1
|
Chua HC, Tam VH. Optimizing Clinical Outcomes Through Rational Dosing Strategies: Roles of Pharmacokinetic/Pharmacodynamic Modeling Tools. Open Forum Infect Dis 2022; 9:ofac626. [PMID: 36540388 PMCID: PMC9757694 DOI: 10.1093/ofid/ofac626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Significant progress in previous decades has led to several methodologies developed to facilitate the design of optimal antimicrobial dosing. In this review, we highlight common pharmacokinetic/pharmacodynamic (PKPD) modeling techniques and their roles in guiding rational dosing regimen design. In the early drug development phases, dose fractionation studies identify the PKPD index most closely associated with bacterial killing. Once discerned, this index is linked to clinical efficacy end points, and classification and regression tree analysis can be used to define the PKPD target goal. Monte Carlo simulations integrate PKPD and microbiological data to identify dosing strategies with a high probability of achieving the established PKPD target. Results then determine dosing regimens to investigate and/or validate the findings of randomized controlled trials. Further improvements in PKPD modeling could lead to an era of precision dosing and personalized therapeutics.
Collapse
Affiliation(s)
- Hubert C Chua
- Department of Pharmacy, CHI Baylor St. Luke’s Medical Center, Houston, Texas, USA
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Vincent H Tam
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| |
Collapse
|
2
|
Yin H, Wang Y, Wang L, Bai X, Zhang J. HPLC-MS/MS based comparative pharmacokinetics of 12 bioactive components in normal and osteoporosis rats after oral administration of You-Gui-Wan. J Sep Sci 2021; 45:832-844. [PMID: 34931459 DOI: 10.1002/jssc.202100689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/26/2021] [Accepted: 12/12/2021] [Indexed: 11/06/2022]
Abstract
You-Gui-Wan is a traditional Chinese patent medicine that has been extensively used to treat kidney-yang deficiency syndrome. An HPLC-MS/MS method was developed to measure contents of 12 components of You-Gui-Wan in rat plasma. Considering that pathological changes might directly affect the pharmacokinetic behavior of drugs, this method was further applied to compare pharmacokinetics between normal and osteoporotic animals. The results indicated that osteoporosis significantly altered the pharmacokinetic characteristics of the 12 components. Thus, the pharmacokinetics of You-Gui-Wan evaluated under osteoporotic conditions were much closer to clinical practice than that in normal physiological states. Thus, the optimized analytical method, along with the pharmacokinetic evaluation in the osteoporotic model may offer a more comprehensive understanding to elucidate the anti-osteoporosis mechanism of You-Gui-Wan. These findings may aid in developing a more effective treatment plan for osteoporosis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hua Yin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, P. R. China.,Standardization of Chinese medicine research laboratory, Zhejiang Chinese Medical University, Hangzhou, 311402, P. R. China
| | - Yahong Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, P. R. China.,Standardization of Chinese medicine research laboratory, Zhejiang Chinese Medical University, Hangzhou, 311402, P. R. China
| | - Ling Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, P. R. China.,Standardization of Chinese medicine research laboratory, Zhejiang Chinese Medical University, Hangzhou, 311402, P. R. China
| | - Xue Bai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, P. R. China.,Standardization of Chinese medicine research laboratory, Zhejiang Chinese Medical University, Hangzhou, 311402, P. R. China
| | - Jianhua Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, P. R. China
| |
Collapse
|
3
|
Penetration of Antibacterial Agents into Pulmonary Epithelial Lining Fluid: An Update. Clin Pharmacokinet 2021; 61:17-46. [PMID: 34651282 PMCID: PMC8516621 DOI: 10.1007/s40262-021-01061-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2021] [Indexed: 01/22/2023]
Abstract
A comprehensive review of drug penetration into pulmonary epithelial lining fluid (ELF) was previously published in 2011. Since then, an extensive number of studies comparing plasma and ELF concentrations of antibacterial agents have been published and are summarized in this review. The majority of the studies included in this review determined ELF concentrations of antibacterial agents using bronchoscopy and bronchoalveolar lavage, and this review focuses on intrapulmonary penetration ratios determined with area under the concentration-time curve from healthy human adult studies or pharmacokinetic modeling of various antibacterial agents. If available, pharmacokinetic/pharmacodynamic parameters determined from preclinical murine infection models that evaluated ELF concentrations are also provided. There are also a limited number of recently published investigations of intrapulmonary penetration in critically ill patients with lower respiratory tract infections, where greater variability in ELF concentrations may exist. The significance of these changes may impact the intrapulmonary penetration in the setting of infection, and further studies relating ELF concentrations to clinical response are needed. Phase I drug development programs now include assessment of initial pharmacodynamic target values for pertinent organisms in animal models, followed by evaluation of antibacterial penetration into the human lung to assist in dosage selection for clinical trials in infected patients. The recent focus has been on β-lactam agents, including those in combination with β-lactamase inhibitors, particularly due to the rise of multidrug-resistant infections. This manifests as a large portion of the review focusing on cephalosporins and carbapenems, with or without β-lactamase inhibitors, in both healthy adult subjects and critically ill patients with lower respiratory tract infections. Further studies are warranted in critically ill patients with lower respiratory tract infections to evaluate the relationship between intrapulmonary penetration and clinical and microbiological outcomes. Our clinical research experience with these studies, along with this literature review, has allowed us to outline key steps in developing and evaluating dosage regimens to treat extracellular bacteria in lower respiratory tract infections.
Collapse
|
4
|
Trang M, Griffith DC, Bhavnani SM, Loutit JS, Dudley MN, Ambrose PG, Rubino CM. Population Pharmacokinetics of Meropenem and Vaborbactam Based on Data from Noninfected Subjects and Infected Patients. Antimicrob Agents Chemother 2021; 65:e0260620. [PMID: 34097490 PMCID: PMC8370236 DOI: 10.1128/aac.02606-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/26/2021] [Indexed: 11/20/2022] Open
Abstract
Meropenem-vaborbactam is a broad-spectrum carbapenem-beta-lactamase inhibitor combination approved in the United States and Europe to treat patients with complicated urinary tract infections and in Europe for other serious bacterial infections, including hospital-acquired and ventilator-associated pneumonia. Population pharmacokinetic (PK) models were developed to characterize the time course of meropenem and vaborbactam using pooled data from two phase 1 and two phase 3 studies. Multicompartment disposition model structures with linear elimination processes were fit to the data using NONMEM 7.2. Since both drugs are cleared primarily by the kidneys, estimated glomerular filtration rate (eGFR) was evaluated as part of the base structural models. For both agents, a two-compartment model with zero-order input and first-order elimination best described the pharmacokinetic PK data, and a sigmoidal Hill-type equation best described the relationship between renal clearance and eGFR. For meropenem, the following significant covariate relationships were identified: clearance (CL) decreased with increasing age, CL was systematically different in subjects with end-stage renal disease, and all PK parameters increased with increasing weight. For vaborbactam, the following significant covariate relationships were identified: CL increased with increasing height, volume of the central compartment (Vc) increased with increasing body surface area, and CL, Vc, and volume of the peripheral compartment were systematically different between phase 1 noninfected subjects and phase 3 infected patients. Visual predictive checks demonstrated minimal bias, supporting the robustness of the final models. These models were useful for generating individual PK exposures for pharmacokinetic-pharmacodynamic (PK-PD) analyses for efficacy and Monte Carlo simulations to evaluate PK-PD target attainment.
Collapse
Affiliation(s)
- M. Trang
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | | | - S. M. Bhavnani
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - J. S. Loutit
- Rempex Pharmaceuticals, San Diego, California, USA
| | - M. N. Dudley
- Rempex Pharmaceuticals, San Diego, California, USA
| | - P. G. Ambrose
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - C. M. Rubino
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| |
Collapse
|
5
|
Chua HC, Tse A, Smith NM, Mergenhagen KA, Cha R, Tsuji BT. Combatting the Rising Tide of Antimicrobial Resistance: Pharmacokinetic/Pharmacodynamic Dosing Strategies for Maximal Precision. Int J Antimicrob Agents 2021; 57:106269. [PMID: 33358761 DOI: 10.1016/j.ijantimicag.2020.106269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Antimicrobial pharmacokinetics/pharmacodynamics (PK/PD) principles and PK/PD models have been essential in characterizing the mechanism of antibiotic bacterial killing and determining the most optimal dosing regimen that maximizes clinical outcomes. This review summarized the fundamentals of antimicrobial PK/PD and the various types of PK/PD experiments that shaped the utilization and dosing strategies of antibiotics today. METHODS Multiple databases - including PubMed, Scopus, and EMBASE - were searched for published articles that involved PK/PD modelling and precision dosing. Data from in vitro, in vivo and mechanistic PK/PD models were reviewed as a basis for compiling studies that guide dosing regimens used in clinical trials. RESULTS Literature regarding the utilization of exposure-response analyses, mathematical modelling and simulations that were summarized are able to provide a better understanding of antibiotic pharmacodynamics that influence translational drug development. Optimal pharmacokinetic sampling of antibiotics from patients can lead to personalized dosing regimens that attain target concentrations while minimizing toxicity. Thus the development of a fully integrated mechanistic model based on systems pharmacology can continually adapt to data generated from clinical responses, which can provide the framework for individualized dosing regimens. CONCLUSIONS The promise of what PK/PD can provide through precision dosing for antibiotics has not been fully realized in the clinical setting. Antimicrobial resistance, which has emerged as a significant public health threat, has forced clinicians to empirically utilize therapies. Future research focused on implementation and translation of PK/PD-based approaches integrating novel approaches that combine knowledge of combination therapies, systems pharmacology and resistance mechanisms are necessary. To fully realize maximally precise therapeutics, optimal PK/PD strategies are critical to maximize antimicrobial efficacy against extremely-drug-resistant organisms, while minimizing toxicity.
Collapse
Affiliation(s)
- Hubert C Chua
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA; New York State Center for Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA; VA Western New York Healthcare System, Buffalo, NY, USA
| | - Andy Tse
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA; New York State Center for Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA
| | - Nicholas M Smith
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA; New York State Center for Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA
| | | | - Raymond Cha
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA; New York State Center for Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA
| | - Brian T Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA; New York State Center for Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA.
| |
Collapse
|
6
|
VanScoy BD, Lakota EA, Conde H, McCauley J, Friedrich L, Steenbergen JN, Ambrose PG, Bhavnani SM. Pharmacokinetic-Pharmacodynamic Characterization of Omadacycline against Haemophilus influenzae Using a One-Compartment In Vitro Infection Model. Antimicrob Agents Chemother 2020; 64:e02265-19. [PMID: 32284378 PMCID: PMC7269464 DOI: 10.1128/aac.02265-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/29/2020] [Indexed: 02/08/2023] Open
Abstract
Omadacycline is a novel aminomethylcycline with activity against Gram-positive and -negative organisms, including Haemophilus influenzae, which is one of the leading causes of community-acquired bacterial pneumonia (CABP). The evaluation of antimicrobial agents against H. influenzae using standard murine infection models is challenging due to the low pathogenicity of this species in mice. Therefore, 24-h dose-ranging studies using a one-compartment in vitro infection model were undertaken with the goal of characterizing the magnitude of the ratio of the area under the concentration-time curve (AUC) to the MIC (AUC/MIC ratio) associated with efficacy for a panel of five H. influenzae isolates. These five isolates, for which MIC values were 1 or 2 mg/liter, were exposed to omadacycline total-drug epithelial lining fluid (ELF) concentration-time profiles based on those observed in healthy volunteers following intravenous omadacycline administration. Relationships between change in log10 CFU/ml from baseline at 24 h and the total-drug ELF AUC/MIC ratios for each isolate and for the isolates pooled were evaluated using Hill-type models and nonlinear least-squares regression. As evidenced by the high coefficients of determination (r2) of 0.88 to 0.98, total-drug ELF AUC/MIC ratio described the data well for each isolate and the isolates pooled. The median total-drug ELF AUC/MIC ratios associated with net bacterial stasis and 1- and 2-log10 CFU/ml reductions from baseline at 24 h were 6.91, 8.91, and 11.1, respectively. These data were useful to support the omadacycline dosing regimens selected for the treatment of patients with CABP, as well as susceptibility breakpoints for H. influenzae.
Collapse
Affiliation(s)
- Brian D VanScoy
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - Elizabeth A Lakota
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - Haley Conde
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - Jennifer McCauley
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | | | | | - Paul G Ambrose
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| | - Sujata M Bhavnani
- Institute for Clinical Pharmacodynamics, Inc., Schenectady, New York, USA
| |
Collapse
|
7
|
Considerations for Dose Selection and Clinical Pharmacokinetics/Pharmacodynamics for the Development of Antibacterial Agents. Antimicrob Agents Chemother 2019; 63:AAC.02309-18. [PMID: 30833427 PMCID: PMC6496063 DOI: 10.1128/aac.02309-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In June 2017, The National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, organized a workshop entitled "Pharmacokinetics-Pharmacodynamics (PK/PD) for Development of Therapeutics against Bacterial Pathogens" to discuss details and critical parameters of various PK/PD methods and identify approaches for linking human pharmacokinetic (PK) data and drug efficacy analyses. The workshop participants included individuals from academia, industry, and government. This and the accompanying minireview on nonclinical PK/PD summarize the workshop discussions and recommendations. It is important to consider how information like PK/PD can support the clinical effectiveness of new antibacterial drugs, as PK/PD data have become central to antibacterial drug development programs. Key clinical considerations for antibacterial dose selection and clinical PK/PD characterization discussed in this minireview include a robust assessment of PK in the patient population of interest, critical considerations for assessing drug penetration in the lung for the treatment of pneumonia, and an emphasis on special populations, including patients with renal impairment and augmented renal function, as well as on dosing in obese and pediatric patients. Successful application of such approaches is now used to provide a more informative drug development package to support the approval of new antibiotics.
Collapse
|
8
|
Trang M, Dudley MN, Bhavnani SM. Use of Monte Carlo simulation and considerations for PK-PD targets to support antibacterial dose selection. Curr Opin Pharmacol 2017; 36:107-113. [PMID: 29128853 DOI: 10.1016/j.coph.2017.09.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 11/28/2022]
Abstract
Monte Carlo simulation is used to generate data for pharmacokinetic-pharmacodynamic (PK-PD) target attainment analyses to assess antibacterial dosing regimens in early and late stage drug development. Careful consideration of the quality of data for pharmacokinetics, non-clinical PK-PD targets for efficacy, the choice of the bacterial reduction endpoint upon which the PK-PD target is based, variability in the PK-PD target, and effect site exposures ensures optimal dose selection. Relationships between drug exposure and efficacy and/or safety endpoints based on clinical data can also be applied to simulated data to support dose selection. These in silico analyses, conducted throughout drug development, provide the greatest opportunity to de-risk the development of antibacterial agents.
Collapse
Affiliation(s)
- Michael Trang
- The Institute for Clinical Pharmacodynamics, Inc, Schenectady, NY, United States
| | | | - Sujata M Bhavnani
- The Institute for Clinical Pharmacodynamics, Inc, Schenectady, NY, United States
| |
Collapse
|
9
|
Bhavnani SM, Rex JH. Editorial overview: Use of PK-PD for antibacterial drug development: decreasing risk and paths forward for resistant pathogens. Curr Opin Pharmacol 2017; 36:viii-xii. [DOI: 10.1016/j.coph.2017.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|