1
|
Noury H, Rahdar A, Romanholo Ferreira LF, Jamalpoor Z. AI-driven innovations in smart multifunctional nanocarriers for drug and gene delivery: A mini-review. Crit Rev Oncol Hematol 2025; 210:104701. [PMID: 40086770 DOI: 10.1016/j.critrevonc.2025.104701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025] Open
Abstract
The convergence of artificial intelligence (AI) and nanomedicine has revolutionized the design of smart multifunctional nanocarriers (SMNs) for drug and gene delivery, offering unprecedented precision, efficiency, and personalization in therapeutic applications. AI-driven approaches enhance the development of these nanocarriers by accelerating their design, optimizing drug loading and release kinetics, improving biocompatibility, and predicting interactions with biological barriers. This review explores the transformative role of AI in the fabrication and functionalization of SMNs, emphasizing its impact on overcoming challenges in targeted drug delivery, controlled release, and theranostics. We discuss the integration of AI with advanced nanomaterials-such as polymeric, lipidic, and inorganic nanoparticles-highlighting their potential in oncology and hematology. Furthermore, we examine recent clinical and preclinical case studies demonstrating AI-assisted nanocarrier development for personalized medicine. The synergy between AI and nanotechnology paves the way for next-generation precision therapeutics, addressing critical limitations in traditional drug delivery systems. However, data standardization, regulatory compliance, and translational scalability challenges remain. This review underscores the need for interdisciplinary collaboration to unlock AI's potential in nanomedicine fully, ultimately advancing the clinical application of SMNs for more effective and safer patient care.
Collapse
Affiliation(s)
- Hamid Noury
- Health Research Center, Chamran Hospital, Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran.
| | | | - Zahra Jamalpoor
- Trauma and Surgery Research Center, Aja University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Rijcken CJF. The translational journey of cancer nanomedicines: biological and entrepreneurial lessons learned. Drug Deliv Transl Res 2025:10.1007/s13346-025-01867-z. [PMID: 40304889 DOI: 10.1007/s13346-025-01867-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2025] [Indexed: 05/02/2025]
Abstract
Despite exhaustive investments, the breakthrough potential of nanomedicines (NM) is not yet realized. Whilst Doxil and covid-19 vaccines demonstrated certain benefits, many NM failed in clinical development. Lies the true reason for this limited success in inappropriate assumptions, incorrect approaches, or other omissions? This note describes the translational journey of CPC634 (docetaxel entrapping core-crosslinked polymeric micelles) and illustrates lessons learned in drug product development. Scientific elements are to understand the pathophysiology of the diseased tissue, the journey of NM upon administration and resulting drug release and the induced pharmacodynamic effects over time, particularly in actual patients. Industrial elements comprise market-product fit, target product profile, competitive benchmarking, while development efficiency focuses to generate a positive business case. A goal-oriented product design which is validated by external experts increases chances of development success and assures investor-readiness. NM development will progress by aligning fundamental biological insights with industrial product requirements, driving therapeutic breakthroughs.
Collapse
|
3
|
Hu J, Arvejeh PM, Bone S, Hett E, Marincola FM, Roh KH. Nanocarriers for cutting-edge cancer immunotherapies. J Transl Med 2025; 23:447. [PMID: 40234928 PMCID: PMC12001629 DOI: 10.1186/s12967-025-06435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
Cancer immunotherapy aims to harness the body's own immune system for effective and long-lasting elimination of malignant neoplastic tissues. Owing to the advance in understanding of cancer pathology and immunology, many novel strategies for enhancing immunological responses against various cancers have been successfully developed, and some have translated into excellent clinical outcomes. As one promising strategy for the next generation of immunotherapies, activating the multi-cellular network (MCN) within the tumor microenvironment (TME) to deploy multiple mechanisms of action (MOAs) has attracted significant attention. To achieve this effectively and safely, delivering multiple or pleiotropic therapeutic cargoes to the targeted sites of cancerous tissues, cells, and intracellular organelles is critical, for which numerous nanocarriers have been developed and leveraged. In this review, we first introduce therapeutic payloads categorized according to their predicted functions in cancer immunotherapy and their physicochemical structures and forms. Then, various nanocarriers, along with their unique characteristics, properties, advantages, and limitations, are introduced with notable recent applications in cancer immunotherapy. Following discussions on targeting strategies, a summary of each nanocarrier matching with suitable therapeutic cargoes is provided with comprehensive background information for designing cancer immunotherapy regimens.
Collapse
Affiliation(s)
- Joyce Hu
- Translational and Advanced Medicine (TAM) Biosciences, Nashville, TN, 37011, USA
| | - Pooria M Arvejeh
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sydney Bone
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Erik Hett
- Translational and Advanced Medicine (TAM) Biosciences, Nashville, TN, 37011, USA
| | | | - Kyung-Ho Roh
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
- Biotechnology Science and Engineering Program, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
| |
Collapse
|
4
|
Hou Y, Hu M, Sun D, Sun Y. Numerical Simulation in Microvessels for the Design of Drug Carriers with the Immersed Boundary-Lattice Boltzmann Method. MICROMACHINES 2025; 16:389. [PMID: 40283266 PMCID: PMC12029638 DOI: 10.3390/mi16040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/18/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
This study employs numerical techniques to investigate the motion characteristics of red blood cells (RBCs) and drug carriers (DCs) within microvessels. A coupled model of the lattice Boltzmann method (LBM) and immersed boundary method (IBM) is proposed to investigate the migration of particles in blood flow. The lattice Bhatnagar-Gross-Krook (LBGK) model is utilized to simulate the flow dynamics of blood. While the IBM is employed to simulate the motion of particles, using a membrane model based on the finite element method. The present model was validated and demonstrated good agreements with previous theoretical and numerical results. Our study mainly examines the impact of the Reynolds number, DC size, and stiffness. Results suggest that these factors would influence particles' equilibrium regions, motion stability and interactions between RBCs and DCs. Within a certain range, under a higher Reynolds number, the motion of DCs remains stable and DCs can swiftly attain their equilibrium states. DCs with smaller sizes and softer stiffness demonstrate a relatively stable motion state and their interactions with RBCs are weakened. The findings would offer novel perspectives on drug transport mechanisms and the impact of drug release, providing valuable guidance for the design of DCs.
Collapse
Affiliation(s)
- Yulin Hou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Mengdan Hu
- Key Laboratory of Structure and Thermal Protection of High Speed Aircraft, Ministry of Education, Southeast University, Nanjing 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Dongke Sun
- Key Laboratory of Structure and Thermal Protection of High Speed Aircraft, Ministry of Education, Southeast University, Nanjing 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Yueming Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
5
|
Li J, Zhang G, Li G, Zhang J, Yang Z, Yang L, Jiang S, Wang J. Harnessing nanoparticles for reshaping tumor immune microenvironment of hepatocellular carcinoma. Discov Oncol 2025; 16:121. [PMID: 39909958 PMCID: PMC11799483 DOI: 10.1007/s12672-025-01897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/03/2025] [Indexed: 02/07/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers, characterized by high morbidity and mortality rates. Recently, immunotherapy has emerged as a crucial treatment modality for HCC, following surgery, locoregional therapies, and targeted therapies. This approach harnesses the body's immune system to target and eliminate cancer cells, potentially resulting in durable antitumor responses. However, acquired resistance and the tumor immunosuppressive microenvironment (TIME) significantly hinder its clinical application. Recently, advancements in nanotechnology, coupled with a deeper understanding of cancer biology and nano-biological interactions, have led to the development of various nanoparticles aimed at enhancing therapeutic efficacy through specific targeting of tumor tissues. These nanoparticles increase the accumulation of immunotherapeutic drugs within the tumor microenvironment, thereby transforming the TIME. In this review, we provide a concise overview of the fundamental principles governing the TIME landscape in HCC and discuss the rationale for and applications of nanoparticles in this context. Additionally, we highlight existing challenges and potential opportunities for the clinical translation of cancer nanomedicines.
Collapse
Affiliation(s)
- JinSong Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - GuanBo Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Gang Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Jie Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Zhi Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Lin Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - ShiJie Jiang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - JiaXing Wang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Jawaid S, Joshi Y, Neelofar N, Khursheed K, Shams S, Chaudhary M, Arora M, Mahajan K, Anwar F. A Cross-talk between Nanomedicines and Cardiac Complications: Comprehensive View. Curr Pharm Des 2025; 31:741-752. [DOI: https:/doi.org/10.2174/0113816128347223241021111914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/24/2024] [Indexed: 05/15/2025]
Abstract
Background:
Cardiovascular Diseases (CVDs) are the leading cause of global morbidity and mortality,
necessitating innovative approaches for both therapeutics and diagnostics. Nanoscience has emerged as a
promising frontier in addressing the complexities of CVDs.
Objective:
This study aims to explorethe interaction of CVDs and Nanomedicine (NMs), focusing on applications
in therapeutics and diagnostics.
Observations:
In the realm of therapeutics, nanosized drug delivery systems exhibit unique advantages, such
as enhanced drug bioavailability, targeted delivery, and controlled release. NMs platform, including liposomes,
nanoparticles, and carriers, allows the precise drug targeting to the affected cardiovascular tissues with
minimum adverse effects and maximum therapeutic efficacy. Moreover, nanomaterial (NM) enables the integration
of multifunctional components, such as therapeutic agents and target ligands, into a single system for
comprehensive CVD management. Diagnostic fronts of NMs offer innovative solutions for early detection and
monitoring of CVDs. Nanoparticles and nanosensors enable highly sensitive and specific detection of Cardiac
biomarkers, providing valuable insights into a disease state, its progression, therapeutic outputs, etc. Further,
nano-based technology via imaging modalities offers high high-resolution imaging, aiding in the vascularization
of cardiovascular structures and abnormalities. Nanotechnology-based imaging modalities offer high-resolution
imaging and aid in the visualization of cardiovascular structures and abnormalities.
Conclusion:
The cross-talk of CVDs and NMs holds tremendous potential for revolutionizing cardiovascular
healthcare by providing targeted and efficient therapeutic interventions, as well as sensitive and early detection
for the improvement of patient health if integrated with Artificial Intelligence (AI).
Collapse
Affiliation(s)
- Shagufta Jawaid
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Yogesh Joshi
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Nauroz Neelofar
- Department of Obstetrics and Gynae, Himaliyan Institute of Medical Sciences, Swami Rama Himaliyan University, Jollygrand,
Dehradun, Uttarakhand, India
| | - Khuzamah Khursheed
- Shri Guru Ram Rai Institute of Medical and Health Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand, India
| | - Samya Shams
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Mansi Chaudhary
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Mitali Arora
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Karan Mahajan
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah,
Saudi Arabia
| |
Collapse
|
7
|
Młynarska E, Bojdo K, Frankenstein H, Kustosik N, Mstowska W, Przybylak A, Rysz J, Franczyk B. Nanotechnology and Artificial Intelligence in Dyslipidemia Management-Cardiovascular Disease: Advances, Challenges, and Future Perspectives. J Clin Med 2025; 14:887. [PMID: 39941558 PMCID: PMC11818864 DOI: 10.3390/jcm14030887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
This narrative review explores emerging technologies in dyslipidemia management, focusing on nanotechnology and artificial intelligence (AI). It examines the current treatment recommendations and contrasts them with the future prospects enabled by these innovations. Nanotechnology shows significant potential in enhancing drug delivery systems, enabling more targeted and efficient lipid-lowering therapies. In parallel, AI offers advancements in diagnostics, cardiovascular risk prediction, and personalized treatment strategies. AI-based decision support systems and machine learning algorithms are particularly promising for analyzing large datasets and delivering evidence-based recommendations. Together, these technologies hold the potential to revolutionize dyslipidemia management, improving outcomes and optimizing patient care. In addition, this review covers key topics such as cardiovascular disease biomarkers and risk factors, providing insights into the current methods for assessing cardiovascular risk. It also discusses the current understanding of dyslipidemia, including pathophysiology and clinical management. Together, these insights and technologies hold the potential to revolutionize dyslipidemia management, improving outcomes and optimizing patient care.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Łódź, Poland
| | - Kinga Bojdo
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Łódź, Poland
| | - Hanna Frankenstein
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Łódź, Poland
| | - Natalia Kustosik
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Łódź, Poland
| | - Weronika Mstowska
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Łódź, Poland
| | | | - Jacek Rysz
- Department of Nephrology, Hypertension and Internal Medicine, Medical University of Lodz, 90-549 Łodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, 90-549 Łódź, Poland
| |
Collapse
|
8
|
Saleh M, El-Moghazy A, Elgohary AH, Saber WIA, Helmy YA. Revolutionizing Nanovaccines: A New Era of Immunization. Vaccines (Basel) 2025; 13:126. [PMID: 40006673 PMCID: PMC11860605 DOI: 10.3390/vaccines13020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Infectious diseases continue to pose a significant global health threat. To combat these challenges, innovative vaccine technologies are urgently needed. Nanoparticles (NPs) have unique properties and have emerged as a promising platform for developing next-generation vaccines. Nanoparticles are revolutionizing the field of vaccine development, offering a new era of immunization. They allow the creation of more effective, stable, and easily deliverable vaccines. Various types of NPs, including lipid, polymeric, metal, and virus-like particles, can be employed to encapsulate and deliver vaccine components, such as mRNA or protein antigens. These NPs protect antigens from degradation, target them to specific immune cells, and enhance antigen presentation, leading to robust and durable immune responses. Additionally, NPs can simultaneously deliver multiple vaccine components, including antigens, and adjuvants, in a single formulation, simplifying vaccine production and administration. Nanovaccines offer a promising approach to combat food- and water-borne bacterial diseases, surpassing traditional formulations. Further research is needed to address the global burden of these infections. This review highlights the potential of NPs to revolutionize vaccine platforms. We explore their mechanisms of action, current applications, and emerging trends. The review discusses the limitations of nanovaccines, innovative solutions and the potential role of artificial intelligence in developing more effective and accessible nanovaccines to combat infectious diseases.
Collapse
Affiliation(s)
- Mohammed Saleh
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Ahmed El-Moghazy
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
| | - Adel H. Elgohary
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - WesamEldin I. A. Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
9
|
Jawaid S, Joshi Y, Neelofar N, Khursheed K, Shams S, Chaudhary M, Arora M, Mahajan K, Anwar F. A Cross-talk between Nanomedicines and Cardiac Complications: Comprehensive View. Curr Pharm Des 2025; 31:741-752. [PMID: 39506444 DOI: 10.2174/0113816128347223241021111914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Cardiovascular Diseases (CVDs) are the leading cause of global morbidity and mortality, necessitating innovative approaches for both therapeutics and diagnostics. Nanoscience has emerged as a promising frontier in addressing the complexities of CVDs. OBJECTIVE This study aims to explore the interaction of CVDs and Nanomedicine (NMs), focusing on applications in therapeutics and diagnostics. OBSERVATIONS In the realm of therapeutics, nanosized drug delivery systems exhibit unique advantages, such as enhanced drug bioavailability, targeted delivery, and controlled release. NMs platform, including liposomes, nanoparticles, and carriers, allows the precise drug targeting to the affected cardiovascular tissues with minimum adverse effects and maximum therapeutic efficacy. Moreover, Nanomaterial (NM) enables the integration of multifunctional components, such as therapeutic agents and target ligands, into a single system for comprehensive CVD management. Diagnostic fronts of NMs offer innovative solutions for early detection and monitoring of CVDs. Nanoparticles and nanosensors enable highly sensitive and specific detection of Cardiac biomarkers, providing valuable insights into a disease state, its progression, therapeutic outputs, etc. Further, nano-based technology via imaging modalities offers high high-resolution imaging, aiding in the vascularization of cardiovascular structures and abnormalities. Nanotechnology-based imaging modalities offer high-resolution imaging and aid in the visualization of cardiovascular structures and abnormalities. CONCLUSION The cross-talk of CVDs and NMs holds tremendous potential for revolutionizing cardiovascular healthcare by providing targeted and efficient therapeutic interventions, as well as sensitive and early detection for the improvement of patient health if integrated with Artificial Intelligence (AI).
Collapse
Affiliation(s)
- Shagufta Jawaid
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Yogesh Joshi
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Nauroz Neelofar
- Department of Obstetrics and Gynae, Himaliyan Institute of Medical Sciences, Swami Rama Himaliyan University, Jollygrand, Dehradun, Uttarakhand, India
| | - Khuzamah Khursheed
- Shri Guru Ram Rai Institute of Medical and Health Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand, India
| | - Samya Shams
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Mansi Chaudhary
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Mitali Arora
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Karan Mahajan
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Yang T, Guo L. Advancing gastric cancer treatment: nanotechnology innovations and future prospects. Cell Biol Toxicol 2024; 40:101. [PMID: 39565472 PMCID: PMC11579161 DOI: 10.1007/s10565-024-09943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024]
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide, particularly prevalent in Asia, especially in China, where both its incidence and mortality rates are significantly high. Meanwhile, nanotechnology has demonstrated great potential in the treatment of GC. In particular, nanodrug delivery systems have improved therapeutic efficacy and targeting through various functional modifications, such as targeting peptides, tumor microenvironment responsiveness, and instrument-based methods. For instance, silica (SiO2) has excellent biocompatibility and can be used as a drug carrier, with its porous structure enhancing drug loading capacity. Polymer nanoparticles regulate drug release rates and mechanisms by altering material composition and preparation methods. Lipid nanoparticles efficiently encapsulate hydrophilic drugs and promote cellular uptake, while carbon-based nanoparticles can be used in biosensors and drug delivery. Targets such as integrins, HER2 receptors, and the tumor microenvironment have been used to improve drug efficacy in GC treatment. Nanodrug delivery techniques not only enhance drug efficacy and delivery capabilities but also selectively target tumor cells. Currently, there is a lack of systematic summarization and synthesis regarding the relationship between nanodrug delivery systems and GC treatment, which to some extent hinders researchers and clinicians from efficiently searching for and referencing related studies, thereby reducing work efficiency. This study aims to systematically summarize the existing research on the relationship between nanodrug delivery systems and GC treatment, making it easier for professionals to search and reference, and thereby promoting further research on the role of nanodrug delivery systems and their clinical applications in GC. This review discusses the applications of functionalized nanocarriers in the treatment of GC in recent years, including surface modifications with targeted markers, the combination of phototherapy, chemotherapy, and immunotherapy, along with their advantages and challenges. It also examines the future prospects of targeted nanomaterials in GC treatment. The review particularly focuses on the combined application of nanocarriers in multiple treatment modalities, such as phototherapy, chemotherapy, and immunotherapy, demonstrating their potential in multimodal treatments. Furthermore, it thoroughly explores the specific challenges that nanocarriers face in GC treatment, such as biocompatibility, drug release control, and clinical translation issues, while providing a systematic outlook on future developments. Additionally, this study emphasizes the potential value and feasibility of nanocarriers in clinical applications, contrasting with most reviews that focus on basic research. Through these innovations, we offer new perspectives and directions for the development of nanotechnology in the treatment of GC.
Collapse
Affiliation(s)
- Tengfei Yang
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, P. R. China
| | - Lin Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, P. R. China.
| |
Collapse
|
11
|
Tripathy A, Patne AY, Mohapatra S, Mohapatra SS. Convergence of Nanotechnology and Machine Learning: The State of the Art, Challenges, and Perspectives. Int J Mol Sci 2024; 25:12368. [PMID: 39596433 PMCID: PMC11594285 DOI: 10.3390/ijms252212368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Nanotechnology and machine learning (ML) are rapidly emerging fields with numerous real-world applications in medicine, materials science, computer engineering, and data processing. ML enhances nanotechnology by facilitating the processing of dataset in nanomaterial synthesis, characterization, and optimization of nanoscale properties. Conversely, nanotechnology improves the speed and efficiency of computing power, which is crucial for ML algorithms. Although the capabilities of nanotechnology and ML are still in their infancy, a review of the research literature provides insights into the exciting frontiers of these fields and suggests that their integration can be transformative. Future research directions include developing tools for manipulating nanomaterials and ensuring ethical and unbiased data collection for ML models. This review emphasizes the importance of the coevolution of these technologies and their mutual reinforcement to advance scientific and societal goals.
Collapse
Affiliation(s)
- Arnav Tripathy
- Center for Research and Education in Nanobioengineering, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.T.); (A.Y.P.)
| | - Akshata Y. Patne
- Center for Research and Education in Nanobioengineering, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.T.); (A.Y.P.)
- Graduate Programs, Taneja College of Pharmacy, MDC30, 12908 USF Health Drive, Tampa, FL 33612, USA
| | - Subhra Mohapatra
- Center for Research and Education in Nanobioengineering, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.T.); (A.Y.P.)
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Shyam S. Mohapatra
- Center for Research and Education in Nanobioengineering, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.T.); (A.Y.P.)
- Graduate Programs, Taneja College of Pharmacy, MDC30, 12908 USF Health Drive, Tampa, FL 33612, USA
- Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| |
Collapse
|
12
|
Cao S, Wei Y, Yue Y, Wang D, Yang J, Xiong A, Zeng H. Mapping the evolution and research landscape of ferroptosis-targeted nanomedicine: insights from a scientometric analysis. Front Pharmacol 2024; 15:1477938. [PMID: 39386034 PMCID: PMC11461269 DOI: 10.3389/fphar.2024.1477938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Objective Notable progress has been made in "ferroptosis-based nano drug delivery systems (NDDSs)" over the past 11 years. Despite the ongoing absence of a comprehensive scientometric overview and up-to-date scientific mapping research, especially regarding the evolution, critical research pathways, current research landscape, central investigative themes, and future directions. Methods Data ranging from 1 January 2012, to 30 November 2023, were obtained from the Web of Science database. A variety of advanced analytical tools were employed for detailed scientometric and visual analyses. Results The results show that China significantly led the field, contributing 82.09% of the total publications, thereby largely shaping the research domain. Chen Yu emerged as the most productive author in this field. Notably, the journal ACS Nano had the greatest number of relevant publications. The study identified liver neoplasms, pancreatic neoplasms, gliomas, neoplasm metastases, and melanomas as the top five crucial disorders in this research area. Conclusion This research provides a comprehensive scientometric assessment, enhancing our understanding of NDDSs focused on ferroptosis. Consequently, it enables rapid access to essential information and facilitates the extraction of novel ideas in the field of ferroptotic nanomedicine for both experienced and emerging researchers.
Collapse
Affiliation(s)
- Siyang Cao
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yihao Wei
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Rehabilitation Science, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, Guangdong, China
| | - Yaohang Yue
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Deli Wang
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jun Yang
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Ao Xiong
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hui Zeng
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Orthopedics, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Lu RM, Hsu HE, Perez SJLP, Kumari M, Chen GH, Hong MH, Lin YS, Liu CH, Ko SH, Concio CAP, Su YJ, Chang YH, Li WS, Wu HC. Current landscape of mRNA technologies and delivery systems for new modality therapeutics. J Biomed Sci 2024; 31:89. [PMID: 39256822 PMCID: PMC11389359 DOI: 10.1186/s12929-024-01080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Realizing the immense clinical potential of mRNA-based drugs will require continued development of methods to safely deliver the bioactive agents with high efficiency and without triggering side effects. In this regard, lipid nanoparticles have been successfully utilized to improve mRNA delivery and protect the cargo from extracellular degradation. Encapsulation in lipid nanoparticles was an essential factor in the successful clinical application of mRNA vaccines, which conclusively demonstrated the technology's potential to yield approved medicines. In this review, we begin by describing current advances in mRNA modifications, design of novel lipids and development of lipid nanoparticle components for mRNA-based drugs. Then, we summarize key points pertaining to preclinical and clinical development of mRNA therapeutics. Finally, we cover topics related to targeted delivery systems, including endosomal escape and targeting of immune cells, tumors and organs for use with mRNA vaccines and new treatment modalities for human diseases.
Collapse
Affiliation(s)
- Ruei-Min Lu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Hsiang-En Hsu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | | | - Monika Kumari
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan
| | - Guan-Hong Chen
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Ming-Hsiang Hong
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Yin-Shiou Lin
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Ching-Hang Liu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Shih-Han Ko
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | | | - Yi-Jen Su
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan
| | - Yi-Han Chang
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Wen-Shan Li
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan.
- Institute of Chemistry, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan.
| | - Han-Chung Wu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan.
| |
Collapse
|
14
|
Wang J, Liu G, Zhou C, Cui X, Wang W, Wang J, Huang Y, Jiang J, Wang Z, Tang Z, Zhang A, Cui D. Application of artificial intelligence in cancer diagnosis and tumor nanomedicine. NANOSCALE 2024; 16:14213-14246. [PMID: 39021117 DOI: 10.1039/d4nr01832j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cancer is a major health concern due to its high incidence and mortality rates. Advances in cancer research, particularly in artificial intelligence (AI) and deep learning, have shown significant progress. The swift evolution of AI in healthcare, especially in tools like computer-aided diagnosis, has the potential to revolutionize early cancer detection. This technology offers improved speed, accuracy, and sensitivity, bringing a transformative impact on cancer diagnosis, treatment, and management. This paper provides a concise overview of the application of artificial intelligence in the realms of medicine and nanomedicine, with a specific emphasis on the significance and challenges associated with cancer diagnosis. It explores the pivotal role of AI in cancer diagnosis, leveraging structured, unstructured, and multimodal fusion data. Additionally, the article delves into the applications of AI in nanomedicine sensors and nano-oncology drugs. The fundamentals of deep learning and convolutional neural networks are clarified, underscoring their relevance to AI-driven cancer diagnosis. A comparative analysis is presented, highlighting the accuracy and efficiency of traditional methods juxtaposed with AI-based approaches. The discussion not only assesses the current state of AI in cancer diagnosis but also delves into the challenges faced by AI in this context. Furthermore, the article envisions the future development direction and potential application of artificial intelligence in cancer diagnosis, offering a hopeful prospect for enhanced cancer detection and improved patient prognosis.
Collapse
Affiliation(s)
- Junhao Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Guan Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Cheng Zhou
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Xinyuan Cui
- Imaging Department of Rui Jin Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Jiulin Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Yixin Huang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Jinlei Jiang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhitao Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Zengyi Tang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Amin Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China.
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- School of Medicine, Henan University, Henan, China
| |
Collapse
|
15
|
Cardoso Rial R. AI in analytical chemistry: Advancements, challenges, and future directions. Talanta 2024; 274:125949. [PMID: 38569367 DOI: 10.1016/j.talanta.2024.125949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 04/05/2024]
Abstract
This article explores the influence and applications of Artificial Intelligence (AI) in analytical chemistry, highlighting its potential to revolutionize the analysis of complex data sets and the development of innovative analytical methods. Additionally, it discusses the role of AI in interpreting large-scale data and optimizing experimental processes. AI has been fundamental in managing heterogeneous data and in advanced analysis of complex spectra in areas such as spectroscopy and chromatography. The article also examines the historical development of AI in chemistry, its current challenges, including the interpretation of AI models and the integration of large volumes of data. Finally, it forecasts future trends and the potential impact of AI on analytical chemistry, emphasizing the need for ethical and secure approaches in the use of AI.
Collapse
Affiliation(s)
- Rafael Cardoso Rial
- Federal Institute of Mato Grosso do Sul, 79750-000, Nova Andradina, MS, Brazil.
| |
Collapse
|