyeong-Seok Oh
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| | - Seongjin An
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Sungchul Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| |
Collapse
|
12
|
Yang C, Shitamukai A, Yang S, Kawaguchi A. Advanced Techniques Using In Vivo Electroporation to Study the Molecular Mechanisms of Cerebral Development Disorders. Int J Mol Sci 2023; 24:14128. [PMID: 37762431 PMCID: PMC10531473 DOI: 10.3390/ijms241814128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The mammalian cerebral cortex undergoes a strictly regulated developmental process. Detailed in situ visualizations, imaging of these dynamic processes, and in vivo functional gene studies significantly enhance our understanding of brain development and related disorders. This review introduces basic techniques and recent advancements in in vivo electroporation for investigating the molecular mechanisms underlying cerebral diseases. In utero electroporation (IUE) is extensively used to visualize and modify these processes, including the forced expression of pathological mutants in human diseases; thus, this method can be used to establish animal disease models. The advent of advanced techniques, such as genome editing, including de novo knockout, knock-in, epigenetic editing, and spatiotemporal gene regulation, has further expanded our list of investigative tools. These tools include the iON expression switch for the precise control of timing and copy numbers of exogenous genes and TEMPO for investigating the temporal effects of genes. We also introduce the iGONAD method, an improved genome editing via oviductal nucleic acid delivery approach, as a novel genome-editing technique that has accelerated brain development exploration. These advanced in vivo electroporation methods are expected to provide valuable insights into pathological conditions associated with human brain disorders.
Collapse
Affiliation(s)
- Chen Yang
- Human Anatomy and Histology and Embryology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China
- Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Atsunori Shitamukai
- Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shucai Yang
- Human Anatomy and Histology and Embryology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China
| | - Ayano Kawaguchi
- Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
13
|
Lear SK, Lopez SC, González-Delgado A, Bhattarai-Kline S, Shipman SL. Temporally resolved transcriptional recording in E. coli DNA using a Retro-Cascorder. Nat Protoc 2023; 18:1866-1892. [PMID: 37059915 PMCID: PMC10631475 DOI: 10.1038/s41596-023-00819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/09/2023] [Indexed: 04/16/2023]
Abstract
Biological signals occur over time in living cells. Yet most current approaches to interrogate biology, particularly gene expression, use destructive techniques that quantify signals only at a single point in time. A recent technological advance, termed the Retro-Cascorder, overcomes this limitation by molecularly logging a record of gene expression events in a temporally organized genomic ledger. The Retro-Cascorder works by converting a transcriptional event into a DNA barcode using a retron reverse transcriptase and then storing that event in a unidirectionally expanding clustered regularly interspaced short palindromic repeats (CRISPR) array via acquisition by CRISPR-Cas integrases. This CRISPR array-based ledger of gene expression can be retrieved at a later point in time by sequencing. Here we describe an implementation of the Retro-Cascorder in which the relative timing of transcriptional events from multiple promoters of interest is recorded chronologically in Escherichia coli populations over multiple days. We detail the molecular components required for this technology, provide a step-by-step guide to generate the recording and retrieve the data by Illumina sequencing, and give instructions for how to use custom software to infer the relative transcriptional timing from the sequencing data. The example recording is generated in 2 d, preparation of sequencing libraries and sequencing can be accomplished in 2-3 d, and analysis of data takes up to several hours. This protocol can be implemented by someone familiar with basic bacterial culture, molecular biology and bioinformatics. Analysis can be minimally run on a personal computer.
Collapse
Affiliation(s)
- Sierra K Lear
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- UCSF-UCB Graduate Program in Bioengineering, University of California, Berkeley, CA, USA
| | - Santiago C Lopez
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- UCSF-UCB Graduate Program in Bioengineering, University of California, Berkeley, CA, USA
| | | | - Santi Bhattarai-Kline
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Seth L Shipman
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
14
|
Tanna T, Platt RJ. Microbial medics diagnose and treat gut inflammation. Cell Host Microbe 2023; 31:164-166. [PMID: 36758514 DOI: 10.1016/j.chom.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Engineered microbes show potential for diagnosing and treating diseases. In this issue of Cell Host & Microbe, Zou et al. develop an "intelligent" bacterial strain that detects and monitors an inflammation biomarker in the gut and responds by releasing an immunomodulator, thereby combining diagnosis and therapy for intestinal inflammation.
Collapse
Affiliation(s)
- Tanmay Tanna
- Department of Biosystems Science and Engineering, ETH Zurich; Mattenstrasse 26, 4058 Basel, Switzerland; Department of Computer Science, ETH Zurich; Universitätstrasse 6, 8092 Zurich Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich; Mattenstrasse 26, 4058 Basel, Switzerland; Botnar Research Center for Child Health, Mattenstrasse 24a, 4058 Basel, Switzerland; Department of Chemistry, University of Basel, Petersplatz 1, 4003 Basel, Switzerland; NCCR MSE, Mattenstrasse 24a, 4058 Basel, Switzerland.
| |
Collapse
|