1
|
Lekhavadhani S, Babu S, Shanmugavadivu A, Selvamurugan N. Recent progress in alginate-based nanocomposites for bone tissue engineering applications. Colloids Surf B Biointerfaces 2025; 250:114570. [PMID: 39970786 DOI: 10.1016/j.colsurfb.2025.114570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/08/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Approximately 5-10 % of fractures are associated with non-union, posing a significant challenge in orthopedic applications. Addressing this issue, innovative approaches beyond traditional grafting techniques like bone tissue engineering (BTE) are required. Biomaterials, combined with cells and bioactive molecules in BTE, are critical in managing non-union. Alginate, a natural polysaccharide, has gained widespread recognition in bone regeneration due to its bioavailability, its ability to form gels through crosslinking with divalent cations, and its cost-effectiveness. However, its inherent mechanical weaknesses necessitate a combinatorial approach with other biomaterials. In recent years, nanoscale biomaterials have gained prominence for bone regeneration due to their structural and compositional resemblance to natural bone, offering a supportive environment that regulates cell proliferation and differentiation for new bone formation. In this review, we briefly outline the synthesis of alginate-based nanocomposites using different fabrication techniques, such as hydrogels, 3D-printed scaffolds, fibers, and surface coatings with polymer, ceramic, carbon, metal, or lipid-based nanoparticles. These alginate-based nanocomposites elicit angiogenic, antibacterial, and immunomodulatory properties, thereby enhancing the osteogenic potential as an insightful measure for treating non-union. Despite the existence of similar literature, this work delivers a recent and focused examination of the latest advancements and insights on the potential of alginate-based nanocomposites for BTE applications. This review also underscores the obstacles that alginate-based nanocomposites must overcome to successfully transition into clinical applications.
Collapse
Affiliation(s)
- Sundaravadhanan Lekhavadhani
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Sushma Babu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India.
| |
Collapse
|
2
|
Yin Y, Shuai F, Liu X, Zhao Y, Han X, Zhao H. Biomaterials and therapeutic strategies designed for tooth extraction socket healing. Biomaterials 2025; 316:122975. [PMID: 39626339 DOI: 10.1016/j.biomaterials.2024.122975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/31/2024]
Abstract
Tooth extraction is the most commonly performed oral surgical procedure, with a wide range of clinical indications. The oral cavity is a complex microenvironment, influenced by oral movements, salivary flow, and bacterial biofilms. These factors can contribute to delayed socket healing and the onset of post-extraction complications, which can burden patients' esthetic and functional rehabilitation. Achieving effective extraction socket healing requires a multidisciplinary approach. Recent advancements in materials science and bioengineering have paved the way for developing novel strategies. This review outlines the fundamental healing processes and cellular-molecular interactions involved in the healing of extraction sockets. It then delves into the current landscape of biomaterials for socket healing, highlighting emerging strategies and potential targets that could transform the treatment paradigm. Building upon this foundation, this review also presents future directions and identifies challenges associated with the clinical application of biomaterials for extraction socket healing.
Collapse
Affiliation(s)
- Yijia Yin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fangyuan Shuai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xian Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yuxi Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
3
|
Li R, Wang J, Lin Q, Yin Z, Zhou F, Chen X, Tan H, Su J. Mechano-Responsive Biomaterials for Bone Organoid Construction. Adv Healthc Mater 2025; 14:e2404345. [PMID: 39740101 DOI: 10.1002/adhm.202404345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/08/2024] [Indexed: 01/02/2025]
Abstract
Mechanical force is essential for bone development, bone homeostasis, and bone fracture healing. In the past few decades, various biomaterials have been developed to provide mechanical signals that mimic the natural bone microenvironment, thereby promoting bone regeneration. Bone organoids, emerging as a novel research approach, are 3D micro-bone tissues that possess the ability to self-renew and self-organize, exhibiting biomimetic spatial characteristics. Incorporating mechano-responsive biomaterials in the construction of bone organoids presents a promising avenue for simulating the mechanical bone microenvironment. Therefore, this review commences by elucidating the impact of mechanical force on bone health, encompassing both cellular interactions and alterations in bone structure. Furthermore, the most recent applications of mechano-responsive biomaterials within the realm of bone tissue engineering are highlighted. Three different types of mechano-responsive biomaterials are introduced with a focus on their responsive mechanisms, construction strategies, and efficacy in facilitating bone regeneration. Based on a comprehensive overview, the prospective utilization and future challenges of mechano-responsive biomaterials in the construction of bone organoids are discussed. As bone organoid technology advances, these biomaterials are poised to become powerful tools in bone regeneration.
Collapse
Affiliation(s)
- Ruiyang Li
- Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
- Institute of Translational Medicine, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Wang
- Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
- Institute of Translational Medicine, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Qiushui Lin
- Department of Spine Surgery, First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200941, P. R. China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, P. R. China
| | - Xiao Chen
- Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Hongbo Tan
- Department of Orthopedics, The 920th Hospital of Joint Logistics Support Force, Yunnan, 650020, P. R. China
| | - Jiacan Su
- Department of Orthopedics, Trauma Orthopedics Center, Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
- Institute of Translational Medicine, National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
4
|
Oner F, Kantarci A. Periodontal response to nonsurgical accelerated orthodontic tooth movement. Periodontol 2000 2025. [PMID: 39840535 DOI: 10.1111/prd.12623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/23/2025]
Abstract
Tooth movement is a complex process involving the vascularization of the tissues, remodeling of the bone cells, and periodontal ligament fibroblasts under the hormonal and neuronal regulation mechanisms in response to mechanical force application. Therefore, it will inevitably impact periodontal tissues. Prolonged treatment can lead to adverse effects on teeth and periodontal tissues, prompting the development of various methods to reduce the length of orthodontic treatment. These methods are surgical or nonsurgical interventions applied simultaneously within the orthodontic treatment. The main target of nonsurgical approaches is modulating the response of the periodontal tissues to the orthodontic force. They stimulate osteoclasts and osteoclastic bone resorption in a controlled manner to facilitate tooth movement. Among various nonsurgical methods, the most promising clinical results have been achieved with photobiomodulation (PBM) therapy. Clinical data on electric/magnetic stimulation, pharmacologic administrations, and vibration forces indicate the need for further studies to improve their efficiency. This growing field will lead to a paradigm shift as we understand the biological response to these approaches and their adoption in clinical practice. This review will specifically focus on the impact of nonsurgical methods on periodontal tissues, providing a comprehensive understanding of this significant and understudied aspect of orthodontic care.
Collapse
Affiliation(s)
- Fatma Oner
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Periodontology, Faculty of Dentistry, Istinye University, Istanbul, Turkey
| | - Alpdogan Kantarci
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Shi V, Morgan EF. Estrogen and estrogen receptors mediate the mechanobiology of bone disease and repair. Bone 2024; 188:117220. [PMID: 39106937 PMCID: PMC11392539 DOI: 10.1016/j.bone.2024.117220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
It is well understood that the balance of bone formation and resorption is dependent on both mechanical and biochemical factors. In addition to cell-secreted cytokines and growth factors, sex hormones like estrogen are critical to maintaining bone health. Although the direct osteoprotective function of estrogen and estrogen receptors (ERs) has been reported extensively, evidence that estrogen signaling also has a role in mediating the effects of mechanical loading on maintenance of bone mass and healing of bone injuries has more recently emerged. Recent studies have underscored the role of estrogen and ERs in many pathways of bone mechanosensation and mechanotransduction. Estrogen and ERs have been shown to augment integrin-based mechanotransduction as well as canonical Wnt/b-catenin, RhoA/ROCK, and YAP/TAZ pathways. Estrogen and ERs also influence the mechanosensitivity of not only osteocytes but also osteoblasts, osteoclasts, and marrow stromal cells. The current review will highlight these roles of estrogen and ERs in cellular mechanisms underlying bone mechanobiology and discuss their implications for management of osteoporosis and bone fractures. A greater understanding of the mechanisms behind interactions between estrogen and mechanical loading may be crucial to addressing the shortcomings of current hormonal and pharmaceutical therapies. A combined therapy approach including high-impact exercise therapy may mitigate adverse side effects and allow an effective long-term solution for the prevention, treatment, and management of bone fragility in at-risk populations. Furthermore, future implications to novel local delivery mechanisms of hormonal therapy for osteoporosis treatment, as well as the effects on bone health of applications of sex hormone therapy outside of bone disease, will be discussed.
Collapse
Affiliation(s)
- Vivian Shi
- Boston University, Department of Biomedical Engineering, 44 Cummington St, Boston 02215, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 44 Cummington St, Boston 02215, MA, USA
| | - Elise F Morgan
- Boston University, Department of Biomedical Engineering, 44 Cummington St, Boston 02215, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 44 Cummington St, Boston 02215, MA, USA.
| |
Collapse
|
6
|
Zelmer AR, Yang D, Gunn NJ, Solomon LB, Nelson R, Kidd SP, Richter K, Atkins GJ. Osteomyelitis-relevant antibiotics at clinical concentrations show limited effectivity against acute and chronic intracellular S. aureus infections in osteocytes. Antimicrob Agents Chemother 2024; 68:e0080824. [PMID: 39194210 PMCID: PMC11459924 DOI: 10.1128/aac.00808-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Osteomyelitis caused by Staphylococcus aureus can involve the persistent infection of osteocytes. We sought to determine if current clinically utilized antibiotics were capable of clearing an intracellular osteocyte S. aureus infection. Rifampicin, vancomycin, levofloxacin, ofloxacin, amoxicillin, oxacillin, doxycycline, linezolid, gentamicin, and tigecycline were assessed for their minimum inhibitory concentration (MIC) and minimum bactericidal concentrations against 12 S. aureus strains, at pH 5.0 and 7.2 to mimic lysosomal and cytoplasmic environments, respectively. Those antibiotics whose bone estimated achievable concentration was commonly above their respective MIC for the strains tested were further assayed in a human osteocyte infection model under acute and chronic conditions. Osteocyte-like cells were treated at 1×, 4×, and 10× the MIC for 1 and 7 days following infection (acute model), or at 15 and 21 days of infection (chronic model). The intracellular effectivity of each antibiotic was measured in terms of CFU reduction, small colony variant formation, and bacterial mRNA expression change. Only rifampicin, levofloxacin, and linezolid reduced intracellular CFU numbers significantly in the acute model. Consistent with the transition to a non-culturable state, few if any CFU could be recovered from the chronic model. However, no treatment in either model reduced the quantity of bacterial mRNA or prevented non-culturable bacteria from returning to a culturable state. These findings indicate that S. aureus adapts phenotypically during intracellular infection of osteocytes, adopting a reversible quiescent state that is protected against antibiotics, even at 10× their MIC. Thus, new therapeutic approaches are necessary to cure S. aureus intracellular infections in osteomyelitis.
Collapse
Affiliation(s)
- Anja R. Zelmer
- Center for Orthopedic and Trauma Research, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Dongqing Yang
- Center for Orthopedic and Trauma Research, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Nicholas J. Gunn
- Center for Orthopedic and Trauma Research, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - L. Bogdan Solomon
- Center for Orthopedic and Trauma Research, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Department of Orthopedics and Trauma, Royal Adelaide Hospital, Adelaide, Australia
| | - Renjy Nelson
- Department of Infectious Diseases, Central Adelaide Local Health Network, Adelaide, Australia
| | - Stephen P. Kidd
- Australian Center for Antimicrobial Resistance Ecology, University of Adelaide, Adelaide, Australia
- Research Center for Infectious Disease, School of Biological Science, University of Adelaide, Adelaide, Australia
| | - Katharina Richter
- Department of Surgery, Richter Lab, Basil Hetzel Institute for Translational Health Research, University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, Australia
| | - Gerald J. Atkins
- Center for Orthopedic and Trauma Research, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
7
|
Umur E, Bulut SB, Yiğit P, Bayrak E, Arkan Y, Arslan F, Baysoy E, Kaleli-Can G, Ayan B. Exploring the Role of Hormones and Cytokines in Osteoporosis Development. Biomedicines 2024; 12:1830. [PMID: 39200293 PMCID: PMC11351445 DOI: 10.3390/biomedicines12081830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The disease of osteoporosis is characterized by impaired bone structure and an increased risk of fractures. There is a significant impact of cytokines and hormones on bone homeostasis and the diagnosis of osteoporosis. As defined by the World Health Organization (WHO), osteoporosis is defined as having a bone mineral density (BMD) that is 2.5 standard deviations (SD) or more below the average for young and healthy women (T score < -2.5 SD). Cytokines and hormones, particularly in the remodeling of bone between osteoclasts and osteoblasts, control the differentiation and activation of bone cells through cytokine networks and signaling pathways like the nuclear factor kappa-B ligand (RANKL)/the receptor of RANKL (RANK)/osteoprotegerin (OPG) axis, while estrogen, parathyroid hormones, testosterone, and calcitonin influence bone density and play significant roles in the treatment of osteoporosis. This review aims to examine the roles of cytokines and hormones in the pathophysiology of osteoporosis, evaluating current diagnostic methods, and highlighting new technologies that could help for early detection and treatment of osteoporosis.
Collapse
Affiliation(s)
- Egemen Umur
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Safiye Betül Bulut
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Pelin Yiğit
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Emirhan Bayrak
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Yaren Arkan
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Fahriye Arslan
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Engin Baysoy
- Department of Biomedical Engineering, Bahçeşehir University, İstanbul 34353, Türkiye
| | - Gizem Kaleli-Can
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Bugra Ayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Toscano RA, Barbosa S, Campos LG, de Sousa CA, Dallazen E, Mourão CF, Shibli JA, Ervolino E, Faverani LP, Assunção WG. The Addition of Hydroxyapatite Nanoparticles on Implant Surfaces Modified by Zirconia Blasting and Acid Etching to Enhance Peri-Implant Bone Healing. Int J Mol Sci 2024; 25:7321. [PMID: 39000425 PMCID: PMC11242766 DOI: 10.3390/ijms25137321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
This study investigated the impact of adding hydroxyapatite nanoparticles to implant surfaces treated with zirconia blasting and acid etching (ZiHa), focusing on structural changes and bone healing parameters in low-density bone sites. The topographical characterization of titanium discs with a ZiHa surface and a commercially modified zirconia-blasted and acid-etched surface (Zi) was performed using scanning electron microscopy, profilometry, and surface-free energy. For the in vivo assessment, 22 female rats were ovariectomized and kept for 90 days, after which one implant from each group was randomly placed in each tibial metaphysis of the animals. Histological and immunohistochemical analyses were performed at 14 and 28 days postoperatively (decalcified lab processing), reverse torque testing was performed at 28 days, and histometry from calcified lab processing was performed at 60 days The group ZiHa promoted changes in surface morphology, forming evenly distributed pores. For bone healing, ZiHa showed a greater reverse torque, newly formed bone area, and bone/implant contact values compared to group Zi (p < 0.05; t-test). Qualitative histological and immunohistochemical analyses showed higher features of bone maturation for ZiHa on days 14 and 28. This preclinical study demonstrated that adding hydroxyapatite to zirconia-blasted and acid-etched surfaces enhanced peri-implant bone healing in ovariectomized rats. These findings support the potential for improving osseointegration of dental implants, especially in patients with compromised bone metabolism.
Collapse
Affiliation(s)
- Ricardo Alves Toscano
- Department of Diagnosis and Surgery, Sao Paulo State University-UNESP, Aracatuba School of Dentistry, Sao Paulo 16015-050, Brazil
| | - Stéfany Barbosa
- Department of Diagnosis and Surgery, Sao Paulo State University-UNESP, Aracatuba School of Dentistry, Sao Paulo 16015-050, Brazil
| | - Larissa Gabriele Campos
- Department of Diagnosis and Surgery, Sao Paulo State University-UNESP, Aracatuba School of Dentistry, Sao Paulo 16015-050, Brazil
| | - Cecília Alves de Sousa
- Department of Dental Materials and Prosthodontics, Sao Paulo State University-UNESP, Aracatuba School of Dentistry, Sao Paulo 16015-050, Brazil
| | - Eduardo Dallazen
- Department of Diagnosis and Surgery, Sao Paulo State University-UNESP, Aracatuba School of Dentistry, Sao Paulo 16015-050, Brazil
| | - Carlos Fernando Mourão
- Department of Periodontology, School of Dentistry, Tufts University, Boston, MA 02111, USA
| | - Jamil Awad Shibli
- Dental Research Division, Department of Periodontology and Oral Implantology, University of Guarulhos (UnG), Guarulhos 07115-230, Brazil
| | - Edilson Ervolino
- Department of Basic Science, Sao Paulo State University-UNESP, Aracatuba School of Dentistry, Sao Paulo 16018-800, Brazil
| | - Leonardo P Faverani
- Department of Diagnosis and Surgery, Sao Paulo State University-UNESP, Aracatuba School of Dentistry, Sao Paulo 16015-050, Brazil
| | - Wirley Goncalves Assunção
- Department of Dental Materials and Prosthodontics, Sao Paulo State University-UNESP, Aracatuba School of Dentistry, Sao Paulo 16015-050, Brazil
| |
Collapse
|
9
|
Ding S, Chen Y, Huang C, Song L, Liang Z, Wei B. Perception and response of skeleton to mechanical stress. Phys Life Rev 2024; 49:77-94. [PMID: 38564907 DOI: 10.1016/j.plrev.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Mechanical stress stands as a fundamental factor in the intricate processes governing the growth, development, morphological shaping, and maintenance of skeletal mass. The profound influence of stress in shaping the skeletal framework prompts the assertion that stress essentially births the skeleton. Despite this acknowledgment, the mechanisms by which the skeleton perceives and responds to mechanical stress remain enigmatic. In this comprehensive review, our scrutiny focuses on the structural composition and characteristics of sclerotin, leading us to posit that it serves as the primary structure within the skeleton responsible for bearing and perceiving mechanical stress. Furthermore, we propose that osteocytes within the sclerotin emerge as the principal mechanical-sensitive cells, finely attuned to perceive mechanical stress. And a detailed analysis was conducted on the possible transmission pathways of mechanical stress from the extracellular matrix to the nucleus.
Collapse
Affiliation(s)
- Sicheng Ding
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yiren Chen
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Chengshuo Huang
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lijun Song
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhen Liang
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| | - Bo Wei
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
10
|
Chin KY. Updates in the skeletal and joint protective effects of tocotrienol: a mini review. Front Endocrinol (Lausanne) 2024; 15:1417191. [PMID: 38974581 PMCID: PMC11224474 DOI: 10.3389/fendo.2024.1417191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
Osteoporosis and osteoarthritis continue to pose significant challenges to the aging population, with limited preventive options and pharmacological treatments often accompanied by side effects. Amidst ongoing efforts to discover new therapeutic agents, tocotrienols (TTs) have emerged as potential candidates. Derived from annatto bean and palm oil, TTs have demonstrated efficacy in improving skeletal and joint health in numerous animal models of bone loss and osteoarthritis. Mechanistic studies suggest that TTs exert their effects through antioxidant, anti-inflammatory, Wnt-suppressive, and mevalonate-modulating mechanisms in bone, as well as through self-repair mechanisms in chondrocytes. However, human clinical trials in this field remain scarce. In conclusion, TTs hold promise as agents for preventing osteoporosis and osteoarthritis, pending further evidence from human clinical trials.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| |
Collapse
|
11
|
Dang AT, Ono M, Wang Z, Tosa I, Hara ES, Mikai A, Kitagawa W, Yonezawa T, Kuboki T, Oohashi T. Local E-rhBMP-2/β-TCP Application Rescues Osteocyte Dendritic Integrity and Reduces Microstructural Damage in Alveolar Bone Post-Extraction in MRONJ-like Mouse Model. Int J Mol Sci 2024; 25:6648. [PMID: 38928355 PMCID: PMC11203997 DOI: 10.3390/ijms25126648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The pathology of medication-related osteonecrosis of the jaw (MRONJ), often associated with antiresorptive therapy, is still not fully understood. Osteocyte networks are known to play a critical role in maintaining bone homeostasis and repair, but the exact condition of these networks in MRONJ is unknown. On the other hand, the local application of E-coli-derived Recombinant Human Bone Morphogenetic Protein 2/β-Tricalcium phosphate (E-rhBMP-2/β-TCP) has been shown to promote bone regeneration and mitigate osteonecrosis in MRONJ-like mouse models, indicating its potential therapeutic application for the treatment of MRONJ. However, the detailed effect of BMP-2 treatment on restoring bone integrity, including its osteocyte network, in an MRONJ condition remains unclear. Therefore, in the present study, by applying a scanning electron microscope (SEM) analysis and a 3D osteocyte network reconstruction workflow on the alveolar bone surrounding the tooth extraction socket of an MRONJ-like mouse model, we examined the effectiveness of BMP-2/β-TCP therapy on the alleviation of MRONJ-related bone necrosis with a particular focus on the osteocyte network and alveolar bone microstructure (microcrack accumulation). The 3D osteocyte dendritic analysis showed a significant decrease in osteocyte dendritic parameters along with a delay in bone remodeling in the MRONJ group compared to the healthy counterpart. The SEM analysis also revealed a notable increase in the number of microcracks in the alveolar bone surface in the MRONJ group compared to the healthy group. In contrast, all of those parameters were restored in the E-rhBMP-2/β-TCP-treated group to levels that were almost similar to those in the healthy group. In summary, our study reveals that MRONJ induces osteocyte network degradation and microcrack accumulation, while application of E-rhBMP-2/β-TCP can restore a compromised osteocyte network and abrogate microcrack accumulation in MRONJ.
Collapse
Affiliation(s)
- Anh Tuan Dang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (I.T.); (T.K.)
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
- Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Ziyi Wang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
| | - Ikue Tosa
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (I.T.); (T.K.)
- Cartilage Biology and Regenerative Medicine Laboratory, Section of Growth and Development, Division of Orthodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Emilio Satoshi Hara
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan;
| | - Akihiro Mikai
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
| | - Wakana Kitagawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (I.T.); (T.K.)
| | - Tomoko Yonezawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (I.T.); (T.K.)
- Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (Z.W.); (A.M.); (W.K.); (T.Y.); (T.O.)
| |
Collapse
|
12
|
Lu M, Zhu M, Wu Z, Liu W, Cao C, Shi J. The role of YAP/TAZ on joint and arthritis. FASEB J 2024; 38:e23636. [PMID: 38752683 DOI: 10.1096/fj.202302273rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are two common forms of arthritis with undefined etiology and pathogenesis. Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ), which act as sensors for cellular mechanical and inflammatory cues, have been identified as crucial players in the regulation of joint homeostasis. Current studies also reveal a significant association between YAP/TAZ and the pathogenesis of OA and RA. The objective of this review is to elucidate the impact of YAP/TAZ on different joint tissues and to provide inspiration for further studying the potential therapeutic implications of YAP/TAZ on arthritis. Databases, such as PubMed, Cochran Library, and Embase, were searched for all available studies during the past two decades, with keywords "YAP," "TAZ," "OA," and "RA."
Collapse
Affiliation(s)
- Mingcheng Lu
- Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Mengqi Zhu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Zuping Wu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Wei Liu
- Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Chuwen Cao
- Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Jiejun Shi
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang, Hangzhou, China
| |
Collapse
|
13
|
Muratovic D, Atkins GJ, Findlay DM. Is RANKL a potential molecular target in osteoarthritis? Osteoarthritis Cartilage 2024; 32:493-500. [PMID: 38160744 DOI: 10.1016/j.joca.2023.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE Osteoarthritis (OA) is a disease of joints, in which the bone under the articular cartilage undergoes increased remodelling activity. The question is whether a better understanding of the causes and mechanisms of bone remodelling can predict disease-modifying treatments. DESIGN This review summarises the current understanding of the aetiology of OA, with an emphasis on events in the subchondral bone (SCB), and the cells and cytokines involved, to seek an answer to this question. RESULTS SCB remodelling across OA changes the microstructure of the SCB, which alters the load-bearing properties of the joint and seems to have an important role in the initiation and progression of OA. Bone remodelling is tightly controlled by numerous cytokines, of which Receptor Activator of NFκB ligand (RANKL) and osteoprotegerin are central factors in almost all known bone conditions. In terms of finding therapeutic options for OA, an important question is whether controlling the rate of SCB remodelling would be beneficial. The role of RANKL in the pathogenesis and progression of OA and the effect of its neutralisation remain to be clarified. CONCLUSIONS This review further makes the case for SCB remodelling as important in OA and for additional study of RANKL in OA, both its pathophysiological role and its potential as an OA disease target.
Collapse
Affiliation(s)
- Dzenita Muratovic
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia; Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| | - Gerald J Atkins
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia; Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| | - David M Findlay
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
14
|
Wirsig K, Bacova J, Richter RF, Hintze V, Bernhardt A. Cellular response of advanced triple cultures of human osteocytes, osteoblasts and osteoclasts to high sulfated hyaluronan (sHA3). Mater Today Bio 2024; 25:101006. [PMID: 38445011 PMCID: PMC10912908 DOI: 10.1016/j.mtbio.2024.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Bone remodelling, important for homeostasis and regeneration involves the controlled action of osteoblasts, osteocytes and osteoclasts. The present study established a three-dimensional human in vitro bone model as triple culture with simultaneously differentiating osteocytes and osteoclasts, in the presence of osteoblasts. Since high sulfated hyaluronan (sHA3) was reported as a biomaterial to enhance osteogenesis as well as to dampen osteoclastogenesis, the triple culture was exposed to sHA3 to investigate cellular responses compared to the respective bone cell monocultures. Osteoclast formation and marker expression was stimulated by sHA3 only in triple culture. Osteoprotegerin (OPG) gene expression and protein secretion, but not receptor activator of NF-κB ligand (RANKL) or sclerostin (SOST), were strongly enhanced, suggesting an important role of sHA3 itself in osteoclastogenesis with other targets than indirect modulation of the RANKL/OPG ratio. Furthermore, sHA3 upregulated osteocalcin (BGLAP) in osteocytes and osteoblasts in triple culture, while alkaline phosphatase (ALP) was downregulated.
Collapse
Affiliation(s)
- Katharina Wirsig
- Centre for Translational Bone, Joint- and Soft Tissue Research, Faculty of Medicine and University Hospital, TUD University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| | - Jana Bacova
- Centre for Translational Bone, Joint- and Soft Tissue Research, Faculty of Medicine and University Hospital, TUD University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice, Czech Republic
| | - Richard F. Richter
- Centre for Translational Bone, Joint- and Soft Tissue Research, Faculty of Medicine and University Hospital, TUD University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| | - Vera Hintze
- Max Bergmann Center of Biomaterials, Institute of Material Science, TUD University of Technology, Budapester Str. 27, 01069, Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint- and Soft Tissue Research, Faculty of Medicine and University Hospital, TUD University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| |
Collapse
|
15
|
Xie J, Xu Y, Liu X, Long L, Chen J, Huang C, Shao Y, Cai Z, Zhang Z, Zhou R, Leng J, Bai X, Song Q. Mechanically stimulated osteocytes maintain tumor dormancy in bone metastasis of non-small cell lung cancer by releasing small extracellular vesicles. eLife 2024; 12:RP89613. [PMID: 38547196 PMCID: PMC10977966 DOI: 10.7554/elife.89613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024] Open
Abstract
Although preclinical and clinical studies have shown that exercise can inhibit bone metastasis progression, the mechanism remains poorly understood. Here, we found that non-small cell lung cancer (NSCLC) cells adjacent to bone tissue had a much lower proliferative capacity than the surrounding tumor cells in patients and mice. Subsequently, it was demonstrated that osteocytes, sensing mechanical stimulation generated by exercise, inhibit NSCLC cell proliferation and sustain the dormancy thereof by releasing small extracellular vesicles with tumor suppressor micro-RNAs, such as miR-99b-3p. Furthermore, we evaluated the effects of mechanical loading and treadmill exercise on the bone metastasis progression of NSCLC in mice. As expected, mechanical loading of the tibia inhibited the bone metastasis progression of NSCLC. Notably, bone metastasis progression of NSCLC was inhibited by moderate exercise, and combinations with zoledronic acid had additive effects. Moreover, exercise preconditioning effectively suppressed bone metastasis progression. This study significantly advances the understanding of the mechanism underlying exercise-afforded protection against bone metastasis progression.
Collapse
Affiliation(s)
- Jing Xie
- General Practice Centre, The Seventh Affiliated Hospital, Southern Medical UniversityFoshanChina
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Yafei Xu
- General Practice Centre, The Seventh Affiliated Hospital, Southern Medical UniversityFoshanChina
| | - Xuhua Liu
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Li Long
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Ji Chen
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Chunyan Huang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Yan Shao
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Zhiqing Cai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Zhimin Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Ruixin Zhou
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Jiarong Leng
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical UniversityGuangzhouChina
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Qiancheng Song
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical UniversityGuangzhouChina
| |
Collapse
|
16
|
Pinho AR, Gomes MC, Costa DCS, Mano JF. Bioactive Self-Regulated Liquified Microcompartments to Bioengineer Bone-Like Microtissues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305029. [PMID: 37847901 DOI: 10.1002/smll.202305029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/25/2023] [Indexed: 10/19/2023]
Abstract
Designing a microenvironment that drives autonomous stromal cell differentiation toward osteogenesis while recapitulating the complexity of bone tissue remains challenging. In the current study, bone-like microtissues are created using electrohydrodynamic atomization to form two distinct liquefied microcapsules (mCAPs): i) hydroxypyridinone (HOPO)-modified gelatin (GH mCAPs, 7.5% w/v), and ii) HOPO-modified gelatin and dopamine-modified gelatin (GH+GD mCAPs, 7.5%+1.5% w/v). The ability of HOPO to coordinate with iron ions at physiological pH allows the formation of a semipermeable micro-hydrogel shell. In turn, the dopamine affinity for calcium ions sets a bioactive milieu for bone-like microtissues. After 21 days post encapsulation, GH and GH+GD mCAPs potentiate autonomous osteogenic differentiation of mesenchymal stem cells accompanied by collagen type-I gene upregulation, increased alkaline phosphatase (ALP) expression, and formation of mineralized extracellular matrix. However, the GH+GD mCAPs show higher levels of osteogenic markers starting on day 14, translating into a more advanced and organized mineralized matrix. The GH+GD system also shows upregulation of the receptor activator of nuclear factor kappa-B ligand (RANK-L) gene, enabling the autonomous osteoclastic differentiation of monocytes. These catechol-based mCAPs offer a promising approach to designing multifunctional and autonomous bone-like microtissues to study in vitro bone-related processes at the cell-tissue interface, angiogenesis, and osteoclastogenesis.
Collapse
Affiliation(s)
- Ana R Pinho
- CICECO, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Maria C Gomes
- CICECO, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Dora C S Costa
- CICECO, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- CICECO, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
17
|
Monteiro AC, de Andrade Garcia D, Du Rocher B, Fontão APGA, Nogueira LP, Fidalgo G, Colaço MV, Bonomo A. Cooperation between T and B cells reinforce the establishment of bone metastases in a mouse model of breast cancer. Bone 2024; 178:116932. [PMID: 37832903 DOI: 10.1016/j.bone.2023.116932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Immune cells educated by the primary breast tumor and their secreted factors support the formation of bone pre-metastatic niche. Indeed, we showed that RANKL+ CD3+ T cells, specific for the 4T1 mammary carcinoma cell line, arrive at the bone marrow before metastatic cells and set the pre-metastatic niche. In the absence of RANKL expressed by T cells, there is no pre-metastatic osteolytic disease and bone metastases are completely blocked. Adding to the role of T cells, we have recently demonstrated that dendritic cells assist RANKL+ T cell activities at bone pre-metastatic niche, by differentiating into potent bone resorbing osteoclast-like cells, keeping their antigen-presenting cell properties, providing a positive feedback loop to the osteolytic profile. Here we are showing that bone marrow-derived CD19+ B cells, from 4T1 tumor-bearing mice, also express the pro-osteoclastogenic cytokine receptor activator of NFκB ligand (RANKL). Analysis of trabecular bone mineral density by conventional histomorphometry and X-ray microtomography (micro-CT) demonstrated that B cells expressing RANKL cooperate with 4T1-primed CD3+ T cells to induce bone loss. Moreover, RANKL expression by B cells depends on T cells activity, since experiments performed with B cells derived from 4T1 tumor-bearing nude BALB/c mice resulted in the maintenance of trabecular bone mass instead of bone loss. Altogether, we believe that 4T1-primed RANKL+ B cells alone are not central mediators of bone loss in vivo but when associated with T cells induce a strong decrease in bone mass, accelerating both breast cancer progression and bone metastases establishment. Although several studies performed in different pathological settings, showed that B cells, positively and negatively impact on osteoclastogenesis, due to their capacity to secret pro or anti-osteoclastogenic cytokines, as far as we know, this is the first report showing the role of RANKL expression by B cells on breast cancer-derived bone metastases scenario.
Collapse
Affiliation(s)
- Ana Carolina Monteiro
- Laboratory of Osteo and Tumor Immunology, Department of Immunobiology, Fluminense Federal University, Rio de Janeiro, Brazil; Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | - Diego de Andrade Garcia
- Laboratory of Osteo and Tumor Immunology, Department of Immunobiology, Fluminense Federal University, Rio de Janeiro, Brazil; Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Barbara Du Rocher
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Gabriel Fidalgo
- Laboratory of Applied Physics to Biomedical and Environmental Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Vinicius Colaço
- Laboratory of Applied Physics to Biomedical and Environmental Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil; Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Kerberger R, Brunello G, Drescher D, van Rietbergen B, Becker K. Micro finite element analysis of continuously loaded mini-implants - A micro-CT study in the rat tail model. Bone 2023; 177:116912. [PMID: 37739299 DOI: 10.1016/j.bone.2023.116912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Implant migration has been described as a minor displacement of orthodontic mini-implants (OMIs) when subjected to constant forces. Aim of this study was to evaluate the impact of local stresses on implant migration and bone remodelling around constantly loaded OMIs. Two mini-implants were placed in one caudal vertebra of 61 rats, connected by a nickel‑titanium contraction spring, and loaded with different forces (0.0, 0.5, 1.0, 1.5 N). In vivo micro-CT scans were taken immediately and 1, 2 (n = 61), 4, 6 and 8 (n = 31) weeks post-op. Nine volumes of interest (VOIs) around each implant were defined. To analyse stress values, micro-finite element models were created. Bone remodelling was analysed by calculating the bone volume change between scans performed at consecutive time points. Statistical analysis was performed using a linear mixed model and likelihood-ratio-tests, followed by Tuckey post hoc tests when indicated. The highest stresses were observed in the proximal top VOI. In all VOIs, stress values tended to reach their maximum after two weeks and decreased thereafter. Bone remodelling analysis revealed initial bone loss within the first two weeks and bone gain up to week eight, which was noted especially in the highest loading group. The magnitude of local stresses influenced bone remodelling and it can be speculated that the stress related bone resorption favoured implant migration. After a first healing phase with a high degree of bone resorption, net bone gain representing consolidation was observed.
Collapse
Affiliation(s)
- Robert Kerberger
- Department of Orthodontics, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; Department of Orthodontics and Dentofacial Orthopedics, Charité, Charité Centrum CC03, Institute for Dental and Craniofacial Sciences, Aßmannshauser Straße 4-6, 14197 Berlin, Germany.
| | - Giulia Brunello
- Department of Oral Surgery, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; Department of Neurosciences, School of Dentistry, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | - Dieter Drescher
- Department of Orthodontics, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany.
| | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, the Netherlands.
| | - Kathrin Becker
- Department of Orthodontics, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; Department of Orthodontics and Dentofacial Orthopedics, Charité, Charité Centrum CC03, Institute for Dental and Craniofacial Sciences, Aßmannshauser Straße 4-6, 14197 Berlin, Germany.
| |
Collapse
|
19
|
Feng L, Zhao W, Fan Y, Yuan C, Zhang X. RNA N6-methyladenosine demethylase FTO inhibits glucocorticoid-induced osteoblast differentiation and function in bone marrow mesenchymal stem cells. J Cell Biochem 2023; 124:1835-1847. [PMID: 37882437 DOI: 10.1002/jcb.30492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023]
Abstract
Excess glucocorticoids (GCs) have been reported as key factors that impair osteoblast (OB) differentiation and function. However, the role of RNA N6-methyladenosine (m6 A) in this process has not yet been elucidated. In this study, we report that both the mRNA and protein expression of fat mass and obesity-associated gene (FTO), a key m6 A demethylase, were dose-dependently downregulated during OB differentiation by dexamethasone (DEX) in bone marrow mesenchymal stem cells (BMSCs), and FTO was gradually increased during OB differentiation. Meanwhile, FTO knockdown suppressed OB differentiation and mineralization, whereas overexpression of wide-type FTO, but not mutant FTO (mutated m6 A demethylase active site), reversed DEX-induced osteogenesis impairment. Interfering with FTO inhibited proliferation and the expression of Ki67 and Pcna in BMSCs during OB differentiation, whereas forced expression of wide-type FTO improved DEX-induced inhibition of BMSCs proliferation. Moreover, FTO knockdown reduced the mRNA stability of the OB marker genes Alpl and Col1a1, and FTO-modulated OB differentiation via YTHDF1 and YTHDF2. In conclusion, our results suggest that FTO inhibits the GCs-induced OB differentiation and function of BMSCs.
Collapse
Affiliation(s)
- Lingling Feng
- Department of Paediatrics, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Wei Zhao
- Department of Orthopedic Surgery, Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Yunshan Fan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chengcheng Yuan
- Department of Paediatrics, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Xiaohua Zhang
- Department of Paediatrics, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| |
Collapse
|
20
|
Zelmer AR, Starczak Y, Solomon LB, Richter K, Yang D, Atkins GJ. Saos-2 cells cultured under hypoxia rapidly differentiate to an osteocyte-like stage and support intracellular infection by Staphylococcus aureus. Physiol Rep 2023; 11:e15851. [PMID: 37929653 PMCID: PMC10626491 DOI: 10.14814/phy2.15851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
The intracellular infection of osteocytes represents a clinically important aspect of osteomyelitis. However, few human osteocyte in vitro models exist and the differentiation of immature osteoblasts to an osteocyte stage typically takes at least 4-weeks of culture, making the study of this process challenging and time consuming. The osteosarcoma cell line Saos-2 has proved to be a useful model of human osteoblast to mature osteocyte differentiation. Culture under osteogenic conditions in a standard normoxic (21% O2 ) atmosphere results in reproducible mineralization and acquisition of mature osteocyte markers over the expected 28-35 day culture period. In order to expedite experimental assays, we tested whether reducing available oxygen to mimic concentrations experienced by osteocytes in vivo would increase the rate of differentiation. Cells cultured under 1% O2 exhibited maximal mineral deposition by 14 days. Early (COLA1, MEPE) and mature (PHEX, DMP1, GJA1, SOST) osteocyte markers were upregulated earlier under hypoxia compared to normoxia. Cells differentiated under 1% O2 for 14 days displayed a similar ability to internalize Staphylococcus aureus as day 28 cells grown under normoxic conditions. Thus, low oxygen accelerates Saos-2 osteocyte differentiation, resulting in a useful human osteocyte-like cell model within 14 days.
Collapse
Affiliation(s)
- Anja R. Zelmer
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Yolandi Starczak
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Lucian B. Solomon
- Centre for Orthopaedic & Trauma Research, Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Department of Orthopaedics and TraumaRoyal Adelaide HospitalAdelaideSouth AustraliaAustralia
| | - Katharina Richter
- Richter Lab, Department of SurgeryBasil Hetzel Institute for Translational Health Research, University of AdelaideAdelaideSouth AustraliaAustralia
| | - Dongqing Yang
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Gerald J. Atkins
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
21
|
Cao JJ, Gregoire BR. Time of day of exercise does not affect the beneficial effect of exercise on bone structure in older female rats. Front Physiol 2023; 14:1142057. [PMID: 37965104 PMCID: PMC10641222 DOI: 10.3389/fphys.2023.1142057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Background: Circadian clock genes are expressed in bone and biomarkers of bone resorption and formation exhibit diurnal patterns in animals and humans. Disruption of the diurnal rhythms may affect the balance of bone turnover and compromise the beneficial effects of exercise on bone. Objective: This study investigated whether the time of day of exercise alters bone metabolism in a rodent model. We hypothesized that exercise during the active phase results in greater bone mass than exercise during the rest phase in older female rats. Methods: Fifty-five, female 12-month-old Sprague Dawley rats were randomly assigned to four treatment groups (n = 13-14/group). Rats were subjected to no exercise or 2 h of involuntary exercise at 9 m/min and 5 days/wk for 15 weeks using motor-driven running wheels at Zeitgeber time (ZT) 4-6 (rest phase), 12-14 (early active phase), or 22-24 (late active phase). ZT 0 is defined as light on, the start of the rest phase. A red lamp was used at minimal intensity during the active, dark phase exercise period, i.e., ZT 12-14 and 22-24. Bone structure, body composition, and bone-related cytokines in serum and gene expression in bone were measured. Data were analyzed using one-way ANOVA followed by Tukey-Kramer post hoc contrasts. Results: Exercise at different ZT did not affect body weight, fat mass, lean mass, the serum bone biomarkers, bone structural or mechanical parameters, or expression of circadian genes. Exercise pooled exercise data from different ZT were compared to the No-Exercise data (a priori contrast) increased serum IGF-1 and irisin concentrations, compared to No-Exercise. Exercise increased tibial bone volume/total volume (p = 0.01), connectivity density (p = 0.04), and decreased structural model index (p = 0.02). Exercise did not affect expression of circadian genes. Conclusion: These data indicate that exercise is beneficial to bone structure and that the time of day of exercise does not alter the beneficial effect of exercise on bone in older female rats.
Collapse
Affiliation(s)
- Jay J. Cao
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | | |
Collapse
|
22
|
Lv Z, Zhang J, Liang S, Zhou C, Hu D, Brooks DJ, Bouxsein ML, Lanske B, Kostenuik P, Gori F, Baron R. Comparative study in estrogen-depleted mice identifies skeletal and osteocyte transcriptomic responses to abaloparatide and teriparatide. JCI Insight 2023; 8:e161932. [PMID: 37870958 PMCID: PMC10619488 DOI: 10.1172/jci.insight.161932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/08/2023] [Indexed: 10/25/2023] Open
Abstract
Osteocytes express parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptors and respond to the PTHrP analog abaloparatide (ABL) and to the PTH 1-34 fragment teriparatide (TPTD), which are used to treat osteoporosis. Several studies indicate overlapping but distinct skeletal responses to ABL or TPTD, but their effects on cortical bone may differ. Little is known about their differential effects on osteocytes. We compared cortical osteocyte and skeletal responses to ABL and TPTD in sham-operated and ovariectomized mice. Administered 7 weeks after ovariectomy for 4 weeks at a dose of 40 μg/kg/d, TPTD and ABL had similar effects on trabecular bone, but ABL showed stronger effects in cortical bone. In cortical osteocytes, both treatments decreased lacunar area, reflecting altered peri-lacunar remodeling favoring matrix accumulation. Osteocyte RNA-Seq revealed that several genes and pathways were altered by ovariectomy and affected similarly by TPTD and ABL. Notwithstanding, several signaling pathways were uniquely regulated by ABL. Thus, in mice, TPTD and ABL induced a positive osteocyte peri-lacunar remodeling balance, but ABL induced stronger cortical responses and affected the osteocyte transcriptome differently. We concluded that ABL affected the cortical osteocyte transcriptome in a manner subtly different from TPTD, resulting in more beneficial remodeling/modeling changes and homeostasis of the cortex.
Collapse
Affiliation(s)
- Zhengtao Lv
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Jiaming Zhang
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Shuang Liang
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Chenhe Zhou
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Dorothy Hu
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Daniel J. Brooks
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Mary L. Bouxsein
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School and Massachusetts General Hospital (MGH) Endocrine Unit, Boston, Massachusetts, USA
| | | | | | - Francesca Gori
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Roland Baron
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Harvard Medical School and Massachusetts General Hospital (MGH) Endocrine Unit, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Gao Y, Zhang X, Zhou H. Biomimetic Hydrogel Applications and Challenges in Bone, Cartilage, and Nerve Repair. Pharmaceutics 2023; 15:2405. [PMID: 37896165 PMCID: PMC10609742 DOI: 10.3390/pharmaceutics15102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Tissue engineering and regenerative medicine is a highly sought-after field for researchers aiming to compensate and repair defective tissues. However, the design and development of suitable scaffold materials with bioactivity for application in tissue repair and regeneration has been a great challenge. In recent years, biomimetic hydrogels have shown great possibilities for use in tissue engineering, where they can tune mechanical properties and biological properties through functional chemical modifications. Also, biomimetic hydrogels provide three-dimensional (3D) network spatial structures that can imitate normal tissue microenvironments and integrate cells, scaffolds, and bioactive substances for tissue repair and regeneration. Despite the growing interest in various hydrogels for biomedical use in previous decades, there are still many aspects of biomimetic hydrogels that need to be understood for biomedical and clinical trial applications. This review systematically describes the preparation of biomimetic hydrogels and their characteristics, and it details the use of biomimetic hydrogels in bone, cartilage, and nerve tissue repair. In addition, this review outlines the application of biomimetic hydrogels in bone, cartilage, and neural tissues regarding drug delivery. In particular, the advantages and shortcomings of biomimetic hydrogels in biomaterial tissue engineering are highlighted, and future research directions are proposed.
Collapse
Affiliation(s)
- Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China;
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, China
| | - Xiaobo Zhang
- Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710000, China
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China;
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
24
|
Muratovic D, Findlay DM, Quinn MJ, Quarrington RD, Solomon LB, Atkins GJ. Microstructural and cellular characterisation of the subchondral trabecular bone in human knee and hip osteoarthritis using synchrotron tomography. Osteoarthritis Cartilage 2023; 31:1224-1233. [PMID: 37178862 DOI: 10.1016/j.joca.2023.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE It is unclear if different factors influence osteoarthritis (OA) progression and degenerative changes characterising OA disease in hip and knee. We investigated the difference between hip OA and knee OA at the subchondral bone (SCB) tissue and cellular level, relative to the degree of cartilage degeneration. DESIGN Bone samples were collected from 11 patients (aged 70.4 ± 10.7years) undergoing knee arthroplasty and 8 patients (aged 62.3 ± 13.4years) undergoing hip arthroplasty surgery. Trabecular bone microstructure, osteocyte-lacunar network, and bone matrix vascularity were evaluated using synchrotron micro-CT imaging. Additionally, osteocyte density, viability, and connectivity were determined histologically. RESULTS The associations between severe cartilage degeneration and increase of bone volume fraction (%) [- 8.7, 95% CI (-14.1, -3.4)], trabecular number (#/mm) [- 1.5, 95% CI (-0.8, -2.3)], osteocyte lacunar density (#/mm3) [4714.9; 95% CI (2079.1, 7350.6)] and decrease of trabecular separation (mm) [- 0.07, 95% CI (0.02, 0.1)] were found in both knee and hip OA. When compared to knee OA, hip OA was characterised by larger (µm3) but less spheric osteocyte lacunae [47.3; 95% CI (11.2, 83.4), - 0.04; 95% CI (-0.06, -0.02), respectively], lower vascular canal density (#/mm3) [- 22.8; 95% CI (-35.4, -10.3)], lower osteocyte cell density (#/mm2) [- 84.2; 95% CI (-102.5, -67.4)], and less senescent (#/mm2) but more apoptotic osteocytes (%) [- 2.4; 95% CI (-3.6, -1.2), 24.9; 95% CI (17.7, 32.1)], respectively. CONCLUSION SCB from hip OA and knee OA exhibits different characteristics at the tissue and cellular levels, suggesting different mechanisms of OA progression in different joints.
Collapse
Affiliation(s)
- Dzenita Muratovic
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia; Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia.
| | - David M Findlay
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia
| | - Micaela J Quinn
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia; Bone and Joint Osteoimmunology Laboratory, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ryan D Quarrington
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lucian B Solomon
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia; Orthopaedic and Trauma Service, the Royal Adelaide Hospital and the Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Gerald J Atkins
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
25
|
Kitase Y, Prideaux M. Regulation of the Osteocyte Secretome with Aging and Disease. Calcif Tissue Int 2023; 113:48-67. [PMID: 37148298 DOI: 10.1007/s00223-023-01089-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
As the most numerous and long-lived of all bone cells, osteocytes have essential functions in regulating skeletal health. Through the lacunar-canalicular system, secreted proteins from osteocytes can reach cells throughout the bone. Furthermore, the intimate connectivity between the lacunar-canalicular system and the bone vasculature allows for the transport of osteocyte-secreted factors into the circulation to reach the entire body. Local and endocrine osteocyte signaling regulates physiological processes such as bone remodeling, bone mechanoadaptation, and mineral homeostasis. However, these processes are disrupted by impaired osteocyte function induced by aging and disease. Dysfunctional osteocyte signaling is now associated with the pathogenesis of many disorders, including chronic kidney disease, cancer, diabetes mellitus, and periodontitis. In this review, we focus on the targeting of bone and extraskeletal tissues by the osteocyte secretome. In particular, we highlight the secreted osteocyte proteins, which are known to be dysregulated during aging and disease, and their roles during disease progression. We also discuss how therapeutic or genetic targeting of osteocyte-secreted proteins can improve both skeletal and systemic health.
Collapse
Affiliation(s)
- Yukiko Kitase
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Matthew Prideaux
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
26
|
Muñoz-Garcia J, Heymann D, Giurgea I, Legendre M, Amselem S, Castañeda B, Lézot F, William Vargas-Franco J. Pharmacological options in the treatment of osteogenesis imperfecta: A comprehensive review of clinical and potential alternatives. Biochem Pharmacol 2023; 213:115584. [PMID: 37148979 DOI: 10.1016/j.bcp.2023.115584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Osteogenesis imperfecta (OI) is a genetically heterogeneous connective tissue disorder characterized by bone fragility and different extra-skeletal manifestations. The severity of these manifestations makes it possible to classify OI into different subtypes based on the main clinical features. This review aims to outline and describe the current pharmacological alternatives for treating OI, grounded on clinical and preclinical reports, such as antiresorptive agents, anabolic agents, growth hormone, and anti-TGFβ antibody, among other less used agents. The different options and their pharmacokinetic and pharmacodynamic properties will be reviewed and discussed, focusing on the variability of their response and the molecular mechanisms involved to attain the main clinical goals, which include decreasing fracture incidence, improving pain, and promoting growth, mobility, and functional independence.
Collapse
Affiliation(s)
- Javier Muñoz-Garcia
- Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France; Nantes Université, CNRS, US2B, UMR 6286, Nantes F-44322, France
| | - Dominique Heymann
- Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France; Nantes Université, CNRS, US2B, UMR 6286, Nantes F-44322, France; Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Irina Giurgea
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), Paris F-75012, France
| | - Marie Legendre
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), Paris F-75012, France
| | - Serge Amselem
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), Paris F-75012, France
| | - Beatriz Castañeda
- Service d'Orthopédie Dento-Facial, Département d'Odontologie, Hôpital Pitié-Salpêtrière (AP-HP), Paris F75013, France
| | - Frédéric Lézot
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), Paris F-75012, France.
| | | |
Collapse
|
27
|
Prideaux M, Smargiassi A, Peng G, Brotto M, Robling AG, Bonewald LF. L-BAIBA Synergizes with Sub-Optimal Mechanical Loading to Promote New Bone Formation. JBMR Plus 2023; 7:e10746. [PMID: 37283651 PMCID: PMC10241089 DOI: 10.1002/jbm4.10746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 06/08/2023] Open
Abstract
The L-enantiomer of β-aminoisobutyric acid (BAIBA) is secreted by contracted muscle in mice, and exercise increases serum levels in humans. In mice, L-BAIBA reduces bone loss with unloading, but whether it can have a positive effect with loading is unknown. Since synergism can be more easily observed with sub-optimal amounts of factors/stimulation, we sought to determine whether L-BAIBA could potentiate the effects of sub-optimal loading to enhance bone formation. L-BAIBA was provided in drinking water to C57Bl/6 male mice subjected to either 7 N or 8.25 N of sub-optimal unilateral tibial loading for 2 weeks. The combination of 8.25 N and L-BAIBA significantly increased the periosteal mineral apposition rate and bone formation rate compared to loading alone or BAIBA alone. Though L-BAIBA alone had no effect on bone formation, grip strength was increased, suggesting a positive effect on muscle function. Gene expression analysis of the osteocyte-enriched bone showed that the combination of L-BAIBA and 8.25 N induced the expression of loading-responsive genes such as Wnt1, Wnt10b, and the TGFb and BMP signaling pathways. One dramatic change was the downregulation of histone genes in response to sub-optimal loading and/or L-BAIBA. To determine early gene expression, the osteocyte fraction was harvested within 24 hours of loading. A dramatic effect was observed with L-BAIBA and 8.25 N loading as genes were enriched for pathways regulating the extracellular matrix (Chad, Acan, Col9a2), ion channel activity (Scn4b, Scn7a, Cacna1i), and lipid metabolism (Plin1, Plin4, Cidec). Few changes in gene expression were observed with sub-optimal loading or L-BAIBA alone after 24 hours. These results suggest that these signaling pathways are responsible for the synergistic effects between L-BAIBA and sub-optimal loading. Showing that a small muscle factor can enhance the effects of sub-optimal loading of bone may be of relevance for individuals unable to benefit from optimal exercise. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Matt Prideaux
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology and Physiology, School of MedicineIndiana UniversityIndianapolisINUSA
| | - Alberto Smargiassi
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology and Physiology, School of MedicineIndiana UniversityIndianapolisINUSA
| | - Gang Peng
- Indiana Center for Musculoskeletal Health, Department of Medicine and Molecular Genetics, School of MedicineIndiana UniversityIndianapolisINUSA
| | - Marco Brotto
- Bone‐Muscle Research Center, College of Nursing and Health InnovationUniversity of Texas‐ArlingtonArlingtonTXUSA
| | - Alexander G Robling
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology and Physiology, School of MedicineIndiana UniversityIndianapolisINUSA
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology and Physiology, School of MedicineIndiana UniversityIndianapolisINUSA
| |
Collapse
|
28
|
Jiao Z, Chai H, Wang S, Sun C, Huang Q, Xu W. SOST gene suppression stimulates osteocyte Wnt/β-catenin signaling to prevent bone resorption and attenuates particle-induced osteolysis. J Mol Med (Berl) 2023; 101:607-620. [PMID: 37121919 PMCID: PMC10163143 DOI: 10.1007/s00109-023-02319-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023]
Abstract
The most common cause for prosthetic revision surgery is wear particle-induced periprosthetic osteolysis, which leads to aseptic loosening of the prosthesis. Both SOST gene and its synthetic protein, sclerostin, are hallmarks of osteocytes. According to our previous findings, blocking SOST induces bone formation and protects against bone loss and deformation caused by titanium (Ti) particles by activating the Wnt/β-catenin cascade. Although SOST has been shown to influence osteoblasts, its ability to control wear-particle-induced osteolysis via targeting osteoclasts remains unclear. Mice were subjected to development of a cranial osteolysis model. Micro CT, HE staining, and TRAP staining were performed to evaluate bone loss in the mouse model. Bone marrow-derived monocyte-macrophages (BMMs) made from the C57BL/6 mice were exposed to the medium of MLO-Y4 (co-cultured with Ti particles) to transform them into osteoclasts. Bioinformatics methods were used to predict and validate the interaction among SOST, Wnt/β-catenin, RANKL/OPG, TNF-α, and IL-6. Local bone density and bone volume improved after SOST inhibition, both the number of lysis pores and the rate of skull erosion decreased. Histological research showed that β-catenin and OPG expression were markedly increased after SOST inhibition, whereas TRAP and RANKL levels were markedly decreased. In-vitro, Ti particle treatment elevated the expression of sclerostin, suppressed the expression of β-catenin, and increased the RANKL/OPG ratio in the MLO-Y4 cell line. TNF-α and IL-6 also elevated after treatment with Ti particles. The expression levels of NFATc1, CTSK, and TRAP in osteoclasts were significantly increased, and the number of positive cells for TRAP staining was increased. Additionally, the volume of bone resorption increased at the same time. In contrast, when SOST expression was inhibited in the MLO-Y4 cell line, these effects produced by Ti particles were reversed. All the results strongly show that SOST inhibition triggered the osteocyte Wnt/β-catenin signaling cascade and prevented wear particle-induced osteoclastogenesis, which might reduce periprosthetic osteolysis. KEY MESSAGES: SOST is a molecular regulator in maintaining bone homeostasis. SOST plays in regulating bone homeostasis through the Wnt/β-catenin signaling pathway. SOST gene suppression stimulates osteocyte Wnt/β-catenin signaling to prevent bone resorption and attenuates particle-induced osteolysis.
Collapse
Affiliation(s)
- Zixue Jiao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Hao Chai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
- Department of Orthopedics, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Shendong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Chunguang Sun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
- Department of Orthopedics, Funing People's Hospital, Yancheng, 224400, Jiangsu, China
| | - Qun Huang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
- Department of Orthopedics, Zhangjiagang City First People's Hospital, Zhangjiagang, 215699, Jiangsu, China
| | - Wei Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
29
|
Biewer B, Rompen E, Mittelbronn M, Hammer GP, Quatresooz P, Borgmann FK. Effects of Minocycline Hydrochloride as an Adjuvant Therapy for a Guided Bone Augmentation Procedure in The Rat Calvarium. Dent J (Basel) 2023; 11:dj11040092. [PMID: 37185470 PMCID: PMC10136768 DOI: 10.3390/dj11040092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
This in vivo study reports the influence of minocycline-HCl administration on extra-skeletal bone generation in a Guided Bone Augmentation model, utilizing titanium caps placed on the intact as well as perforated calvaria of rats. The test group was administered 0.5 mg/mL minocycline-HCl with the drinking water, and the amount of bone tissue in the caps was quantified at three time points (4, 8 and 16 weeks). A continuously increased tissue fill was observed in all groups over time. The administration of minocycline-HCl as well as perforation of the calvaria increased this effect, especially with regard to mineralization. The strongest tissue augmentation, with 1.8 times that of the untreated control group, and, at the same time, the most mineralized tissue (2.3× over untreated control), was produced in the combination of both treatments, indicating that systemic administration of minocycline-HCl has an accelerating and enhancing effect on vertical bone augmentation.
Collapse
|
30
|
Resveratrol protects osteocytes against oxidative stress in ovariectomized rats through AMPK/JNK1-dependent pathway leading to promotion of autophagy and inhibition of apoptosis. Cell Death Dis 2023; 9:16. [PMID: 36681672 PMCID: PMC9867734 DOI: 10.1038/s41420-023-01331-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
A large number of studies in recent years indicate that osteocytes are the orchestrators of bone remodeling by regulating both osteoblast and osteoclast activities. Oxidative stress-induced osteocyte apoptosis plays critical roles in the pathological processes of postmenopausal osteoporosis. Resveratrol is a natural polyphenolic compound that ameliorates postmenopausal osteoporosis. However, whether resveratrol regulates osteocyte apoptosis via autophagy remains largely unknown. The effects of resveratrol on regulating osteocyte apoptosis and autophagy were analyzed both in vivo and in vitro. In vitro, cultured MLO-Y4 cells were exposed to H2O2 with or without resveratrol. In vivo, an ovariectomy-induced osteoporosis model was constructed in rats with or without daily intraperitoneal injection of 10 mg/kg body weight resveratrol. It was found that resveratrol attenuated H2O2-induced apoptosis through activating autophagy in cultured MLO-Y4 cells, which was mediated by the dissociation of Beclin-1/Bcl-2 complex in AMPK/JNK1-dependent pathway, ultimately regulating osteocytes function. Furthermore, it was shown that resveratrol treatment reduced osteocytes oxidative stress, inhibited osteocytes apoptosis and promoted autophagy in ovariectomized rats. Our study suggests that resveratrol protects against oxidative stress by restoring osteocytes autophagy and alleviating apoptosis via AMPK/JNK1 activation, therefore dissociating Bcl-2 from Beclin-1.
Collapse
|
31
|
Zhao S, Ge C, Li Y, Chang L, Dan Z, Tu Y, Deng L, Kang H, Li C. Desferrioxamine alleviates UHMWPE particle-induced osteoclastic osteolysis by inhibiting caspase-1-dependent pyroptosis in osteocytes. J Biol Eng 2022; 16:34. [PMID: 36482442 PMCID: PMC9733322 DOI: 10.1186/s13036-022-00314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cell death and inflammation are the two important triggers of wear particle-induced osteolysis. Particles, including cobalt-chromium-molybdenum and tricalcium phosphate, have been reported to induce pyroptosis in macrophages and osteocytes. Although macrophage pyroptosis facilitates osteoclastic bone resorption and osteolysis, whether osteocyte pyroptosis is involved in osteoclastic osteolysis still needs further investigation. Desferrioxamine (DFO), an FDA-approved medication and a powerful iron chelator, has been proven to reduce ultrahigh-molecular-weight polyethylene (UHMWPE) particle-induced osteolysis. However, whether DFO can ameliorate UHMWPE particle-induced osteolysis by decreasing pyroptosis in osteocytes is unknown. RESULTS A mouse calvarial osteolysis model and the mouse osteocyte cell line MLO-Y4 was used, and we found that pyroptosis in osteocytes was significantly induced by UHMWPE particles. Furthermore, our findings uncovered a role of caspase-1-dependent pyroptosis in osteocytes in facilitating osteoclastic osteolysis induced by UHMWPE particles. In addition, we found that DFO could alleviate UHMWPE particle-induced pyroptosis in osteocytes in vivo and in vitro. CONCLUSIONS We uncovered a role of caspase-1-dependent pyroptosis in osteocytes in facilitating osteoclastic osteolysis induced by UHMWPE particles. Furthermore, we found that DFO alleviated UHMWPE particle-induced osteoclastic osteolysis partly by inhibiting pyroptosis in osteocytes. Schematic of DFO reducing UHMWPE particle-induced osteolysis by inhibiting osteocytic pyroptosis. Wear particles, such as polymers, generated from prosthetic implant materials activate canonical inflammasomes and promote the cleavage and activation of caspase-1. This is followed by caspase-1-dependent IL-β maturation and GSDMD cleavage. The N-terminal fragment of GSDMD binds to phospholipids on the cell membrane and forms holes in the membrane, resulting in the release of mature IL-β and inflammatory intracellular contents. This further facilitates osteoclastic differentiation of BMMs, resulting in excessive bone resorption and ultimately leading to prosthetic osteolysis. DFO reduces UHMWPE particle-induced osteolysis by inhibiting osteocytic pyroptosis.
Collapse
Affiliation(s)
- Shenli Zhao
- grid.460149.e0000 0004 1798 6718Department of Orthopedics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China ,grid.412277.50000 0004 1760 6738Department of Orthopedics, Shanghai Key Laboratory for the Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2Nd Road, Shanghai, 200025 China
| | - Chen Ge
- grid.412277.50000 0004 1760 6738Department of Orthopedic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Li
- grid.89957.3a0000 0000 9255 8984Nanjing Medical University School of Medicine, Nanjing, China
| | - Leilei Chang
- grid.412277.50000 0004 1760 6738Department of Orthopedics, Shanghai Key Laboratory for the Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2Nd Road, Shanghai, 200025 China
| | - Zhou Dan
- grid.412277.50000 0004 1760 6738Department of Orthopedics, Shanghai Key Laboratory for the Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2Nd Road, Shanghai, 200025 China
| | - Yihui Tu
- grid.460149.e0000 0004 1798 6718Department of Orthopedics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lianfu Deng
- grid.412277.50000 0004 1760 6738Department of Orthopedics, Shanghai Key Laboratory for the Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2Nd Road, Shanghai, 200025 China
| | - Hui Kang
- grid.412538.90000 0004 0527 0050Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicin, No. 301 Middle Yanchang Road, Shanghai, 200072 China
| | - Changwei Li
- grid.412277.50000 0004 1760 6738Department of Orthopedics, Shanghai Key Laboratory for the Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2Nd Road, Shanghai, 200025 China
| |
Collapse
|
32
|
Apfelbaum AA, Wrenn ED, Lawlor ER. The importance of fusion protein activity in Ewing sarcoma and the cell intrinsic and extrinsic factors that regulate it: A review. Front Oncol 2022; 12:1044707. [PMID: 36505823 PMCID: PMC9727305 DOI: 10.3389/fonc.2022.1044707] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidence shows that despite clonal origins tumors eventually become complex communities comprised of phenotypically distinct cell subpopulations. This heterogeneity arises from both tumor cell intrinsic programs and signals from spatially and temporally dynamic microenvironments. While pediatric cancers usually lack the mutational burden of adult cancers, they still exhibit high levels of cellular heterogeneity that are largely mediated by epigenetic mechanisms. Ewing sarcomas are aggressive bone and soft tissue malignancies with peak incidence in adolescence and the prognosis for patients with relapsed and metastatic disease is dismal. Ewing sarcomas are driven by a single pathognomonic fusion between a FET protein and an ETS family transcription factor, the most common of which is EWS::FLI1. Despite sharing a single driver mutation, Ewing sarcoma cells demonstrate a high degree of transcriptional heterogeneity both between and within tumors. Recent studies have identified differential fusion protein activity as a key source of this heterogeneity which leads to profoundly different cellular phenotypes. Paradoxically, increased invasive and metastatic potential is associated with lower EWS::FLI1 activity. Here, we review what is currently understood about EWS::FLI1 activity, the cell autonomous and tumor microenvironmental factors that regulate it, and the downstream consequences of these activity states on tumor progression. We specifically highlight how transcription factor regulation, signaling pathway modulation, and the extracellular matrix intersect to create a complex network of tumor cell phenotypes. We propose that elucidation of the mechanisms by which these essential elements interact will enable the development of novel therapeutic approaches that are designed to target this complexity and ultimately improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Elizabeth R. Lawlor
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
33
|
Wilmoth RL, Sharma S, Ferguson VL, Bryant SJ. The effects of prostaglandin E2 on gene expression of IDG-SW3-derived osteocytes in 2D and 3D culture. Biochem Biophys Res Commun 2022; 630:8-15. [PMID: 36126467 DOI: 10.1016/j.bbrc.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/02/2022] [Indexed: 11/20/2022]
Abstract
Prostaglandin E2 (PGE2) is a key signaling molecule produced by osteocytes in response to mechanical loading, but its effect on osteocytes is less understood. This work examined the effect of PGE2 on IDG-SW3-derived osteocytes in standard 2D culture (collagen-coated tissue culture polystyrene) and in a 3D degradable poly(ethylene glycol) hydrogel. IDG-SW3 cells were differentiated for 35 days into osteocytes in 2D and 3D cultures. 3D culture led to a more mature osteocyte phenotype with 100-fold higher Sost expression. IDG-SW3-derived osteocytes were treated with PGE2 and assessed for expression of genes involved in PGE2, anabolic, and catabolic signaling. In 2D, PGE2 had a rapid (1 h) and sustained (24 h) effect on many PGE2 signaling genes, a rapid stimulatory effect on Il6, and a sustained inhibitory effect on Tnfrsf11b and Bglap. Comparing culture environment without PGE2, osteocytes had higher expression of all four EP receptors and Sost but lower expression of Tnfrsf11b, Bglap, and Gja1 in 3D. Osteocytes were more responsive to PGE2 in 3D. With increasing PGE2, 3D led to increased Gja1 and decreased Sost expressions and a higher Tnfrsf11b/Tnfsf11 ratio, indicating an anabolic response. Further analysis in 3D revealed that EP4, the receptor implicated in PGE2 signaling in bone, was not responsible for the PGE2-induced gene expression changes in osteocytes. In summary, osteocytes are highly responsive to PGE2 when cultured in an in vitro 3D hydrogel model suggesting that autocrine and paracrine PGE2 signaling in osteocytes may play a role in bone homeostasis.
Collapse
Affiliation(s)
- Rachel L Wilmoth
- Mechanical Engineering, University of Colorado, 1111 Engineering Dr, Boulder, CO, 80309, USA
| | - Sadhana Sharma
- Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80309, USA
| | - Virginia L Ferguson
- Mechanical Engineering, University of Colorado, 1111 Engineering Dr, Boulder, CO, 80309, USA; BioFrontiers Institute, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80309, USA; Materials Science and Engineering, University of Colorado, 4001 Discovery Dr., Boulder, CO, 80309, USA
| | - Stephanie J Bryant
- Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80309, USA; BioFrontiers Institute, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80309, USA; Materials Science and Engineering, University of Colorado, 4001 Discovery Dr., Boulder, CO, 80309, USA.
| |
Collapse
|
34
|
Chin KY, Ng BN, Rostam MKI, Muhammad Fadzil NFD, Raman V, Mohamed Yunus F, Syed Hashim SA, Ekeuku SO. A Mini Review on Osteoporosis: From Biology to Pharmacological Management of Bone Loss. J Clin Med 2022; 11:6434. [PMID: 36362662 PMCID: PMC9657533 DOI: 10.3390/jcm11216434] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/25/2023] Open
Abstract
Osteoporosis refers to excessive bone loss as reflected by the deterioration of bone mass and microarchitecture, which compromises bone strength. It is a complex multifactorial endocrine disease. Its pathogenesis relies on the presence of several endogenous and exogenous risk factors, which skew the physiological bone remodelling to a more catabolic process that results in net bone loss. This review aims to provide an overview of osteoporosis from its biology, epidemiology and clinical aspects (detection and pharmacological management). The review will serve as an updated reference for readers to understand the basics of osteoporosis and take action to prevent and manage this disease.
Collapse
|
35
|
The Effects of Vitamin E Analogues α-Tocopherol and γ-Tocotrienol on the Human Osteocyte Response to Ultra-High Molecular Weight Polyethylene Wear Particles. PROSTHESIS 2022. [DOI: 10.3390/prosthesis4030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polyethylene (PE) liners are a common bearing surface of orthopaedic prostheses. Wear particles of ultra-high molecular weight PE (UHMWPE) contribute to periprosthetic osteolysis, a major cause of aseptic loosening. Vitamin E is added to some PE liners to prevent oxidative degradation. Osteocytes, an important cell type for controlling both bone mineralisation and bone resorption, have been shown to respond UHMWPE particles by upregulating pro-osteoclastogenic and osteocytic osteolysis. Here, we examined the effects of the vitamin E analogues α-tocopherol and γ-tocotrienol alone or in the context of UHMWPE particles on human osteocyte gene expression and mineralisation behaviour. Human osteoblasts differentiated to an osteocyte-like stage were exposed to UHMWPE wear particles in the presence or absence of either α-Tocopherol or γ-Tocotrienol. Both α-Tocopherol and γ-Tocotrienol induced antioxidant-related gene expression. UHMWPE particles independently upregulated antioxidant gene expression, suggesting an effect of wear particles on oxidative stress. Both vitamin E analogues strongly induced OPG mRNA expression and γ-Tocotrienol also inhibited RANKL mRNA expression, resulting in a significantly reduced RANKL:OPG mRNA ratio (p < 0.01) overall. UHMWPE particles reversed the suppressive effect of α-Tocopherol but not of γ-Tocotrienol on this pro-osteoclastogenic index. UHMWPE particles also upregulated osteocytic-osteolysis related gene expression. Vitamin E analogues alone or in combination with UHMWPE particles also resulted in upregulation of these genes. Consistent with this, both vitamin E analogues promoted calcium release from mineralised cultures of osteocyte-like cells. Our findings suggest that while vitamin E may suppress osteocyte support of osteoclastogenesis in the presence of UHMWPE particles, the antioxidant effect may induce osteocytic osteolysis, which could promote periprosthetic osteolysis. It will be important to conduct further studies of vitamin E to determine the long-term effects of its inclusion in prosthetic materials.
Collapse
|
36
|
Wirsig K, Kilian D, von Witzleben M, Gelinsky M, Bernhardt A. Impact of Sr 2+ and hypoxia on 3D triple cultures of primary human osteoblasts, osteocytes and osteoclasts. Eur J Cell Biol 2022; 101:151256. [PMID: 35839696 DOI: 10.1016/j.ejcb.2022.151256] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
An in vitro bone triple culture involving human primary osteoblasts, osteocytes and osteoclasts enables the investigation of bone healing factors, drugs or biomaterials in a model system for native bone tissue. The present study analyses the impact of Sr2+ as well as hypoxic cultivation (5% O2 content or chemically induced by Co2+) on bone cells. The three cell types were cultivated together in the presence of 100 µM Sr2+, hypoxic conditions or in the presence of 75 µM Co2+. After cultivation the cell types were separated and analysed on mRNA and protein level individually. In response to Sr2+ osteoblasts showed a downregulation of IBSP expression and a stimulation of ALP activity. Osteocyte gene marker expression of PDPN, MEPE, RANKL, OPG, osteocalcin and likewise the amount of secreted osteocalcin was reduced in the presence of Sr2+. Activity of osteoclast-specific enzymes TRAP and CAII was enhanced compared to the Sr2+ free control. Hypoxic conditions induced by both 5% O2 or a Co2+ treatment led to decreased DNA content of all bone cells and downregulated expression of osteoblast markers ALPL and IBSP as well as osteocyte markers PDPN, RANKL and OPG. In addition, Co2+ induced hypoxia decreased gene and protein expression of osteocalcin in osteocytes. In response to the Co2+ treatment, the TRAP gene expression and activity was increased. This study is the first to analyse the effects of Sr2+ or hypoxia on triple cultures with primary human bone cells. The investigated in vitro bone model might be suitable to reduce animal experiments in early stages of biomaterial and drug development.
Collapse
Affiliation(s)
- Katharina Wirsig
- Centre for Translational Bone, Joint, and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, 01307 Dresden, Germany
| | - David Kilian
- Centre for Translational Bone, Joint, and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, 01307 Dresden, Germany
| | - Max von Witzleben
- Centre for Translational Bone, Joint, and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, 01307 Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint, and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, 01307 Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint, and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, 01307 Dresden, Germany.
| |
Collapse
|
37
|
Mechanism of Huangqi Sanxian Decoction Inhibiting Osteoclast Differentiation Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8769531. [PMID: 35754697 PMCID: PMC9225917 DOI: 10.1155/2022/8769531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/13/2022] [Accepted: 05/21/2022] [Indexed: 11/17/2022]
Abstract
Osteoclasts (OCs) have been the unique cell type exhibiting the bone-resorption activity in body. It is important to identify drugs to resist osteoclastogenesis to manage the bone-loss disorders. Huangqi Sanxian decoction (HQSXD) is utilized for the treatment of postmenopausal osteoporosis (PMOP) for a long history in East Asia. This work aimed to examine HQSXD’s activity in OC differentiation. Based on staining with tartrate-resistant acid phosphatase (TRAP), it was found that HQSXD suppressed OC generation under the induction of RANKL produced in the bone marrow-derived monocytes/macrophages (BMMs), with no cytotoxic effect. Later analysis like molecular exploration and network pharmacology (NP) suggested the role of HQSXD in suppressing genes associated with osteoclastogenesis via PI3K/Akt-mediated mechanism dose-dependently. This work might illustrate the molecular pharmacological mechanism involved in HQSXD’s effect on treating OC-associated disorders. Moreover, NP was found to modernize traditional Chinese medicine (TCM) research.
Collapse
|
38
|
Ikezaki-Amada K, Miyamoto Y, Sasa K, Yamada A, Kinoshita M, Yoshimura K, Kawai R, Yano F, Shirota T, Kamijo R. Extracellular acidification augments sclerostin and osteoprotegerin production by Ocy454 mouse osteocytes. Biochem Biophys Res Commun 2022; 597:44-51. [PMID: 35123265 DOI: 10.1016/j.bbrc.2022.01.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/21/2022]
Abstract
Osteocytes sense the microenvironmental stimuli, including mechanical stress, and regulate bone resorption by osteoclasts and bone formation by osteoblasts. Diabetes and cancer metastasis to bone raise l-lactic acid in the bone tissue, causing acidification. Here, we investigated the effects of l-lactic acid and extracellular acidification on the function of mouse Ocy454 osteocytes. L- and d-lactic acid with low chiral selectivity and acidification of the medium raised the production of sclerostin and osteoprotegerin by Ocy454 cells. The mRNA expression of their genes increased after either treatment of L- and d-lactic acid or acidification of the medium. Furthermore, the conditioned medium of Ocy454 cells cultured in an acidic environment suppressed the induction of alkaline phosphatase activity in MC3T3-E1 cells, which was recovered by the anti-sclerostin antibody. While it is reported that HDAC5 inhibits the transcription of the sclerostin gene, extracellular acidification reduced the nuclear localization of HDAC5 in Ocy454 cells. While calmodulin kinase II (CaMKII) is known to phosphorylate and induce extranuclear translocation of HDAC5, KN-62, an inhibitor of CaMKII lowered the expression of the sclerostin gene in Ocy454 cells. Collectively, extracellular acidification is a microenvironmental factor that modulates osteocyte functions.
Collapse
Affiliation(s)
- Kaori Ikezaki-Amada
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan; Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo, Japan
| | - Yoichi Miyamoto
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan.
| | - Kiyohito Sasa
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Atsushi Yamada
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Mitsuhiro Kinoshita
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Kentaro Yoshimura
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Ryota Kawai
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan; Department of Orthodontics, Showa University School of Dentistry, Tokyo, Japan
| | - Fumiko Yano
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| |
Collapse
|
39
|
Choi JUA, Kijas AW, Lauko J, Rowan AE. The Mechanosensory Role of Osteocytes and Implications for Bone Health and Disease States. Front Cell Dev Biol 2022; 9:770143. [PMID: 35265628 PMCID: PMC8900535 DOI: 10.3389/fcell.2021.770143] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Bone homeostasis is a dynamic equilibrium between bone-forming osteoblasts and bone-resorbing osteoclasts. This process is primarily controlled by the most abundant and mechanosensitive bone cells, osteocytes, that reside individually, within chambers of porous hydroxyapatite bone matrix. Recent studies have unveiled additional functional roles for osteocytes in directly contributing to local matrix regulation as well as systemic roles through endocrine functions by communicating with distant organs such as the kidney. Osteocyte function is governed largely by both biochemical signaling and the mechanical stimuli exerted on bone. Mechanical stimulation is required to maintain bone health whilst aging and reduced level of loading are known to result in bone loss. To date, both in vivo and in vitro approaches have been established to answer important questions such as the effect of mechanical stimuli, the mechanosensors involved, and the mechanosensitive signaling pathways in osteocytes. However, our understanding of osteocyte mechanotransduction has been limited due to the technical challenges of working with these cells since they are individually embedded within the hard hydroxyapatite bone matrix. This review highlights the current knowledge of the osteocyte functional role in maintaining bone health and the key regulatory pathways of these mechanosensitive cells. Finally, we elaborate on the current therapeutic opportunities offered by existing treatments and the potential for targeting osteocyte-directed signaling.
Collapse
Affiliation(s)
- Jung Un Ally Choi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda W Kijas
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Jan Lauko
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
40
|
Xu X, Li Y, Shi L, He K, Sun Y, Ding Y, Meng B, Zhang J, Xiang L, Dong J, Liu M, Zhang J, Xiang L, Xiang G. Myeloid-derived growth factor (MYDGF) protects bone mass through inhibiting osteoclastogenesis and promoting osteoblast differentiation. EMBO Rep 2022; 23:e53509. [PMID: 35068044 PMCID: PMC8892248 DOI: 10.15252/embr.202153509] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Whether bone marrow regulates bone metabolism through endocrine and paracrine mechanism remains largely unknown. Here, we found that (i) myeloid cell-specific myeloid-derived growth factor (MYDGF) deficiency decreased bone mass and bone strength in young and aged mice; (ii) myeloid cell-specific MYDGF restoration prevented decreases in bone mass and bone strength in MYDGF knockout mice; moreover, myeloid cell-derived MYDGF improved the progress of bone defects healing, prevented ovariectomy (OVX)-induced bone loss and age-related osteoporosis; (iii) MYDGF inhibited osteoclastogenesis and promoted osteoblast differentiation in vivo and in vitro; and (iv) PKCβ-NF-κB and MAPK1/3-STAT3 pathways were involved in the regulation of MYDGF on bone metabolism. Thus, we concluded that myeloid cell-derived MYDGF is a positive regulator of bone homeostasis by inhibiting bone resorption and promoting bone formation. MYDGF may become a potential novel therapeutic drug for osteoporosis, and bone marrow may become a potential therapeutic target for bone metabolic disorders.
Collapse
Affiliation(s)
- Xiaoli Xu
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Yixiang Li
- Department of Hematology and Medical OncologySchool of MedicineEmory UniversityAtlantaGAUSA
| | - Lingfeng Shi
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Kaiyue He
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Ying Sun
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Yan Ding
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Biying Meng
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Jiajia Zhang
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Lin Xiang
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Jing Dong
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Min Liu
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Junxia Zhang
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Lingwei Xiang
- Centers for Surgery and Public HealthBrigham and Women's HospitalBostonMAUSA
| | - Guangda Xiang
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
41
|
Liu P, Tu J, Wang W, Li Z, Li Y, Yu X, Zhang Z. Effects of Mechanical Stress Stimulation on Function and Expression Mechanism of Osteoblasts. Front Bioeng Biotechnol 2022; 10:830722. [PMID: 35252138 PMCID: PMC8893233 DOI: 10.3389/fbioe.2022.830722] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoclasts and osteoblasts play a major role in bone tissue homeostasis. The homeostasis and integrity of bone tissue are maintained by ensuring a balance between osteoclastic and osteogenic activities. The remodeling of bone tissue is a continuous ongoing process. Osteoclasts mainly play a role in bone resorption, whereas osteoblasts are mainly involved in bone remodeling processes, such as bone cell formation, mineralization, and secretion. These cell types balance and restrict each other to maintain bone tissue metabolism. Bone tissue is very sensitive to mechanical stress stimulation. Unloading and loading of mechanical stress are closely related to the differentiation and formation of osteoclasts and bone resorption function as well as the differentiation and formation of osteoblasts and bone formation function. Consequently, mechanical stress exerts an important influence on the bone microenvironment and bone metabolism. This review focuses on the effects of different forms of mechanical stress stimulation (including gravity, continuously compressive pressure, tensile strain, and fluid shear stress) on osteoclast and osteoblast function and expression mechanism. This article highlights the involvement of osteoclasts and osteoblasts in activating different mechanical transduction pathways and reports changings in their differentiation, formation, and functional mechanism induced by the application of different types of mechanical stress to bone tissue. This review could provide new ideas for further microscopic studies of bone health, disease, and tissue damage reconstruction.
Collapse
Affiliation(s)
- Pan Liu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ji Tu
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Wenzhao Wang
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, China
| | - Zheng Li
- People’s Hospital of Jiulongpo District, Chongqing, China
| | - Yao Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaoping Yu
- School of Public Health, Chengdu Medical College, Chengdu, China
- Basic Medical College of Chengdu University, Chengdu, China
- *Correspondence: Xiaoping Yu, ; Zhengdong Zhang,
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- *Correspondence: Xiaoping Yu, ; Zhengdong Zhang,
| |
Collapse
|
42
|
Impact of degradable magnesium implants on osteocytes in single and triple cultures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112692. [DOI: 10.1016/j.msec.2022.112692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Accepted: 01/29/2022] [Indexed: 11/21/2022]
|
43
|
Tonk CH, Shoushrah SH, Babczyk P, El Khaldi-Hansen B, Schulze M, Herten M, Tobiasch E. Therapeutic Treatments for Osteoporosis-Which Combination of Pills Is the Best among the Bad? Int J Mol Sci 2022; 23:1393. [PMID: 35163315 PMCID: PMC8836178 DOI: 10.3390/ijms23031393] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is a chronical, systemic skeletal disorder characterized by an increase in bone resorption, which leads to reduced bone density. The reduction in bone mineral density and therefore low bone mass results in an increased risk of fractures. Osteoporosis is caused by an imbalance in the normally strictly regulated bone homeostasis. This imbalance is caused by overactive bone-resorbing osteoclasts, while bone-synthesizing osteoblasts do not compensate for this. In this review, the mechanism is presented, underlined by in vitro and animal models to investigate this imbalance as well as the current status of clinical trials. Furthermore, new therapeutic strategies for osteoporosis are presented, such as anabolic treatments and catabolic treatments and treatments using biomaterials and biomolecules. Another focus is on new combination therapies with multiple drugs which are currently considered more beneficial for the treatment of osteoporosis than monotherapies. Taken together, this review starts with an overview and ends with the newest approaches for osteoporosis therapies and a future perspective not presented so far.
Collapse
Affiliation(s)
- Christian Horst Tonk
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Sarah Hani Shoushrah
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Patrick Babczyk
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Basma El Khaldi-Hansen
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Monika Herten
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| |
Collapse
|
44
|
Huang XL, Liu C, Shi XM, Cheng YT, Zhou Q, Li JP, Liao J. Zoledronic acid inhibits osteoclastogenesis and bone resorptive function by suppressing RANKL‑mediated NF‑κB and JNK and their downstream signalling pathways. Mol Med Rep 2021; 25:59. [PMID: 34935053 PMCID: PMC8711024 DOI: 10.3892/mmr.2021.12575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/23/2021] [Indexed: 11/06/2022] Open
Abstract
Targeting excessive osteoclast differentiation and activity is considered a valid therapeutic approach for osteoporosis. Zoledronic acid (ZOL) plays a pivotal role in regulating bone mineral density. However, the exact molecular mechanisms responsible for the inhibitory effects of ZOL on receptor activator of nuclear factor (NF)-κB ligand (RANKL)-induced osteoclast formation are not entirely clear. The present study aimed to investigate the role of ZOL in osteoclast differentiation and function, and to determine whether NF-κB and mitogen-activated protein kinase, and their downstream signalling pathways, are involved in this process. RAW264.7 cells were cultured with RANKL for differentiation into osteoclasts, in either the presence or absence of ZOL. Osteoclast formation was observed by tartrate-resistant acid phosphatase staining and bone resorption pit assays using dentine slices. The expression of osteoclast-specific molecules was analysed using reverse transcription-quantitative polymerase chain reaction and western blotting assays to deduce the molecular mechanisms underlying the role of ZOL in osteoclastogenesis. The results showed that ZOL significantly attenuated osteoclastogenesis and bone resorptive capacity in vitro. ZOL also suppressed the activation of NF-κB and the phosphorylation of c-Jun N-terminal kinase. Furthermore, it inhibited the expression of the downstream factors c-Jun, c-Fos and nuclear factor of activated T cells c1, thereby decreasing the expression of dendritic cell-specific transmembrane protein and other osteoclast-specific markers. In conclusion, ZOL may have therapeutic potential for osteoporosis.
Collapse
Affiliation(s)
- Xiao-Lin Huang
- Stomatology Medical Center of Zhongshan People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Chao Liu
- Department of Respiratory Disease, Zhongshan People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Xue-Mei Shi
- Stomatology Medical Center of Zhongshan People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Yu-Ting Cheng
- School/Hospital of Stomatology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Qian Zhou
- School/Hospital of Stomatology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jian-Ping Li
- Stomatology Medical Center of Zhongshan People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Jian Liao
- School/Hospital of Stomatology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
45
|
Gunn NJ, Zelmer AR, Kidd SP, Solomon LB, Roscioli E, Yang D, Atkins GJ. A Human Osteocyte Cell Line Model for Studying Staphylococcus aureus Persistence in Osteomyelitis. Front Cell Infect Microbiol 2021; 11:781022. [PMID: 34805001 PMCID: PMC8597899 DOI: 10.3389/fcimb.2021.781022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022] Open
Abstract
Infectious osteomyelitis associated with periprosthetic joint infections is often recalcitrant to treatment and has a high rate of recurrence. In the case of Staphylococcus aureus, the most common pathogen in all forms of osteomyelitis, this may be attributed in part to residual intracellular infection of host cells, yet this is not generally considered in the treatment strategy. Osteocytes represent a unique cell type in this context due to their abundance, their formation of a syncytium throughout the bone that could facilitate bacterial spread and their relative inaccessibility to professional immune cells. As such, there is potential value in studying the host-pathogen interactions in the context of this cell type in a replicable and scalable in vitro model. Here, we examined the utility of the human osteosarcoma cell line SaOS2 differentiated to an osteocyte-like stage (SaOS2-OY) as an intracellular infection model for S. aureus. We demonstrate that S. aureus is capable of generating stable intracellular infections in SaOS2-OY cells but not in undifferentiated, osteoblast-like SaOS2 cells (SaOS2-OB). In SaOS2-OY cells, S. aureus transitioned towards a quasi-dormant small colony variant (SCV) growth phenotype over a 15-day post-infection period. The infected cells exhibited changes in the expression of key immunomodulatory mediators that are consistent with the infection response of primary osteocytes. Thus, SaOS2-OY is an appropriate cell line model that may be predictive of the interactions between S. aureus and human osteocytes, and this will be useful for studying mechanisms of persistence and for testing the efficacy of potential antimicrobial strategies.
Collapse
Affiliation(s)
- Nicholas J Gunn
- Centre for Orthopaedic & Trauma Research, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Anja R Zelmer
- Centre for Orthopaedic & Trauma Research, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stephen P Kidd
- Australian Centre for Antimicrobial Resistance Ecology, University of Adelaide, Adelaide, SA, Australia.,Research Centre for Infectious Disease, School of Biological Science, University of Adelaide, Adelaide, SA, Australia
| | - Lucian B Solomon
- Centre for Orthopaedic & Trauma Research, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,Department of Orthopaedics and Trauma, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Eugene Roscioli
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia.,Department of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Dongqing Yang
- Centre for Orthopaedic & Trauma Research, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Gerald J Atkins
- Centre for Orthopaedic & Trauma Research, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
46
|
Generation of two multipotent mesenchymal progenitor cell lines capable of osteogenic, mature osteocyte, adipogenic, and chondrogenic differentiation. Sci Rep 2021; 11:22593. [PMID: 34799645 PMCID: PMC8605002 DOI: 10.1038/s41598-021-02060-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/09/2021] [Indexed: 01/04/2023] Open
Abstract
Mesenchymal progenitors differentiate into several tissues including bone, cartilage, and adipose. Targeting these cells in vivo is challenging, making mesenchymal progenitor cell lines valuable tools to study tissue development. Mesenchymal stem cells (MSCs) can be isolated from humans and animals; however, obtaining homogenous, responsive cells in a reproducible fashion is challenging. As such, we developed two mesenchymal progenitor cell (MPC) lines, MPC1 and MPC2, generated from bone marrow of male C57BL/6 mice. These cells were immortalized using the temperature sensitive large T-antigen, allowing for thermal control of proliferation and differentiation. Both MPC1 and MPC2 cells are capable of osteogenic, adipogenic, and chondrogenic differentiation. Under osteogenic conditions, both lines formed mineralized nodules, and stained for alizarin red and alkaline phosphatase, while expressing osteogenic genes including Sost, Fgf23, and Dmp1. Sost and Dmp1 mRNA levels were drastically reduced with addition of parathyroid hormone, thus recapitulating in vivo responses. MPC cells secreted intact (iFGF23) and C-terminal (cFGF23) forms of the endocrine hormone FGF23, which was upregulated by 1,25 dihydroxy vitamin D (1,25D). Both lines also rapidly entered the adipogenic lineage, expressing adipose markers after 4 days in adipogenic media. MPC cells were also capable of chondrogenic differentiation, displaying increased expression of cartilaginous genes including aggrecan, Sox9, and Comp. With the ability to differentiate into multiple mesenchymal lineages and mimic in vivo responses of key regulatory genes/proteins, MPC cells are a valuable model to study factors that regulate mesenchymal lineage allocation as well as the mechanisms that dictate transcription, protein modification, and secretion of these factors.
Collapse
|
47
|
Nogueira LFB, Maniglia BC, Buchet R, Millán JL, Ciancaglini P, Bottini M, Ramos AP. Three-dimensional cell-laden collagen scaffolds: From biochemistry to bone bioengineering. J Biomed Mater Res B Appl Biomater 2021; 110:967-983. [PMID: 34793621 DOI: 10.1002/jbm.b.34967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/05/2021] [Accepted: 10/30/2021] [Indexed: 12/22/2022]
Abstract
The bones can be viewed as both an organ and a material. As an organ, the bones give structure to the body, facilitate skeletal movement, and provide protection to internal organs. As a material, the bones consist of a hybrid organic/inorganic three-dimensional (3D) matrix, composed mainly of collagen, noncollagenous proteins, and a calcium phosphate mineral phase, which is formed and regulated by the orchestrated action of a complex array of cells including chondrocytes, osteoblasts, osteocytes, and osteoclasts. The interactions between cells, proteins, and minerals are essential for the bone functions under physiological loading conditions, trauma, and fractures. The organization of the bone's organic and inorganic phases stands out for its mechanical and biological properties and has inspired materials research. The objective of this review is to fill the gaps between the physical and biological characteristics that must be achieved to fabricate scaffolds for bone tissue engineering with enhanced performance. We describe the organization of bone tissue highlighting the characteristics that have inspired the development of 3D cell-laden collagenous scaffolds aimed at replicating the mechanical and biological properties of bone after implantation. The role of noncollagenous macromolecules in the organization of the collagenous matrix and mineralization ability of entrapped cells has also been reviewed. Understanding the modulation of cell activity by the extracellular matrix will ultimately help to improve the biological performance of 3D cell-laden collagenous scaffolds used for bone regeneration and repair as well as for in vitro studies aimed at unravelling physiological and pathological processes occurring in the bone.
Collapse
Affiliation(s)
- Lucas Fabricio Bahia Nogueira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil.,Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Bianca C Maniglia
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil
| | - Rene Buchet
- Institute for Molecular and Supramolecular Chemistry and Biochemistry, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ana Paula Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil
| |
Collapse
|
48
|
Liu X, Bai M, Sun Y, Hu X, Wang C, Xie J, Ye L. FGF7-induced E11 facilitates cell-cell communication through connexin43. Int J Biol Sci 2021; 17:3862-3874. [PMID: 34671204 PMCID: PMC8495393 DOI: 10.7150/ijbs.65240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/26/2021] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factors (FGFs) include a large family of growth factors that play a critical role in maintaining bone homeostasis, but the specific role of its members such as FGF7 does not well understand. Osteoblasts are a kind of major cells essential for bone formation. Osteoblasts interact with one another to create the unique structure of osteons. The well-connected osteons constitute the cortical bone. As an early osteocyte marker that triggers actin cytoskeleton dynamics, E11 is essential for osteoblasts' dendrites formation. However, the upstream which regulates E11 is mainly unknown. The purpose of this study was to examine the influence of FGF7 on the expression and the distribution of E11 in osteoblasts, which mediated osteoblasts' processes formation and gap junctional intercellular communication (GJIC) partly through connexin43 (Cx43). We first demonstrated that FGF7 increased the expression of E11 in osteoblasts. We then showed that FGF7 promoted osteoblasts' dendrites elongation and functional gap junctions formation. Furthermore, E11 interacted directly with Cx43 in primary osteoblasts. MAPK pathway and PI3K-AKT pathway were involved in the effect of FGF7. Our results shed light on the unique role of FGF7 on osteoblasts, which may indicate that FGF7 plays a more significant role in the later stages of bone development and homeostasis.
Collapse
Affiliation(s)
- Xiaoyu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yimin Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xuchen Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
49
|
Ren R, Guo J, Chen Y, Zhang Y, Chen L, Xiong W. The role of Ca 2+ /Calcineurin/NFAT signalling pathway in osteoblastogenesis. Cell Prolif 2021; 54:e13122. [PMID: 34523757 PMCID: PMC8560623 DOI: 10.1111/cpr.13122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/18/2022] Open
Abstract
The bone remodelling process is closely related to bone health. Osteoblasts and osteoclasts participate in the bone remodelling process under the regulation of various factors inside and outside. Excessive activation of osteoclasts or lack of function of osteoblasts will cause occurrence and development of multiple bone‐related diseases. Ca2+/Calcineurin/NFAT signalling pathway regulates the growth and development of many types of cells, such as cardiomyocyte differentiation, angiogenesis, chondrogenesis, myogenesis, bone development and regeneration, etc. Some evidences indicate that this signalling pathway plays an extremely important role in bone formation and bone pathophysiologic changes. This review discusses the role of Ca2+/Calcineurin/NFAT signalling pathway in the process of osteogenic differentiation, as well as the influence of regulating each component in this signalling pathway on the differentiation and function of osteoblasts, whereby the relationship between Ca2+/Calcineurin/NFAT signalling pathway and osteoblastogenesis could be deeper understood.
Collapse
Affiliation(s)
- Ranyue Ren
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiachao Guo
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangmengfan Chen
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, BG Trauma Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Yayun Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangxi Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
50
|
Bernhardt A, Skottke J, von Witzleben M, Gelinsky M. Triple Culture of Primary Human Osteoblasts, Osteoclasts and Osteocytes as an In Vitro Bone Model. Int J Mol Sci 2021; 22:7316. [PMID: 34298935 PMCID: PMC8307867 DOI: 10.3390/ijms22147316] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/12/2023] Open
Abstract
In vitro evaluation of bone graft materials is generally performed by analyzing the interaction with osteoblasts or osteoblast precursors. In vitro bone models comprising different cell species can give specific first information on the performance of those materials. In the present study, a 3D co-culture model was established comprising primary human osteoblasts, osteoclasts and osteocytes. Osteocytes were differentiated from osteoblasts embedded in collagen gels and were cultivated with osteoblast and osteoclasts seeded in patterns on a porous membrane. This experimental setup allowed paracrine signaling as well as separation of the different cell types for final analysis. After 7 days of co-culture, the three cell species showed their typical morphology and gene expression of typical markers like ALPL, BSPII, BLGAP, E11, PHEX, MEPE, RANKL, ACP5, CAII and CTSK. Furthermore, relevant enzyme activities for osteoblasts (ALP) and osteoclasts (TRAP, CTSK, CAII) were detected. Osteoclasts in triple culture showed downregulated TRAP (ACP5) and CAII expression and decreased TRAP activity. ALP and BSPII expression of osteoblasts in triple culture were upregulated. The expression of the osteocyte marker E11 (PDPN) was unchanged; however, osteocalcin (BGLAP) expression was considerably downregulated both in osteoblasts and osteocytes in triple cultures compared to the respective single cultures.
Collapse
Affiliation(s)
- Anne Bernhardt
- Centre for Translational Bone, Joint- and Soft Tissue Research, Medical Faculty and University Hospital, Technische Universität Dresden, D-01307 Dresden, Germany; (J.S.); (M.v.W.); (M.G.)
| | | | | | | |
Collapse
|