1
|
Lakli M, Onnée M, Carrez T, Becq F, Falguières T, Fanen P. ABC transporters involved in respiratory and cholestatic diseases: From rare to very rare monogenic diseases. Biochem Pharmacol 2024; 229:116468. [PMID: 39111603 DOI: 10.1016/j.bcp.2024.116468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/16/2024] [Accepted: 08/03/2024] [Indexed: 08/24/2024]
Abstract
ATP-binding cassette (ABC) transporters constitute a 49-member superfamily in humans. These proteins, most of them being transmembrane, allow the active transport of an important variety of substrates across biological membranes, using ATP hydrolysis as an energy source. For an important proportion of these ABC transporters, genetic variations of the loci encoding them have been correlated with rare genetic diseases, including cystic fibrosis and interstitial lung disease (variations in CFTR/ABCC7 and ABCA3) as well as cholestatic liver diseases (variations in ABCB4 and ABCB11). In this review, we first describe these ABC transporters and how their molecular dysfunction may lead to human diseases. Then, we propose a classification of the genetic variants according to their molecular defect (expression, traffic, function and/or stability), which may be considered as a general guideline for all ABC transporters' variants. Finally, we discuss recent progress in the field of targeted pharmacotherapy, which aim to correct specific molecular defects using small molecules. In conclusion, we are opening the path to treatment repurposing for diseases involving similar deficiencies in other ABC transporters.
Collapse
Affiliation(s)
- Mounia Lakli
- Inserm, Université Paris-Saclay, Physiopathogenèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, 91400 Orsay, France
| | - Marion Onnée
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Créteil, France
| | - Thomas Carrez
- Université de Poitiers, Laboratoire Physiopathologie et Régulation des Transports Ioniques, Pôle Biologie Santé, 86000 Poitiers, France; ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, 29680, Roscoff, France
| | - Frédéric Becq
- Université de Poitiers, Laboratoire Physiopathologie et Régulation des Transports Ioniques, Pôle Biologie Santé, 86000 Poitiers, France
| | - Thomas Falguières
- Inserm, Université Paris-Saclay, Physiopathogenèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, 91400 Orsay, France
| | - Pascale Fanen
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Créteil, France; AP-HP, Département de Génétique Médicale, Hôpital Henri Mondor, F-94010, Créteil, France.
| |
Collapse
|
2
|
Wu M, Davis JD, Zhao C, Daley T, Oliver KE. Racial inequities and rare CFTR variants: Impact on cystic fibrosis diagnosis and treatment. J Clin Transl Endocrinol 2024; 36:100344. [PMID: 38765466 PMCID: PMC11099334 DOI: 10.1016/j.jcte.2024.100344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/21/2024] [Accepted: 04/14/2024] [Indexed: 05/22/2024] Open
Abstract
Cystic fibrosis (CF) has been traditionally viewed as a disease that affects White individuals. However, CF occurs among all races, ethnicities, and geographic ancestries. The disorder results from mutations in the CF transmembrane conductance regulator (CFTR). Varying incidence of CF is reported among Black, Indigenous, and People of Color (BIPOC), who typically exhibit worse clinical outcomes. These populations are more likely to carry rare CFTR variants omitted from newborn screening panels, leading to disparities in care such as delayed diagnosis and treatment. In this study, we present a case-in-point describing an individual of Gambian descent identified with CF. Patient genotype includes a premature termination codon (PTC) (c.2353C>T) and previously undescribed single nucleotide deletion (c.1970delG), arguing against effectiveness of currently available CFTR modulator-based interventions. Strategies for overcoming these two variants will likely include combinations of PTC suppressors, nonsense mediated decay inhibitors, and/or alternative approaches (e.g. gene therapy). Investigations such as the present study establish a foundation from which therapeutic treatments may be developed. Importantly, c.2353C>T and c.1970delG were not detected in the patient by traditional CFTR screening panels, which include an implicit racial and ethnic diagnostic bias as these tests are comprised of mutations largely observed in people of European ancestry. We suggest that next-generation sequencing of CFTR should be utilized to confirm or exclude a CF diagnosis, in order to equitably serve BIPOC individuals. Additional epidemiologic data, basic science investigations, and translational work are imperative for improving understanding of disease prevalence and progression, CFTR variant frequency, genotype-phenotype correlation, pharmacologic responsiveness, and personalized medicine approaches for patients with African ancestry and other historically understudied geographic lineages.
Collapse
Affiliation(s)
- Malinda Wu
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Pediatric Institute, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Jacob D. Davis
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Conan Zhao
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Tanicia Daley
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Pediatric Institute, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Kathryn E. Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Pediatric Institute, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
3
|
McDonald EF, Oliver KE, Schlebach JP, Meiler J, Plate L. Benchmarking AlphaMissense pathogenicity predictions against cystic fibrosis variants. PLoS One 2024; 19:e0297560. [PMID: 38271453 PMCID: PMC10810519 DOI: 10.1371/journal.pone.0297560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Variants in the cystic fibrosis transmembrane conductance regulator gene (CFTR) result in cystic fibrosis-a lethal autosomal recessive disorder. Missense variants that alter a single amino acid in the CFTR protein are among the most common cystic fibrosis variants, yet tools for accurately predicting molecular consequences of missense variants have been limited to date. AlphaMissense (AM) is a new technology that predicts the pathogenicity of missense variants based on dual learned protein structure and evolutionary features. Here, we evaluated the ability of AM to predict the pathogenicity of CFTR missense variants. AM predicted a high pathogenicity for CFTR residues overall, resulting in a high false positive rate and fair classification performance on CF variants from the CFTR2.org database. AM pathogenicity score correlated modestly with pathogenicity metrics from persons with CF including sweat chloride level, pancreatic insufficiency rate, and Pseudomonas aeruginosa infection rate. Correlation was also modest with CFTR trafficking and folding competency in vitro. By contrast, the AM score correlated well with CFTR channel function in vitro-demonstrating the dual structure and evolutionary training approach learns important functional information despite lacking such data during training. Different performance across metrics indicated AM may determine if polymorphisms in CFTR are recessive CF variants yet cannot differentiate mechanistic effects or the nature of pathophysiology. Finally, AM predictions offered limited utility to inform on the pharmacological response of CF variants i.e., theratype. Development of new approaches to differentiate the biochemical and pharmacological properties of CFTR variants is therefore still needed to refine the targeting of emerging precision CF therapeutics.
Collapse
Affiliation(s)
- Eli Fritz McDonald
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kathryn E. Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Cystic Fibrosis and Airways Diseases, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, United States of America
| | - Jonathan P. Schlebach
- Department of Chemistry, Purdue University, West Lafyette, Indiana, United States of America
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Drug Discovery, Leipzig University, Leipzig, Germany
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
4
|
Jackson JJ, Mao Y, White TR, Foye C, Oliver KE. Features of CFTR mRNA and implications for therapeutics development. Front Genet 2023; 14:1166529. [PMID: 37168508 PMCID: PMC10165737 DOI: 10.3389/fgene.2023.1166529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/27/2023] [Indexed: 05/13/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease impacting ∼100,000 people worldwide. This lethal disorder is caused by mutation of the CF transmembrane conductance regulator (CFTR) gene, which encodes an ATP-binding cassette-class C protein. More than 2,100 variants have been identified throughout the length of CFTR. These defects confer differing levels of severity in mRNA and/or protein synthesis, folding, gating, and turnover. Drug discovery efforts have resulted in recent development of modulator therapies that improve clinical outcomes for people living with CF. However, a significant portion of the CF population has demonstrated either no response and/or adverse reactions to small molecules. Additional therapeutic options are needed to restore underlying genetic defects for all patients, particularly individuals carrying rare or refractory CFTR variants. Concerted focus has been placed on rescuing variants that encode truncated CFTR protein, which also harbor abnormalities in mRNA synthesis and stability. The current mini-review provides an overview of CFTR mRNA features known to elicit functional consequences on final protein conformation and function, including considerations for RNA-directed therapies under investigation. Alternative exon usage in the 5'-untranslated region, polypyrimidine tracts, and other sequence elements that influence splicing are discussed. Additionally, we describe mechanisms of CFTR mRNA decay and post-transcriptional regulation mediated through interactions with the 3'-untranslated region (e.g. poly-uracil sequences, microRNAs). Contributions of synonymous single nucleotide polymorphisms to CFTR transcript utilization are also examined. Comprehensive understanding of CFTR RNA biology will be imperative for optimizing future therapeutic endeavors intended to address presently untreatable forms of CF.
Collapse
Affiliation(s)
- JaNise J. Jackson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Yiyang Mao
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Tyshawn R. White
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Catherine Foye
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Kathryn E. Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Cystic Fibrosis and Airways Disease Research, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA, United States
- *Correspondence: Kathryn E. Oliver,
| |
Collapse
|
5
|
Laselva O, Guerra L, Castellani S, Favia M, Di Gioia S, Conese M. Small-molecule drugs for cystic fibrosis: Where are we now? Pulm Pharmacol Ther 2021; 72:102098. [PMID: 34793977 DOI: 10.1016/j.pupt.2021.102098] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/24/2021] [Accepted: 11/12/2021] [Indexed: 01/05/2023]
Abstract
The cystic fibrosis (CF) lung disease is due to the lack/dysfunction of the CF Transmembrane Conductance Regulator (CFTR), a chloride channel expressed by epithelial cells as the main regulator of ion and fluid homeostasis. More than 2000 genetic variation in the CFTR gene are known, among which those with identified pathomechanism have been divided into six VI mutation classes. A major advancement in the pharmacotherapy of CF has been the development of small-molecule drugs hitting the root of the disease, i.e. the altered ion and fluid transport through the airway epithelium. These drugs, called CFTR modulators, have been advanced to the clinics to treat nearly 90% of CF patients, including the CFTR potentiator ivacaftor, approved for residual function mutations (Classes III and IV), and combinations of correctors (lumacaftor, tezacaftor, elexacaftor) and ivacaftor for patients bearing at least one the F508del mutation, the most frequent mutation belonging to class II. To cover the 10% of CF patients without etiological therapies, other novel small-molecule CFTR modulators are in evaluation of their effectiveness in all the CFTR mutation classes: read-through agents for Class I, correctors, potentiators and amplifiers from different companies for Class II-V, stabilizers for Class VI. In alternative, other solute carriers, such as SLC26A9 and SLC6A14, are the focus of intensive investigation. Finally, other molecular targets are being evaluated for patients with no approved CFTR modulator therapy or as means of enhancing CFTR modulatory therapy, including small molecules forming ion channels, inhibitors of the ENaC sodium channel and potentiators of the calcium-activated chloride channel TMEM16A. This paper aims to give an up-to-date overview of old and novel CFTR modulators as well as of novel strategies based on small-molecule drugs. Further investigations in in-vivo and cell-based models as well as carrying out large prospective studies will be required to determine if novel CFTR modulators, stabilizers, amplifiers, and the ENaC inhibitors or TMEM16A potentiators will further improve the clinical outcomes in CF management.
Collapse
Affiliation(s)
- Onofrio Laselva
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stefano Castellani
- Department of Medical Sciences and Human Oncology, University of Bari, Bari, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
6
|
Wambach JA, Yang P, Wegner DJ, Heins HB, Luke C, Li F, White FV, Cole FS. Functional Genomics of ABCA3 Variants. Am J Respir Cell Mol Biol 2020; 63:436-443. [PMID: 32692933 DOI: 10.1165/rcmb.2020-0034ma] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Rare or private, biallelic variants in the ABCA3 (ATP-binding cassette transporter A3) gene are the most common monogenic cause of lethal neonatal respiratory failure and childhood interstitial lung disease. Functional characterization of fewer than 10% of over 200 disease-associated ABCA3 variants (majority missense) suggests either disruption of ABCA3 protein trafficking (type I) or of ATPase-mediated phospholipid transport (type II). Therapies remain limited and nonspecific. A scalable platform is required for functional characterization of ABCA3 variants and discovery of pharmacologic correctors. To address this need, we first silenced the endogenous ABCA3 locus in A549 cells with CRISPR/Cas9 genome editing. Next, to generate a parent cell line (A549/ABCA3-/-) with a single recombination target site for genomic integration and stable expression of individual ABCA3 missense variant cDNAs, we used lentiviral-mediated integration of a LoxFAS cassette, FACS, and dilutional cloning. To assess the fidelity of this cell-based model, we compared functional characterization (ABCA3 protein processing, ABCA3 immunofluorescence colocalization with intracellular markers, ultrastructural vesicle phenotype) of two individual ABCA3 mutants (type I mutant, p.L101P; type II mutant, p.E292V) in A549/ABCA3-/- cells and in both A549 cells and primary, human alveolar type II cells that transiently express each cDNA after adenoviral-mediated transduction. We also confirmed pharmacologic rescue of ABCA3 variant-encoded mistrafficking and vesicle diameter in A549/ABCA3-/- cells that express p.G1421R (type I mutant). A549/ABCA3-/- cells provide a scalable, genetically versatile, physiologically relevant functional genomics platform for discovery of variant-specific mechanisms that disrupt ABCA3 function and for screening of potential ABCA3 pharmacologic correctors.
Collapse
Affiliation(s)
| | - Ping Yang
- Edward Mallinckrodt Department of Pediatrics
| | | | | | - Cliff Luke
- Edward Mallinckrodt Department of Pediatrics
| | - Fuhai Li
- Edward Mallinckrodt Department of Pediatrics.,Institute for Informatics, and
| | - Frances V White
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | | |
Collapse
|
7
|
Lee RE, Miller SM, Mascenik TM, Lewis CA, Dang H, Boggs ZH, Tarran R, Randell SH. Assessing Human Airway Epithelial Progenitor Cells for Cystic Fibrosis Cell Therapy. Am J Respir Cell Mol Biol 2020; 63:374-385. [PMID: 32437238 DOI: 10.1165/rcmb.2019-0384oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cystic fibrosis (CF) is caused by loss-of-function mutations in the CFTR (CF transmembrane regulator) gene. Pharmacologic therapies directed at CFTR have been developed but are not effective for mutations that result in little or no mRNA or protein expression. Cell therapy is a potential mutation-agnostic approach to treatment. One strategy is to harvest human bronchial epithelial cells (HBECs) for gene addition or genetic correction, followed by expansion and engraftment. This approach will require cells to grow extensively while retaining their ability to reconstitute CFTR activity. We hypothesized that conditionally reprogrammed cell (CRC) technology, namely growth in the presence of irradiated feeder cells and a Rho kinase inhibitor, would enable expansion while maintaining cell capacity to express functional CFTR. Our goal was to compare expression of the basal cell marker NGFR (nerve growth factor receptor) and three-dimensional bronchosphere colony-forming efficiency (CFE) in early- and later-passage HBECs grown using nonproprietary bronchial epithelial growth medium or the CRC method. Cell number and CFTR activity were determined in a competitive repopulation assay employing chimeric air-liquid interface cultures. HBECs expanded using the CRC method expressed the highest NGFR levels, had the greatest 3D colony-forming efficiency at later passage, generated greater cell numbers in chimeric cultures, and most effectively reconstituted CFTR activity. In our study, the HBEC air-liquid interface model, an informative testing platform proven vital for the development of other CF therapies, illustrated that cells grown by CRC technology or equivalent methods may be useful for cell therapy of CF.
Collapse
Affiliation(s)
- Rhianna E Lee
- Marsico Lung Institute/Cystic Fibrosis Center and.,Department of Cell Biology and Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | - Hong Dang
- Marsico Lung Institute/Cystic Fibrosis Center and
| | | | - Robert Tarran
- Marsico Lung Institute/Cystic Fibrosis Center and.,Department of Cell Biology and Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Scott H Randell
- Marsico Lung Institute/Cystic Fibrosis Center and.,Department of Cell Biology and Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
8
|
Soltani I, Bahia W, Radhouani A, Mahdhi A, Ferchichi S, Almawi WY. Comprehensive in-silico analysis of damage associated SNPs in hOCT1 affecting Imatinib response in chronic myeloid leukemia. Genomics 2020; 113:755-766. [PMID: 33075481 DOI: 10.1016/j.ygeno.2020.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022]
Abstract
Non-synonymous single nucleotide polymorphisms (nsSNPs) in hOCT1 (encoded by SLC22A1 gene) are expected to affect Imatinib uptake in chronic myeloid leukemia (CML). In this study, sequence homology-based genetic analysis of a set of 270 coding SNPs identified 18 nsSNPs to be putatively damaging/deleterious using eight different algorithms. Subsequently, based on conservation of amino acid residues, stability analysis, posttranscriptional modifications, and solvent accessibility analysis, the possible structural-functional relationship was established for high-confidence nsSNPs. Furthermore, based on the modeling results, some dissimilarities of mutant type amino acids from wild-type amino acids such as size, charge, interaction and hydrophobicity were revealed. Three highly deleterious mutations consisting of P283L, G401S and R402G in SLC22A1 gene that may alter the protein structure, function and stability were identified. These results provide a filtered data to explore the effect of uncharacterized nsSNP and find their association with Imatinib resistance in CML.
Collapse
Affiliation(s)
- Ismael Soltani
- Molecular and Cellular Hematology Laboratory, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia.
| | - Wael Bahia
- Research Unit of Clinical and Molecular Biology, Department of Biochemistry, Faculty of Pharmacy of Monastir, University of Monastir, Tunisia
| | - Assala Radhouani
- Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia
| | - Abdelkarim Mahdhi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Salima Ferchichi
- Research Unit of Clinical and Molecular Biology, Department of Biochemistry, Faculty of Pharmacy of Monastir, University of Monastir, Tunisia
| | - Wassim Y Almawi
- Faculty of Sciences, El Manar University, Tunis, Tunisia; College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Oliver KE, Rauscher R, Mijnders M, Wang W, Wolpert MJ, Maya J, Sabusap CM, Kesterson RA, Kirk KL, Rab A, Braakman I, Hong JS, Hartman JL, Ignatova Z, Sorscher EJ. Slowing ribosome velocity restores folding and function of mutant CFTR. J Clin Invest 2020; 129:5236-5253. [PMID: 31657788 DOI: 10.1172/jci124282] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/28/2019] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), with approximately 90% of patients harboring at least one copy of the disease-associated variant F508del. We utilized a yeast phenomic system to identify genetic modifiers of F508del-CFTR biogenesis, from which ribosomal protein L12 (RPL12/uL11) emerged as a molecular target. In the present study, we investigated mechanism(s) by which suppression of RPL12 rescues F508del protein synthesis and activity. Using ribosome profiling, we found that rates of translation initiation and elongation were markedly slowed by RPL12 silencing. However, proteolytic stability and patch-clamp assays revealed RPL12 depletion significantly increased F508del-CFTR steady-state expression, interdomain assembly, and baseline open-channel probability. We next evaluated whether Rpl12-corrected F508del-CFTR could be further enhanced with concomitant pharmacologic repair (e.g., using clinically approved modulators lumacaftor and tezacaftor) and demonstrated additivity of these treatments. Rpl12 knockdown also partially restored maturation of specific CFTR variants in addition to F508del, and WT Cftr biogenesis was enhanced in the pancreas, colon, and ileum of Rpl12 haplosufficient mice. Modulation of ribosome velocity therefore represents a robust method for understanding both CF pathogenesis and therapeutic response.
Collapse
Affiliation(s)
| | - Robert Rauscher
- Institute for Biochemistry & Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Marjolein Mijnders
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Wei Wang
- Gregory Fleming James Cystic Fibrosis Research Center and
| | | | - Jessica Maya
- Gregory Fleming James Cystic Fibrosis Research Center and
| | | | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Kevin L Kirk
- Gregory Fleming James Cystic Fibrosis Research Center and
| | - Andras Rab
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Jeong S Hong
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - John L Hartman
- Gregory Fleming James Cystic Fibrosis Research Center and.,Department of Genetics, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Zoya Ignatova
- Institute for Biochemistry & Molecular Biology, University of Hamburg, Hamburg, Germany
| | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Cystic fibrosis transmembrane conductance receptor (CFTR) modulators are a new class of drugs that treat the underlying cause of cystic fibrosis. To date, there are four approved medications, which are mutation-specific. Although the number of mutations that respond to these agents is expanding, effective CFTR modulators are not available to all cystic fibrosis patients. The purpose of this article is to review the approved CFTR modulators and discuss the mutations that can be treated with these agents, as well as, review the long-term benefits of modulator therapy. RECENT FINDINGS More people with cystic fibrosis can be effectively treated with CFTR modulators. The new, highly effective triple therapy, elexacaftor/tezacaftor/ivacaftor is indicated for more than 90% of patients with cystic fibrosis and ivacaftor is now approved for children as young as 6 months of age with 1 of 30 CFTR mutations. Long-term use of modulator therapy is associated with fewer pulmonary exacerbations, maintenance of lung function, improved weight gain, and quality of life. SUMMARY CFTR modulators are the first therapies developed to treat the underlying defect in cystic fibrosis. Their use is associated with preserved lung function and improved health in patients with cystic fibrosis.
Collapse
|
11
|
Wang C, Scott SM, Sun S, Zhao P, Hutt DM, Shao H, Gestwicki JE, Balch WE. Individualized management of genetic diversity in Niemann-Pick C1 through modulation of the Hsp70 chaperone system. Hum Mol Genet 2020; 29:1-19. [PMID: 31509197 PMCID: PMC7001602 DOI: 10.1093/hmg/ddz215] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/05/2019] [Accepted: 09/02/2019] [Indexed: 12/21/2022] Open
Abstract
Genetic diversity provides a rich repository for understanding the role of proteostasis in the management of the protein fold in human biology. Failure in proteostasis can trigger multiple disease states, affecting both human health and lifespan. Niemann-Pick C1 (NPC1) disease is a rare genetic disorder triggered by mutations in NPC1, a multi-spanning transmembrane protein that is trafficked through the exocytic pathway to late endosomes (LE) and lysosomes (Ly) (LE/Ly) to globally manage cholesterol homeostasis. Defects triggered by >300 NPC1 variants found in the human population inhibit export of NPC1 protein from the endoplasmic reticulum (ER) and/or function in downstream LE/Ly, leading to cholesterol accumulation and onset of neurodegeneration in childhood. We now show that the allosteric inhibitor JG98, that targets the cytosolic Hsp70 chaperone/co-chaperone complex, can significantly improve the trafficking and post-ER protein level of diverse NPC1 variants. Using a new approach to model genetic diversity in human disease, referred to as variation spatial profiling, we show quantitatively how JG98 alters the Hsp70 chaperone/co-chaperone system to adjust the spatial covariance (SCV) tolerance and set-points on an amino acid residue-by-residue basis in NPC1 to differentially regulate variant trafficking, stability, and cholesterol homeostasis, results consistent with the role of BCL2-associated athanogene family co-chaperones in managing the folding status of NPC1 variants. We propose that targeting the cytosolic Hsp70 system by allosteric regulation of its chaperone/co-chaperone based client relationships can be used to adjust the SCV tolerance of proteostasis buffering capacity to provide an approach to mitigate systemic and neurological disease in the NPC1 population.
Collapse
Affiliation(s)
- Chao Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Samantha M Scott
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Shuhong Sun
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Pei Zhao
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Darren M Hutt
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Hao Shao
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158, USA
| | - William E Balch
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
12
|
Targeting the Underlying Defect in CFTR with Small Molecule Compounds. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Sharma N, Cutting GR. The genetics and genomics of cystic fibrosis. J Cyst Fibros 2019; 19 Suppl 1:S5-S9. [PMID: 31879237 DOI: 10.1016/j.jcf.2019.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023]
Abstract
Genetics is the branch of biology concerned with study of individual genes and how they work whereas genomics is involved with the analysis of all genes and their interactions. Both of these approaches have been applied extensively to CF. Identification of the CFTR gene initiated the dissection of CF genetics at the molecular level. Subsequently, thousands of variants were found in the gene and the functional consequences of a subset have been studied in detail. The completion of the human genome ushered in a new phase of study where the role of genes beyond CFTR could be evaluated for their contribution to the severity of CF. This will be a brief overview of the contribution of these complementary methods to our understanding of CF pathogenesis.
Collapse
Affiliation(s)
- N Sharma
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - G R Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.
| |
Collapse
|
14
|
Doonan LM, Guerriero CJ, Preston GM, Buck TM, Khazanov N, Fisher EA, Senderowitz H, Brodsky JL. Hsp104 facilitates the endoplasmic-reticulum-associated degradation of disease-associated and aggregation-prone substrates. Protein Sci 2019; 28:1290-1306. [PMID: 31050848 DOI: 10.1002/pro.3636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022]
Abstract
Misfolded proteins in the endoplasmic reticulum (ER) are selected for ER-associated degradation (ERAD). More than 60 disease-associated proteins are substrates for the ERAD pathway due to the presence of missense or nonsense mutations. In yeast, the Hsp104 molecular chaperone disaggregates detergent-insoluble ERAD substrates, but the spectrum of disease-associated ERAD substrates that may be aggregation prone is unknown. To determine if Hsp104 recognizes aggregation-prone ERAD substrates associated with human diseases, we developed yeast expression systems for a hydrophobic lipid-binding protein, apolipoprotein B (ApoB), along with a chimeric protein harboring a nucleotide-binding domain from the cystic fibrosis transmembrane conductance regulator (CFTR) into which disease-causing mutations were introduced. We discovered that Hsp104 facilitates the degradation of ER-associated ApoB as well as a truncated CFTR chimera in which a premature stop codon corresponds to a disease-causing mutation. Chimeras containing a wild-type version of the CFTR domain or a different mutation were stable and thus Hsp104 independent. We also discovered that the detergent solubility of the unstable chimera was lower than the stable chimeras, and Hsp104 helped retrotranslocate the unstable chimera from the ER, consistent with disaggregase activity. To determine why the truncated chimera was unstable, we next performed molecular dynamics simulations and noted significant unraveling of the CFTR nucleotide-binding domain. Because human cells lack Hsp104, these data indicate that an alternate disaggregase or mechanism facilitates the removal of aggregation-prone, disease-causing ERAD substrates in their native environments.
Collapse
Affiliation(s)
- Lynley M Doonan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
| | - Christopher J Guerriero
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
| | - G Michael Preston
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
| | - Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
| | - Netaly Khazanov
- Department of Chemistry, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine and Cell Biology, New York University, New York, New York, 10016
| | - Hanoch Senderowitz
- Department of Chemistry, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
| |
Collapse
|
15
|
Lauschke VM, Zhou Y, Ingelman-Sundberg M. Novel genetic and epigenetic factors of importance for inter-individual differences in drug disposition, response and toxicity. Pharmacol Ther 2019; 197:122-152. [PMID: 30677473 PMCID: PMC6527860 DOI: 10.1016/j.pharmthera.2019.01.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Individuals differ substantially in their response to pharmacological treatment. Personalized medicine aspires to embrace these inter-individual differences and customize therapy by taking a wealth of patient-specific data into account. Pharmacogenomic constitutes a cornerstone of personalized medicine that provides therapeutic guidance based on the genomic profile of a given patient. Pharmacogenomics already has applications in the clinics, particularly in oncology, whereas future development in this area is needed in order to establish pharmacogenomic biomarkers as useful clinical tools. In this review we present an updated overview of current and emerging pharmacogenomic biomarkers in different therapeutic areas and critically discuss their potential to transform clinical care. Furthermore, we discuss opportunities of technological, methodological and institutional advances to improve biomarker discovery. We also summarize recent progress in our understanding of epigenetic effects on drug disposition and response, including a discussion of the only few pharmacogenomic biomarkers implemented into routine care. We anticipate, in part due to exciting rapid developments in Next Generation Sequencing technologies, machine learning methods and national biobanks, that the field will make great advances in the upcoming years towards unlocking the full potential of genomic data.
Collapse
Affiliation(s)
- Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
16
|
Muraglia KA, Chorghade RS, Kim BR, Tang XX, Shah VS, Grillo AS, Daniels PN, Cioffi AG, Karp PH, Zhu L, Welsh MJ, Burke MD. Small-molecule ion channels increase host defences in cystic fibrosis airway epithelia. Nature 2019; 567:405-408. [PMID: 30867598 PMCID: PMC6492938 DOI: 10.1038/s41586-019-1018-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/11/2019] [Indexed: 01/10/2023]
Abstract
Loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) compromise epithelial HCO3− and Cl− secretion, reduce airway surface liquid (ASL) pH, and impair respiratory host defenses in people with cystic fibrosis (CF) 1–3. Here we report that apical addition of an unselective ion channel-forming small molecule, amphotericin B (AmB), restored HCO3− secretion and increased ASL pH in cultured human CF airway epithelia. These effects required the basolateral Na+/K+ ATPase, indicating that apical AmB channels functionally interfaced with this driver of anion secretion. AmB also restored ASL pH, viscosity, and antibacterial activity in primary cultures of airway epithelia from people with CF caused by different mutations, including ones that yield no CFTR, and increased ASL pH in CFTR-null pigs in vivo. Thus, unselective small molecule ion channels can restore CF airway host defenses via a mechanism that is CFTR-independent and therefore genotype-independent.
Collapse
Affiliation(s)
- Katrina A Muraglia
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rajeev S Chorghade
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bo Ram Kim
- Department of Internal Medicine and HHMI, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiao Xiao Tang
- Department of Internal Medicine and HHMI, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Viral S Shah
- Department of Internal Medicine and HHMI, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Anthony S Grillo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Page N Daniels
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alexander G Cioffi
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Philip H Karp
- Department of Internal Medicine and HHMI, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lingyang Zhu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael J Welsh
- Department of Internal Medicine and HHMI, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Martin D Burke
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, USA. .,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA. .,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| |
Collapse
|
17
|
Guimbellot J, Solomon GM, Baines A, Heltshe SL, VanDalfsen J, Joseloff E, Sagel SD, Rowe SM. Effectiveness of ivacaftor in cystic fibrosis patients with non-G551D gating mutations. J Cyst Fibros 2019; 18:102-109. [PMID: 29685811 PMCID: PMC6196121 DOI: 10.1016/j.jcf.2018.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/06/2018] [Accepted: 04/08/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND The cystic fibrosis transmembrane conductance regulator (CFTR) potentiator ivacaftor is approved for patients with CF with gating and residual function CFTR mutations. We report the results of an observational study investigating its effects in CF patients with non-G551D gating mutations. METHODS Patients with non-G551D gating mutations were recruited to an open-label study evaluating ivacaftor. Primary outcomes included: lung function, sweat chloride, weight gain, and quality of life scores. RESULTS Twenty-one subjects were enrolled and completed 6 months follow-up on ivacaftor; mean age was 25.6 years with 52% <18. Baseline ppFEV1 was 68% and mean sweat chloride 89.6 mEq/L. Participants experienced significant improvements in ppFEV1 (mean absolute increase of 10.9% 95% CI = [2.6,19.3], p = 0.0134), sweat chloride (-48.6 95% CI = [-67.4,-29.9], p < 0.0001), and weight (5.1 kg, 95% CI = [2.8, 7.3], p = 0.0002). CONCLUSIONS Patients with non-G551D gating mutations experienced improved lung function, nutritional status, and quality of life. This study supports ongoing use of ivacaftor for patients with these mutations.
Collapse
Affiliation(s)
- Jennifer Guimbellot
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL, USA
| | - George M Solomon
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, UAB, Birmingham, AL, USA
| | - Arthur Baines
- CFF Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle 98105, WA, USA
| | - Sonya L Heltshe
- CFF Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle 98105, WA, USA; Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Jill VanDalfsen
- CFF Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle 98105, WA, USA
| | | | - Scott D Sagel
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL, USA; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, UAB, Birmingham, AL, USA.
| |
Collapse
|
18
|
Sharma N, Evans TA, Pellicore MJ, Davis E, Aksit MA, McCague AF, Joynt AT, Lu Z, Han ST, Anzmann AF, Lam ATN, Thaxton A, West N, Merlo C, Gottschalk LB, Raraigh KS, Sosnay PR, Cotton CU, Cutting GR. Capitalizing on the heterogeneous effects of CFTR nonsense and frameshift variants to inform therapeutic strategy for cystic fibrosis. PLoS Genet 2018; 14:e1007723. [PMID: 30444886 PMCID: PMC6267994 DOI: 10.1371/journal.pgen.1007723] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/30/2018] [Accepted: 09/28/2018] [Indexed: 12/18/2022] Open
Abstract
CFTR modulators have revolutionized the treatment of individuals with cystic fibrosis (CF) by improving the function of existing protein. Unfortunately, almost half of the disease-causing variants in CFTR are predicted to introduce premature termination codons (PTC) thereby causing absence of full-length CFTR protein. We hypothesized that a subset of nonsense and frameshift variants in CFTR allow expression of truncated protein that might respond to FDA-approved CFTR modulators. To address this concept, we selected 26 PTC-generating variants from four regions of CFTR and determined their consequences on CFTR mRNA, protein and function using intron-containing minigenes expressed in 3 cell lines (HEK293, MDCK and CFBE41o-) and patient-derived conditionally reprogrammed primary nasal epithelial cells. The PTC-generating variants fell into five groups based on RNA and protein effects. Group A (reduced mRNA, immature (core glycosylated) protein, function <1% (n = 5)) and Group B (normal mRNA, immature protein, function <1% (n = 10)) variants were unresponsive to modulator treatment. However, Group C (normal mRNA, mature (fully glycosylated) protein, function >1% (n = 5)), Group D (reduced mRNA, mature protein, function >1% (n = 5)) and Group E (aberrant RNA splicing, mature protein, function > 1% (n = 1)) variants responded to modulators. Increasing mRNA level by inhibition of NMD led to a significant amplification of modulator effect upon a Group D variant while response of a Group A variant was unaltered. Our work shows that PTC-generating variants should not be generalized as genetic 'nulls' as some may allow generation of protein that can be targeted to achieve clinical benefit.
Collapse
Affiliation(s)
- Neeraj Sharma
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Taylor A. Evans
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew J. Pellicore
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Emily Davis
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Melis A. Aksit
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Allison F. McCague
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Anya T. Joynt
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zhongzhu Lu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sangwoo T. Han
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Arianna F. Anzmann
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Anh-Thu N. Lam
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Abigail Thaxton
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Natalie West
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Christian Merlo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Laura B. Gottschalk
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Karen S. Raraigh
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Patrick R. Sosnay
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Calvin U. Cotton
- Departments of Pediatrics, Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Garry R. Cutting
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
19
|
Hutt DM, Loguercio S, Campos AR, Balch WE. A Proteomic Variant Approach (ProVarA) for Personalized Medicine of Inherited and Somatic Disease. J Mol Biol 2018; 430:2951-2973. [PMID: 29924966 PMCID: PMC6097907 DOI: 10.1016/j.jmb.2018.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022]
Abstract
The advent of precision medicine for genetic diseases has been hampered by the large number of variants that cause familial and somatic disease, a complexity that is further confounded by the impact of genetic modifiers. To begin to understand differences in onset, progression and therapeutic response that exist among disease-causing variants, we present the proteomic variant approach (ProVarA), a proteomic method that integrates mass spectrometry with genomic tools to dissect the etiology of disease. To illustrate its value, we examined the impact of variation in cystic fibrosis (CF), where 2025 disease-associated mutations in the CF transmembrane conductance regulator (CFTR) gene have been annotated and where individual genotypes exhibit phenotypic heterogeneity and response to therapeutic intervention. A comparative analysis of variant-specific proteomics allows us to identify a number of protein interactions contributing to the basic defects associated with F508del- and G551D-CFTR, two of the most common disease-associated variants in the patient population. We demonstrate that a number of these causal interactions are significantly altered in response to treatment with Vx809 and Vx770, small-molecule therapeutics that respectively target the F508del and G551D variants. ProVarA represents the first comparative proteomic analysis among multiple disease-causing mutations, thereby providing a methodological approach that provides a significant advancement to existing proteomic efforts in understanding the impact of variation in CF disease. We posit that the implementation of ProVarA for any familial or somatic mutation will provide a substantial increase in the knowledge base needed to implement a precision medicine-based approach for clinical management of disease.
Collapse
Affiliation(s)
- Darren M Hutt
- The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla CA USA 92037
| | - Salvatore Loguercio
- The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla CA USA 92037
| | - Alexandre Rosa Campos
- Sanford Burnham Prebys Medical Discovery Institute Proteomic Core 10901 North Torrey Pines Road, La Jolla CA USA 92037
| | - William E Balch
- The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Rd, La Jolla CA USA 92037
- Integrative Structural and Computational Biology, 10550 North Torrey Pines Rd, La Jolla CA USA 92037
- The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Rd, La Jolla CA USA 92037
| |
Collapse
|
20
|
Han ST, Rab A, Pellicore MJ, Davis EF, McCague AF, Evans TA, Joynt AT, Lu Z, Cai Z, Raraigh KS, Hong JS, Sheppard DN, Sorscher EJ, Cutting GR. Residual function of cystic fibrosis mutants predicts response to small molecule CFTR modulators. JCI Insight 2018; 3:121159. [PMID: 30046002 DOI: 10.1172/jci.insight.121159] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/12/2018] [Indexed: 12/24/2022] Open
Abstract
Treatment of individuals with cystic fibrosis (CF) has been transformed by small molecule therapies that target select pathogenic variants in the CF transmembrane conductance regulator (CFTR). To expand treatment eligibility, we stably expressed 43 rare missense CFTR variants associated with moderate CF from a single site in the genome of human CF bronchial epithelial (CFBE41o-) cells. The magnitude of drug response was highly correlated with residual CFTR function for the potentiator ivacaftor, the corrector lumacaftor, and ivacaftor-lumacaftor combination therapy. Response of a second set of 16 variants expressed stably in Fischer rat thyroid (FRT) cells showed nearly identical correlations. Subsets of variants were identified that demonstrated statistically significantly higher responses to specific treatments. Furthermore, nearly all variants studied in CFBE cells (40 of 43) and FRT cells (13 of 16) demonstrated greater response to ivacaftor-lumacaftor combination therapy than either modulator alone. Together, these variants represent 87% of individuals in the CFTR2 database with at least 1 missense variant. Thus, our results indicate that most individuals with CF carrying missense variants are (a) likely to respond modestly to currently available modulator therapy, while a small fraction will have pronounced responses, and (b) likely to derive the greatest benefit from combination therapy.
Collapse
Affiliation(s)
- Sangwoo T Han
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andras Rab
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Matthew J Pellicore
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily F Davis
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Allison F McCague
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Taylor A Evans
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anya T Joynt
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhongzhou Lu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhiwei Cai
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Karen S Raraigh
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeong S Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Eric J Sorscher
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Garry R Cutting
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Hutt DM, Mishra SK, Roth DM, Larsen MB, Angles F, Frizzell RA, Balch WE. Silencing of the Hsp70-specific nucleotide-exchange factor BAG3 corrects the F508del-CFTR variant by restoring autophagy. J Biol Chem 2018; 293:13682-13695. [PMID: 29986884 DOI: 10.1074/jbc.ra118.002607] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/05/2018] [Indexed: 01/11/2023] Open
Abstract
The protein chaperones heat shock protein 70 (Hsp70) and Hsp90 are required for de novo folding of proteins and protect against misfolding-related cellular stresses by directing misfolded or slowly folding proteins to the ubiquitin/proteasome system (UPS) or autophagy/lysosomal degradation pathways. Here, we examined the role of the Bcl2-associated athanogene (BAG) family of Hsp70-specific nucleotide-exchange factors in the biogenesis and functional correction of genetic variants of the cystic fibrosis transmembrane conductance regulator (CFTR) whose mutations cause cystic fibrosis (CF). We show that siRNA-mediated silencing of BAG1 and -3, two BAG members linked to the clearance of misfolded proteins via the UPS and autophagy pathways, respectively, leads to functional correction of F508del-CFTR and other disease-associated CFTR variants. BAG3 silencing was the most effective, leading to improved F508del-CFTR stability, trafficking, and restoration of cell-surface function, both alone and in combination with the FDA-approved CFTR corrector, VX-809. We also found that the BAG3 silencing-mediated correction of F508del-CFTR restores the autophagy pathway, which is defective in F508del-CFTR-expressing cells, likely because of the maladaptive stress response in CF pathophysiology. These results highlight the potential therapeutic benefits of targeting the cellular chaperone system to improve the functional folding of CFTR variants contributing to CF and possibly other protein-misfolding-associated diseases.
Collapse
Affiliation(s)
- Darren M Hutt
- From the Department of Molecular Medicine, Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California 92037 and
| | - Sanjay Kumar Mishra
- the Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Daniela Martino Roth
- From the Department of Molecular Medicine, Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California 92037 and
| | - Mads Breum Larsen
- the Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Frédéric Angles
- From the Department of Molecular Medicine, Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California 92037 and
| | - Raymond A Frizzell
- the Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - William E Balch
- From the Department of Molecular Medicine, Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California 92037 and
| |
Collapse
|