1
|
Yu W, Jin K, Xu X, Liu Y, Li J, Du G, Chen J, Lv X, Liu L. Engineering microbial cell factories by multiplexed spatiotemporal control of cellular metabolism: Advances, challenges, and future perspectives. Biotechnol Adv 2025; 79:108497. [PMID: 39645209 DOI: 10.1016/j.biotechadv.2024.108497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Generally, the metabolism in microbial organism is an intricate, spatiotemporal process that emerges from gene regulatory networks, which affects the efficiency of product biosynthesis. With the coming age of synthetic biology, spatiotemporal control systems have been explored as versatile strategies to promote product biosynthesis at both spatial and temporal levels. Meanwhile, the designer synthetic compartments provide new and promising approaches to engineerable spatiotemporal control systems to construct high-performance microbial cell factories. In this article, we comprehensively summarize recent developments in spatiotemporal control systems for tailoring advanced cell factories, and illustrate how to apply spatiotemporal control systems in different microbial species with desired applications. Future challenges of spatiotemporal control systems and perspectives are also discussed.
Collapse
Affiliation(s)
- Wenwen Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Poppeliers J, Focquet M, Boon M, De Mey M, Thomas J, Lavigne R. Assessing the transcriptional landscape of Pseudomonas phage 201ϕ2-1: Uncovering the small regulatory details of a giant phage. Microb Biotechnol 2024; 17:e70037. [PMID: 39460739 PMCID: PMC11512511 DOI: 10.1111/1751-7915.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
The transcriptional architecture of phages can deepen our understanding of the phage-host infection process and can be of key importance for phage engineering and biotechnological applications. Here, we applied ONT-cappable-sequencing, a long-read RNA-sequencing technique, to study the regulatory mechanisms of Pseudomonas infecting giant phage 201ϕ2-1. We identified 67 promoters and 132 terminators that together represent 92 transcriptional units. A full comparison of these data to the transcriptome of model Pseudomonas phage ϕKZ confirmed that the transcriptional programs of these prototypes of the Serwervirus and Phikzvirus genera are largely conserved, despite some subtle regulatory differences. Evidence supporting these shared mechanisms include the identification of highly similar sequence motifs for regulatory elements in both phages and the conservation of regulatory elements loci relative to homologous genes in each phage. Moreover, we discovered a sRNA in 201ϕ2-1 that is highly conserved among prototype members of different giant phage genera. Sequencing of the 201ϕ2-1 host genome resulted in its reclassification as Pseudomonas atacamensis, a close relative of the important agricultural biocontrol agent Pseudomonas chlororaphis. Finally, we conducted in vivo assays of eight 201ϕ2-1 terminators and found them to strongly terminate transcription in P. chlororaphis. Control elements from phage transcriptional programs have a rich history for applications in biotechnology. In these studies, we demonstrate new insight into the transcriptional program of 201ϕ2-1 and demonstrate the potential of its regulatory elements for novel and useful tools for synthetic biology circuitry.
Collapse
Affiliation(s)
| | | | - Maarten Boon
- Laboratory of Gene TechnologyKU LeuvenLeuvenBelgium
| | - Marjan De Mey
- Centre for Synthetic Biology (CSB)Ghent UniversityGhentBelgium
| | - Julie Thomas
- Thomas H. Gosnell School of Life SciencesRochester Institute of TechnologyRochesterUSA
| | - Rob Lavigne
- Laboratory of Gene TechnologyKU LeuvenLeuvenBelgium
| |
Collapse
|
3
|
Mao J, Zhang H, Chen Y, Wei L, Liu J, Nielsen J, Chen Y, Xu N. Relieving metabolic burden to improve robustness and bioproduction by industrial microorganisms. Biotechnol Adv 2024; 74:108401. [PMID: 38944217 DOI: 10.1016/j.biotechadv.2024.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/04/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Metabolic burden is defined by the influence of genetic manipulation and environmental perturbations on the distribution of cellular resources. The rewiring of microbial metabolism for bio-based chemical production often leads to a metabolic burden, followed by adverse physiological effects, such as impaired cell growth and low product yields. Alleviating the burden imposed by undesirable metabolic changes has become an increasingly attractive approach for constructing robust microbial cell factories. In this review, we provide a brief overview of metabolic burden engineering, focusing specifically on recent developments and strategies for diminishing the burden while improving robustness and yield. A variety of examples are presented to showcase the promise of metabolic burden engineering in facilitating the design and construction of robust microbial cell factories. Finally, challenges and limitations encountered in metabolic burden engineering are discussed.
Collapse
Affiliation(s)
- Jiwei Mao
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Hongyu Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yu Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Liang Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Jun Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Jens Nielsen
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden; BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen, Denmark.
| | - Yun Chen
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Kongens Lyngby, Denmark.
| | - Ning Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| |
Collapse
|
4
|
Song Y, Prather KLJ. Strategies in engineering sustainable biochemical synthesis through microbial systems. Curr Opin Chem Biol 2024; 81:102493. [PMID: 38971129 DOI: 10.1016/j.cbpa.2024.102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 07/08/2024]
Abstract
Growing environmental concerns and the urgency to address climate change have increased demand for the development of sustainable alternatives to fossil-derived fuels and chemicals. Microbial systems, possessing inherent biosynthetic capabilities, present a promising approach for achieving this goal. This review discusses the coupling of systems and synthetic biology to enable the elucidation and manipulation of microbial phenotypes for the production of chemicals that can substitute for petroleum-derived counterparts and contribute to advancing green biotechnology. The integration of artificial intelligence with metabolic engineering to facilitate precise and data-driven design of biosynthetic pathways is also discussed, along with the identification of current limitations and proposition of strategies for optimizing biosystems, thereby propelling the field of chemical biology towards sustainable chemical production.
Collapse
Affiliation(s)
- Yoseb Song
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Tang M, You J, Yang T, Sun Q, Jiang S, Xu M, Pan X, Rao Z. Application of modern synthetic biology technology in aromatic amino acids and derived compounds biosynthesis. BIORESOURCE TECHNOLOGY 2024; 406:131050. [PMID: 38942210 DOI: 10.1016/j.biortech.2024.131050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Aromatic amino acids (AAA) and derived compounds have enormous commercial value with extensive applications in the food, chemical and pharmaceutical fields. Microbial production of AAA and derived compounds is a promising prospect for its environmental friendliness and sustainability. However, low yield and production efficiency remain major challenges for realizing industrial production. With the advancement of synthetic biology, microbial production of AAA and derived compounds has been significantly facilitated. In this review, a comprehensive overview on the current progresses, challenges and corresponding solutions for AAA and derived compounds biosynthesis is provided. The most cutting-edge developments of synthetic biology technology in AAA and derived compounds biosynthesis, including CRISPR-based system, genetically encoded biosensors and synthetic genetic circuits, were highlighted. Finally, future prospects of modern strategies conducive to the biosynthesis of AAA and derived compounds are discussed. This review offers guidance on constructing microbial cell factory for aromatic compound using synthetic biology technology.
Collapse
Affiliation(s)
- Mi Tang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Tianjin Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Qisheng Sun
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Shuran Jiang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| |
Collapse
|
6
|
Kim G, Kim HJ, Kim K, Kim HJ, Yang J, Seo SW. Tunable translation-level CRISPR interference by dCas13 and engineered gRNA in bacteria. Nat Commun 2024; 15:5319. [PMID: 38909033 PMCID: PMC11193725 DOI: 10.1038/s41467-024-49642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/13/2024] [Indexed: 06/24/2024] Open
Abstract
Although CRISPR-dCas13, the RNA-guided RNA-binding protein, was recently exploited as a translation-level gene expression modulator, it has still been difficult to precisely control the level due to the lack of detailed characterization. Here, we develop a synthetic tunable translation-level CRISPR interference (Tl-CRISPRi) system based on the engineered guide RNAs that enable precise and predictable down-regulation of mRNA translation. First, we optimize the Tl-CRISPRi system for specific and multiplexed repression of genes at the translation level. We also show that the Tl-CRISPRi system is more suitable for independently regulating each gene in a polycistronic operon than the transcription-level CRISPRi (Tx-CRISPRi) system. We further engineer the handle structure of guide RNA for tunable and predictable repression of various genes in Escherichia coli and Vibrio natriegens. This tunable Tl-CRISPRi system is applied to increase the production of 3-hydroxypropionic acid (3-HP) by 14.2-fold via redirecting the metabolic flux, indicating the usefulness of this system for the flux optimization in the microbial cell factories based on the RNA-targeting machinery.
Collapse
Affiliation(s)
- Giho Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ho Joon Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Keonwoo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hyeon Jin Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Jina Yang
- Department of Chemical Engineering, Jeju National University, Jeju-si, South Korea
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea.
- Institute of Chemical Processes, Seoul National University, Seoul, South Korea.
- Bio-MAX Institute, Seoul National University, Seoul, South Korea.
- Institute of Bio Engineering, Seoul National University, Seoul, South Korea.
| |
Collapse
|
7
|
Krink N, Nikel PI, Beisel CL. A Hitchhiker's guide to CRISPR editing tools in bacteria : CRISPR can help unlock the bacterial world, but technical and regulatory barriers persist. EMBO Rep 2024; 25:1694-1699. [PMID: 38347223 PMCID: PMC11014848 DOI: 10.1038/s44319-024-00086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 04/14/2024] Open
Abstract
Join us on a journey through the complex and ever-expanding universe of CRISPR approaches for genome editing in bacteria. Discover what is available, current technical challenges, successful implementation of these tools and the regulatory framework around their use.
Collapse
Affiliation(s)
- Nicolas Krink
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| | - Pablo Iván Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080, Würzburg, Germany.
- Medical Faculty, University of Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
8
|
Park JO, Nielsen DR. Editorial overview: Energy biotechnology as an integral solution to global challenges. Curr Opin Biotechnol 2023; 84:103006. [PMID: 37793238 DOI: 10.1016/j.copbio.2023.103006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Affiliation(s)
- Junyoung O Park
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - David R Nielsen
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
9
|
Han T, Nazarbekov A, Zou X, Lee SY. Recent advances in systems metabolic engineering. Curr Opin Biotechnol 2023; 84:103004. [PMID: 37778304 DOI: 10.1016/j.copbio.2023.103004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
Systems metabolic engineering, which integrates metabolic engineering with systems biology, synthetic biology, and evolutionary engineering, has revolutionized the sustainable production of fuels and materials through the creation of efficient microbial cell factories. Recent advancements in systems metabolic engineering targeting different biological components of the host cell have enabled the creation of highly productive microbial cell factories. This article provides a review of the recent tools and strategies used for enzyme-, genetic module-, pathway-, flux-, genome-, and cell-level engineering, supported by illustrative examples. Furthermore, we highlight recent trends in systems metabolic engineering, which involve the application of multiple tools discussed in this review. Finally, the paper addresses the challenges and perspectives of transitioning academic-level metabolic engineering studies to commercial-scale production.
Collapse
Affiliation(s)
- Taehee Han
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, the Republic of Korea; KAIST Institute for the BioCentury and KAIST Institute for Artificial Intelligence, KAIST, Daejeon 34141, the Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, 34141 Daejeon, the Republic of Korea
| | - Alisher Nazarbekov
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, the Republic of Korea; KAIST Institute for the BioCentury and KAIST Institute for Artificial Intelligence, KAIST, Daejeon 34141, the Republic of Korea
| | - Xuan Zou
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, the Republic of Korea; KAIST Institute for the BioCentury and KAIST Institute for Artificial Intelligence, KAIST, Daejeon 34141, the Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, 34141 Daejeon, the Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, the Republic of Korea; KAIST Institute for the BioCentury and KAIST Institute for Artificial Intelligence, KAIST, Daejeon 34141, the Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, 34141 Daejeon, the Republic of Korea; Graduate School of Engineering Biology, KAIST, Daejeon 34141, the Republic of Korea.
| |
Collapse
|
10
|
Yu Y, Pi S, Ke T, Zhou B, Chao W, Yang Y, Li Z, Li G, Ren N, Gao X, Lu L. Artificial Soil-Like Material Enhances CO 2 Bio-Valorization into Chemicals in Gas Fermentation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53488-53497. [PMID: 37929338 DOI: 10.1021/acsami.3c12627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Gas fermentation offers a carbon-neutral route for producing industrial feedstocks using autotrophic microbes to convert carbon dioxide (CO2) in waste gases, such as industrial emissions and biogas, into valuable chemicals or biofuels. However, slow microbial metabolism owing to low gaseous solubility causes significant challenges in gas fermentation. Although chemical or genetic manipulations have been explored to improve gas fermentation, they are either nonsustainable or complex. Herein, an artificial soil-like material (SLM) inspired by natural soil was fabricated to improve the growth and metabolism ofCupriavidus necatorfor enhanced poly-β-hydroxybutyrate (PHB) biosynthesis from CO2 and hydrogen (H2). Porous SLM comprises low-cost nanoclay, boehmite, and starch and serves as a biocarrier to facilitate the colonization of bacteria and delivery of CO2 to bacteria. With 3.0 g/L SLM addition, the solubility of CO2 in water increased by ∼4 times and biomass and PHB production boosted by 29 and 102%, respectively, in the 24 h culture. In addition, a positive modulation was observed in the metabolism of PHB biosynthesis. PHB biosynthesis-associated gene expression was found to be enhanced in response to the SLM addition. The concentrations of intermediates in the metabolic pathway of PHB biosynthesis, such as pyruvate and acetyl-CoA, as well as reducing energy (ATP and NADPH) significantly increased with SLM addition. SLM also demonstrated the merits of easy fabrication, high stability, recyclability, and plasticity, thereby indicating its considerable potential for large-scale application in gas fermentation.
Collapse
Affiliation(s)
- Yongjie Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shanshan Pi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Tan Ke
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Baiqin Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Weixiang Chao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yang Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhida Li
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Guifeng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xiang Gao
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology of CAS, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academic of Science, Shenzhen 518000, China
| | - Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
11
|
Zhang L, Lin Y, Yi X, Huang W, Hu Q, Zhang Z, Wu F, Ye JW, Chen GQ. Engineering low-salt growth Halomonas Bluephagenesis for cost-effective bioproduction combined with adaptive evolution. Metab Eng 2023; 79:146-158. [PMID: 37543135 DOI: 10.1016/j.ymben.2023.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
Halophilic Halomonas bluephagenesis has been engineered to produce various added-value bio-compounds with reduced costs. However, the salt-stress regulatory mechanism remained unclear. H. bluephagenesis was randomly mutated to obtain low-salt growing mutants via atmospheric and room temperature plasma (ARTP). The resulted H. bluephagenesis TDH4A1B5 was constructed with the chromosomal integration of polyhydroxyalkanoates (PHA) synthesis operon phaCAB and deletion of phaP1 gene encoding PHA synthesis associated protein phasin, forming H. bluephagenesis TDH4A1B5P, which led to increased production of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-4-hydrobutyrate) (P34HB) by over 1.4-fold. H. bluephagenesis TDH4A1B5P also enhanced production of ectoine and threonine by 50% and 77%, respectively. A total 101 genes related to salinity tolerance was identified and verified via comparative genomic analysis among four ARTP mutated H. bluephagenesis strains. Recombinant H. bluephagenesis TDH4A1B5P was further engineered for PHA production utilizing sodium acetate or gluconate as sole carbon source. Over 33% cost reduction of PHA production could be achieved using recombinant H. bluephagenesis TDH4A1B5P. This study successfully developed a low-salt tolerant chassis H. bluephagenesis TDH4A1B5P and revealed salt-stress related genes of halophilic host strains.
Collapse
Affiliation(s)
- Lizhan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yina Lin
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xueqing Yi
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wuzhe Huang
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, Beijing, 101309, China
| | - Qitiao Hu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhongnan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fuqing Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian-Wen Ye
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; MOE Key Lab of Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
12
|
Su H, Chen X, Chen S, Guo M, Liu H. Applications of the Whole-Cell System in the Efficient Biosynthesis of Heme. Int J Mol Sci 2023; 24:ijms24098384. [PMID: 37176091 PMCID: PMC10179345 DOI: 10.3390/ijms24098384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/22/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Heme has a variety of functions, from electronic reactions to binding gases, which makes it useful in medical treatments, dietary supplements, and food processing. In recent years, whole-cell system-based heme biosynthesis methods have been continuously explored and optimized as an alternative to the low-yield, lasting, and adverse ecological environment of chemical synthesis methods. This method relies on two biosynthetic pathways of microbial precursor 5-aminolevulinic acid (C4, C5) and three known downstream biosynthetic pathways of heme. This paper reviews the genetic and metabolic engineering strategies for heme production in recent years by optimizing culture conditions and techniques from different microorganisms. Specifically, we summarized and analyzed the possibility of using biosensors to explore new strategies for the biosynthesis of heme from the perspective of synthetic biology, providing a new direction for future exploration.
Collapse
Affiliation(s)
- Hongfei Su
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaolin Chen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Shijing Chen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Mingzhang Guo
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Huilin Liu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|