1
|
Fan X, Zhang Z, Hu Y, Richel A, Wang F, Zhang L, Ren G, Zou L. Current research status on the structure, physicochemical properties, bioactivities, and mechanism of soybean-derived bioactive peptide lunasin. Food Chem 2025; 479:143836. [PMID: 40090200 DOI: 10.1016/j.foodchem.2025.143836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/28/2025] [Accepted: 03/09/2025] [Indexed: 03/18/2025]
Abstract
Since the 21st century, chronic diseases have become a worldwide health problem due to their high morbidity and mortality. Soybean bioactive substances, especially soybean peptides, are considered to have health benefits beyond nutritional effects. As the most studied peptide in soybean, lunasin has been proven to exert beneficial effects on various chronic disorders. This review summarizes the content of lunasin in soybeans, soy derived foods, and other crops, as well as its structural characteristics and bioavailability. Moreover, we focused on the relationship between the physicochemical characteristics and structural composition of lunasin, and its significance for the bioactivities of lunasin. Ultimately, the therapeutic effects of lunasin on cancer, oxidative stress, inflammation, immune response, and hyperlipidemia were described, as well as the molecular mechanisms involved in these impacts. In conclusion, lunasin is a promising multifunctional bioactive peptide, yet further research is required to optimize and expedite its application in the food industry.
Collapse
Affiliation(s)
- Xin Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Science, Shanxi University, Taiyuan 030006, China; Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Zhuo Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Aurore Richel
- Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Fangzhou Wang
- Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Lizhen Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Science, Shanxi University, Taiyuan 030006, China.
| | - Guixing Ren
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, School of Life Science, Shanxi University, Taiyuan 030006, China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Chengdu Agricultural College, Chengdu, Sichuan 611130, China.
| |
Collapse
|
2
|
Hamdi M, Kilari BP, Mudgil P, Nirmal NP, Ojha S, Ayoub MA, Amin A, Maqsood S. Bioactive peptides with potential anticancer properties from various food protein sources: status of recent research, production technologies, and developments. Crit Rev Biotechnol 2025:1-22. [PMID: 39757011 DOI: 10.1080/07388551.2024.2435965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 01/07/2025]
Abstract
Recently, bioactive peptides, from natural resources, have attracted remarkable attention as nutraceutical treasures and the health benefits of their consumption have extensively been studied. Therapies based on bioactive peptides have been recognized as an innovative and promising alternative method for dangerous diseases such as cancer. Indeed, there has been enormous interest in nutraceuticals and bioactive-based chemopreventive molecules as a potential opportunity to manage chronic diseases, including cancer at different stages, rather than the traditionally used therapies. The relative safety and efficacy of these peptides in targeting only the tumor cells without affecting the normal cells make them attractive alternatives to existing pharmaceuticals for the treatment, management, and prevention of cancer, being able to act as potential physiological modulators of metabolism during their intestinal digestion. Novel bioactive peptides derived from food sources can be beneficial as anticancer nutraceuticals and provide a basis for the pharmaceutical development of food-derived bioactive peptides. Bioactive peptides can be generated through different protein hydrolysis methods and purified using advanced chromatographic techniques. Moreover, establishing bioactive peptides' efficacy and mechanism of action can provide alternative methods for cancer prevention and management. Most of the research on anticancer peptides is carried out on cell lines with very limited research being investigated in animal models or human clinical models. In this context, this review article comprehensively discusses anticancer peptides': production, isolation, therapeutic strategies, mechanism of action, and application in cancer therapy.
Collapse
Affiliation(s)
- Marwa Hamdi
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bhanu Priya Kilari
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Priti Mudgil
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | | | - Shreesh Ojha
- Department of Pharmacology, College of Medicine and Health Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, United Arab Emirates
| | - Amr Amin
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Sajid Maqsood
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
3
|
Merkher Y, Kontareva E, Alexandrova A, Javaraiah R, Pustovalova M, Leonov S. Anti-Cancer Properties of Flaxseed Proteome. Proteomes 2023; 11:37. [PMID: 37987317 PMCID: PMC10661269 DOI: 10.3390/proteomes11040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023] Open
Abstract
Flaxseed has been recognized as a valuable source of nutrients and bioactive compounds, including proteins that possess various health benefits. In recent years, studies have shown that flaxseed proteins, including albumins, globulins, glutelin, and prolamins, possess anti-cancer properties. These properties are attributed to their ability to inhibit cancer cell proliferation, induce apoptosis, and interfere with cancer cell signaling pathways, ultimately leading to the inhibition of metastasis. Moreover, flaxseed proteins have been reported to modulate cancer cell mechanobiology, leading to changes in cell behavior and reduced cancer cell migration and invasion. This review provides an overview of the anti-cancer properties of flaxseed proteins, with a focus on their potential use in cancer treatment. Additionally, it highlights the need for further research to fully establish the potential of flaxseed proteins in cancer therapy.
Collapse
Affiliation(s)
- Yulia Merkher
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Moscow Region, Russia (S.L.)
- Faculty of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa 3200003, Israel
| | - Elizaveta Kontareva
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Moscow Region, Russia (S.L.)
| | - Anastasia Alexandrova
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Moscow Region, Russia (S.L.)
| | - Rajesha Javaraiah
- Department of Biochemistry, Yuvaraja’s College, University of Mysore Mysuru, Karnataka 570005, India
| | - Margarita Pustovalova
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Moscow Region, Russia (S.L.)
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
| | - Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Moscow Region, Russia (S.L.)
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| |
Collapse
|
4
|
Kaufman-Szymczyk A, Kaczmarek W, Fabianowska-Majewska K, Lubecka-Gajewska K. Lunasin and Its Epigenetic Impact in Cancer Chemoprevention. Int J Mol Sci 2023; 24:ijms24119187. [PMID: 37298139 DOI: 10.3390/ijms24119187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer diseases are a leading cause of death worldwide. Therefore, it is pivotal to search for bioactive dietary compounds that can avert tumor development. A diet rich in vegetables, including legumes, provides chemopreventive substances, which have the potential to prevent many diseases, including cancer. Lunasin is a soy-derived peptide whose anti-cancer activity has been studied for over 20 years. The results of the previous research have shown that lunasin inhibits histone acetylation, regulates the cell cycle, suppresses proliferation and induces apoptosis of cancer cells. Thus, lunasin seems to be a promising bioactive anti-cancer agent and a potent epigenetic modulator. The present review discusses studies of the underlying molecular mechanisms and new perspectives on lunasin application in epigenetic prevention and anti-cancer therapy.
Collapse
Affiliation(s)
- Agnieszka Kaufman-Szymczyk
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Lodz, 92-215 Lodz, Poland
| | - Wiktoria Kaczmarek
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Lodz, 92-215 Lodz, Poland
| | | | - Katarzyna Lubecka-Gajewska
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
5
|
Li QZ, Zhou ZR, Hu CY, Li XB, Chang YZ, Liu Y, Wang YL, Zhou XW. Recent advances of bioactive proteins/polypeptides in the treatment of breast cancer. Food Sci Biotechnol 2023; 32:265-282. [PMID: 36619215 PMCID: PMC9808697 DOI: 10.1007/s10068-022-01233-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/24/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
Proteins do not only serve as nutrients to fulfill the demand for food, but also are used as a source of bioactive proteins/polypeptides for regulating physical functions and promoting physical health. Female breast cancer has the highest incidence in the world and is a serious threat to women's health. Bioactive proteins/polypeptides exert strong anti-tumor effects and exhibit inhibition of multiple breast cancer cells. This review discussed the suppressing effects of bioactive proteins/polypeptides on breast cancer in vitro and in vivo, and their mechanisms of migration and invasion inhibition, apoptosis induction, and cell cycle arrest. This may contribute to providing a basis for the development of bioactive proteins/polypeptides for the treatment of breast cancer. Graphical abstract
Collapse
Affiliation(s)
- Qi-Zhang Li
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Food and Biological Engineering, Hubei University of Technology, No.28, Nanli Road, Wuhan, 430068 Hubei People’s Republic of China
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Ze-Rong Zhou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Food and Biological Engineering, Hubei University of Technology, No.28, Nanli Road, Wuhan, 430068 Hubei People’s Republic of China
| | - Cui-Yu Hu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Food and Biological Engineering, Hubei University of Technology, No.28, Nanli Road, Wuhan, 430068 Hubei People’s Republic of China
| | - Xian-Bin Li
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, Guangdong 510006 People’s Republic of China
| | - Yu-Zhou Chang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210 USA
| | - Yan Liu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Yu-Liang Wang
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Xuan-Wei Zhou
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| |
Collapse
|
6
|
Nieto-Veloza A, Zhong Q, Kim WS, D'Souza D, Krishnan HB, Dia VP. Utilization of tofu processing wastewater as a source of the bioactive peptide lunasin. Food Chem 2021; 362:130220. [PMID: 34098437 DOI: 10.1016/j.foodchem.2021.130220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/12/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
The goal of our study was to design a simple and feasible method to obtain lunasin, a naturally-occurring bioactive peptide, from tofu whey wastewater. A combination of alcoholic precipitation of high-molecular weight proteins from the whey, isoelectric precipitation of lunasin enriched material, and purification via gel filtration chromatography was selected as the best approach using tofu whey prepared at the laboratory scale. This process was applied to tofu whey produced by a local tofu factory and 773 mg of 80% purity lunasin was obtained per kg of dry tofu whey. Significant reduction of nitric oxide, and pro-inflammatory cytokines TNF-α and IL-6 over lipopolysaccharide activated murine macrophages demonstrate its biological activity. Our three-step process is not only simpler and faster than the previously reported methods to obtain lunasin but provides a sustainable approach for the valorization of a waste product, promoting the better utilization of soybean nutrients and active compounds.
Collapse
Affiliation(s)
- Andrea Nieto-Veloza
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN 37996, USA.
| | - Qixin Zhong
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN 37996, USA.
| | - Won-Seok Kim
- Plant Science Division, University of Missouri, Columbia, MO 65211, USA.
| | - Doris D'Souza
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN 37996, USA.
| | - Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, USDA, Columbia, MO 65211, USA.
| | - Vermont P Dia
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN 37996, USA.
| |
Collapse
|
7
|
Kusmardi K, Wiyarta E, Rusdi NK, Maulana AM, Estuningtyas A, Sunaryo H. The potential of lunasin extract for the prevention of breast cancer progression by upregulating E-Cadherin and inhibiting ICAM-1. F1000Res 2021; 10:902. [PMID: 34691393 PMCID: PMC8506221 DOI: 10.12688/f1000research.55385.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 01/12/2023] Open
Abstract
Background: Research in natural substances for their anticancer potential has become increasingly popular. Lunasin, a soybean protein, is known to inhibit cancer progression via various pathways. The aim of this study was to investigate the effect of Lunasin Extract (LE) on the expression of Intercellular Adhesion Molecule 1 (ICAM-1) and epithelial cadherins (E-Cadherin) in breast cancer. Methods: In this true-experimental in vivo study, 24 Sprague-Dawley rats that were induced by 7,12-Dimethylbenz[a]anthracene (DMBA), were used. Based on the therapy given, the groups were divided into, normal, positive control (PC), negative control (NC), adjuvant, curative, and preventive. Lunasin was extracted from soybean seeds of the Grobogan variety in Indonesia. Tissue samples were obtained, processed, stained with anti-ICAM-1 and anti-E-Cadherin antibodies, examined under a microscope, and quantified using H-score. The data were analyzed using ANOVA, which was then followed by Duncan's test. Results: Statistically significant difference in ICAM-1 expression was observed between the following groups: adjuvant and NC, normal and NC, PC and NC, adjuvant and preventive, normal and preventive, PC and preventive, adjuvant and curative, normal and curative, PC and curative. E-Cadherin expression was significantly different between preventive and NC, adjuvant and NC, PC and NC, normal and NC, adjuvant and curative, PC and curative, normal and curative, normal and preventive. Significant negative correlation was found between ICAM-1 and E-Cadherin [-0.616 (-0.8165; -0.283)] with p = 0.001. Conclusion: Preventive dose of LE was able to reduce ICAM-1 expression while increasing E-Cadherin expression.
Collapse
Affiliation(s)
- Kusmardi Kusmardi
- Department of Anatomic Pathology, Faculty of Medicine, Universitas Indonesia, Salemba Raya Street no.6, Jakarta, 10430, Indonesia
- Drug Development Research Cluster, Indonesian Medical Education and Research Institute, Universitas Indonesia, Salemba Raya Street no.6, Jakarta, 10430, Indonesia
- Human Cancer Research Cluster, Indonesian Medical Education and Research Institute, Universitas Indonesia, Salemba Raya Street no.6, Jakarta, 10430, Indonesia
| | - Elvan Wiyarta
- Faculty of Medicine, Universitas Indonesia, Salemba Raya Street no.6, Jakarta, 10430, Indonesia
| | - Numlil Khaira Rusdi
- Faculty of Pharmacy and Science, Universitas Muhammadiyah Prof. DR. Hamka, Limau II Street, Jakarta, 12130, Indonesia
- Doctoral Program for Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Salemba Raya Street no.6, Jakarta, 10430, Indonesia
| | - Andi Muh. Maulana
- Doctoral Program for Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Salemba Raya Street no.6, Jakarta, 10430, Indonesia
- Faculty of Medicine, University of Muhammadiyah Purwakarta, KH. Ahmad Dahlan Street, Central Java, 53182, Indonesia
| | - Ari Estuningtyas
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Salemba Raya Street no.6, Jakarta, 10430, Indonesia
| | - Hadi Sunaryo
- Faculty of Pharmacy and Science, Universitas Muhammadiyah Prof. DR. Hamka, Limau II Street, Jakarta, 12130, Indonesia
- Doctoral Program for Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Salemba Raya Street no.6, Jakarta, 10430, Indonesia
| |
Collapse
|
8
|
García-Cordero JM, Martínez-Palma NY, Madrigal-Bujaidar E, Jiménez-Martínez C, Madrigal-Santillán E, Morales-González JA, Paniagua-Pérez R, Álvarez-González I. Phaseolin, a Protein from the Seed of Phaseolus vulgaris, Has Antioxidant, Antigenotoxic, and Chemopreventive Properties. Nutrients 2021; 13:1750. [PMID: 34063915 PMCID: PMC8224085 DOI: 10.3390/nu13061750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
The present report was designed to determine the antioxidant and antigenotoxic effects of phaseolin (isolated from Phaseolus vulgaris) against mouse colon and liver damage induced by azoxymethane (AOM) and its colon chemopreventive effect. Eight groups with 12 mice each were utilized for an eight-week experiment: the control group was intragastrically (ig) administered 0.9% saline solution; the positive control group was intraperitoneally (ip) injected with 7.5 mg/kg AOM twice a week (weeks three and four of the experiment); three groups were ig administered each day with phaseolin (40, 200, and 400 mg/kg); and three groups were ig administered phaseolin daily (40, 200, and 400 mg/kg) plus 7.5 mg/kg AOM twice a week in weeks three and four of the experiment. The results showed that phaseolin did not produce oxidative stress, DNA damage, or aberrant crypts; in contrast, 100% inhibition of lipoperoxidation, protein oxidation, and nitrites induction generated by AOM was found in both organs, and DPPH radical capture occurred. The two highest phaseolin doses reduced DNA damage induced by AOM in both organs by more than 90% and reduced the AOM-induced aberrant crypts by 84%. Therefore, our study demonstrated the strong in vivo antioxidant, antigenotoxic, and chemopreventive potential of phaseolin.
Collapse
Affiliation(s)
- Juan Manuel García-Cordero
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n. Zacatenco. Gustavo A. Madero, Ciudad de Mexico 07738, Mexico; (J.M.G.-C.); (N.Y.M.-P.); (E.M.-B.)
- Laboratorio de Compuestos Bioactivos, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n. Zacatenco. Gustavo A. Madero, Ciudad de Mexico 07738, Mexico;
| | - Nikte Y. Martínez-Palma
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n. Zacatenco. Gustavo A. Madero, Ciudad de Mexico 07738, Mexico; (J.M.G.-C.); (N.Y.M.-P.); (E.M.-B.)
- Laboratorio de Compuestos Bioactivos, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n. Zacatenco. Gustavo A. Madero, Ciudad de Mexico 07738, Mexico;
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n. Zacatenco. Gustavo A. Madero, Ciudad de Mexico 07738, Mexico; (J.M.G.-C.); (N.Y.M.-P.); (E.M.-B.)
| | - Cristian Jiménez-Martínez
- Laboratorio de Compuestos Bioactivos, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n. Zacatenco. Gustavo A. Madero, Ciudad de Mexico 07738, Mexico;
| | - Eduardo Madrigal-Santillán
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n. Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico; (E.M.-S.); (J.A.M.-G.)
| | - José A. Morales-González
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n. Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico; (E.M.-S.); (J.A.M.-G.)
| | - Rogelio Paniagua-Pérez
- Servicio de Bioquímica, Instituto Nacional de Rehabilitación, Av. Mexico-Xochimilco 289, Ciudad de Mexico 14389, Mexico;
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n. Zacatenco. Gustavo A. Madero, Ciudad de Mexico 07738, Mexico; (J.M.G.-C.); (N.Y.M.-P.); (E.M.-B.)
| |
Collapse
|
9
|
Gonzalez de Mejia E, Castañeda-Reyes ED, Mojica L, Dia V, Wang H, Wang T, Johnson LA. Potential Health Benefits Associated with Lunasin Concentration in Dietary Supplements and Lunasin-Enriched Soy Extract. Nutrients 2021; 13:1618. [PMID: 34065911 PMCID: PMC8150303 DOI: 10.3390/nu13051618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022] Open
Abstract
Lunasin has demonstrated antioxidative, anti-inflammatory, and chemopreventive properties. The objectives were to evaluate the concentration of lunasin in different lunasin-based commercial dietary supplements, to produce a lunasin-enriched soy extract (LESE) using a two-step pilot-plant-based ultrafiltration process, and to evaluate their biological potential in vitro. LESE was produced using 30 and 1 kDa membranes in a custom-made ultrafiltration skid. Lunasin was quantified in eight products and LESE. Lunasin concentrations of the lunasin-based products ranged from 9.2 ± 0.6 to 25.7 ± 1.1 mg lunasin/g protein. The LESE extract contained 58.2 mg lunasin/g protein, up to 6.3-fold higher lunasin enrichment than lunasin-based dietary supplements. Antioxidant capacity ranged from 121.5 mmol Trolox equivalents (TE)/g in Now® Kids to 354.4 mmol TE/g in LESE. Histone acetyltransferase (HAT) inhibition ranged from 5.3% on Soy Sentials® to 38.3% on synthetic lunasin. ORAC and lunasin concentrations were positively correlated, and HAT and lunasin concentrations were negatively correlated (p < 0.05). Melanoma B16-F10 and A375 cells treated with lunasin showed dose-dependent inhibitory potential (IC50 equivalent to 330 and 370 μM lunasin, respectively). Lunasin showed protein kinase B expression (57 ± 14%) compared to the control (100%) in B16-F10. Lunasin concentration found in commercial products and lunasin-enriched soy extract could exert benefits to consumers.
Collapse
Affiliation(s)
- Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (E.D.C.-R.); (L.M.); (V.D.)
| | - Erick Damian Castañeda-Reyes
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (E.D.C.-R.); (L.M.); (V.D.)
| | - Luis Mojica
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (E.D.C.-R.); (L.M.); (V.D.)
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A. C., CIATEJ, Guadalajara 44270, Mexico
| | - Vermont Dia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (E.D.C.-R.); (L.M.); (V.D.)
| | - Hui Wang
- Center for Crops Utilization Research, Iowa State University, Ames, IA 50011, USA; (H.W.); (T.W.); (L.A.J.)
| | - Toni Wang
- Center for Crops Utilization Research, Iowa State University, Ames, IA 50011, USA; (H.W.); (T.W.); (L.A.J.)
| | - Lawrence A. Johnson
- Center for Crops Utilization Research, Iowa State University, Ames, IA 50011, USA; (H.W.); (T.W.); (L.A.J.)
| |
Collapse
|
10
|
Dia VP. Plant sources of bioactive peptides. BIOLOGICALLY ACTIVE PEPTIDES 2021:357-402. [DOI: 10.1016/b978-0-12-821389-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Luan X, Wu Y, Shen YW, Zhang H, Zhou YD, Chen HZ, Nagle DG, Zhang WD. Cytotoxic and antitumor peptides as novel chemotherapeutics. Nat Prod Rep 2020; 38:7-17. [PMID: 32776055 DOI: 10.1039/d0np00019a] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covering: up to 2020Treatment resistance and drug-induced refractory malignancies pose significant challenges for current chemotherapy drugs. There have been increasing research efforts aimed at developing novel chemotherapeutics, especially from natural products and related derivatives. Natural cytotoxic peptides, an emerging source of chemotherapeutics, have exhibited the advantage of overcoming drug resistance and displayed broad-spectrum antitumor activities in the clinic. This highlight examines the increasingly popular cytotoxic peptides from isolated natural products. In-depth review of several peptides provides examples for how this novel strategy can lead to the improved anti-tumor effects. The mechanisms and current application of representative natural cytotoxic peptides (NCPs) have also been discussed, with a particular focus on future directions for interdisciplinary research.
Collapse
Affiliation(s)
- Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Fernández-Tomé S, Xu F, Han Y, Hernández-Ledesma B, Xiao H. Inhibitory Effects of Peptide Lunasin in Colorectal Cancer HCT-116 Cells and Their Tumorsphere-Derived Subpopulation. Int J Mol Sci 2020; 21:ijms21020537. [PMID: 31947688 PMCID: PMC7014180 DOI: 10.3390/ijms21020537] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 01/06/2023] Open
Abstract
The involvement of cancer stem-like cells (CSC) in the tumor pathogenesis has profound implications for cancer therapy and chemoprevention. Lunasin is a bioactive peptide from soybean and other vegetal sources with proven protective activities against cancer and other chronic diseases. The present study focused on the cytotoxic effect of peptide lunasin in colorectal cancer HCT-116 cells, both the bulk tumor and the CSC subpopulations. Lunasin inhibited the proliferation and the tumorsphere-forming capacity of HCT-116 cells. Flow cytometry results demonstrated that the inhibitory effects were related to apoptosis induction and cell cycle-arrest at G1 phase. Moreover, lunasin caused an increase in the sub-GO/G1 phase of bulk tumor cells, linked to the apoptotic events found. Immunoblotting analysis further showed that lunasin induced apoptosis through activation of caspase-3 and cleavage of PARP, and could modulate cell cycle progress through the cyclin-dependent kinase inhibitor p21. Together, these results provide new evidence on the chemopreventive activity of peptide lunasin on colorectal cancer by modulating both the parental and the tumorsphere-derived subsets of HCT-116 cells.
Collapse
Affiliation(s)
- Samuel Fernández-Tomé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM CEI UAM+CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain;
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (F.X.); (Y.H.)
| | - Fei Xu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (F.X.); (Y.H.)
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (F.X.); (Y.H.)
| | - Blanca Hernández-Ledesma
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM CEI UAM+CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain;
- Correspondence: (B.H.-L.); (H.X.); Tel.: +34 910017970 (B.H.-L.); +1 413-545-2281 (H.X.)
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (F.X.); (Y.H.)
- Correspondence: (B.H.-L.); (H.X.); Tel.: +34 910017970 (B.H.-L.); +1 413-545-2281 (H.X.)
| |
Collapse
|
13
|
Shah MA, Niaz K, Aslam N, Vargas-de la Cruz C, Kabir A, Khan AH, Khan F, Panichayupakaranant P. Analysis of proteins, peptides, and amino acids. RECENT ADVANCES IN NATURAL PRODUCTS ANALYSIS 2020:723-747. [DOI: 10.1016/b978-0-12-816455-6.00024-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|