1
|
Chang M, Li Q, Shi Z, Zhuang S. The Role and Mechanisms of Aurora Kinases in Kidney Diseases. Clin Pharmacol Ther 2025; 117:1217-1225. [PMID: 39907556 DOI: 10.1002/cpt.3584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Aurora kinases are a family of serine/threonine kinases that includes Aurora kinase A, Aurora kinase B, and Aurora kinase C. These kinases play crucial roles in mitotic spindle formation and cell proliferation. Over the past several decades, extensive research has elucidated the multifaceted roles of Aurora kinases in cancer development and progression. Recent studies have also highlighted the significant involvement of Aurora kinases in various kidney diseases, such as renal cell carcinoma, diabetic nephropathy, chronic kidney disease, and polycystic kidney disease. The mechanisms by which Aurora kinases contribute to renal diseases are complex and influenced by both specific pathological conditions and environmental factors. In this review, we comprehensively summarize the role and mechanisms through which Aurora kinases operate in kidney diseases and discuss the efficacy and application of existing inhibitors targeting these kinases in managing renal disorders in animal models.
Collapse
Affiliation(s)
- Meiying Chang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Nephrology, The First Hospital of Tsinghua University, Beijing, China
| | - Qiuyi Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenwei Shi
- Department of Nephrology, The First Hospital of Tsinghua University, Beijing, China
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Addario G, Moroni L, Mota C. Kidney Fibrosis In Vitro and In Vivo Models: Path Toward Physiologically Relevant Humanized Models. Adv Healthc Mater 2025; 14:e2403230. [PMID: 39906010 PMCID: PMC11973949 DOI: 10.1002/adhm.202403230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/14/2025] [Indexed: 02/06/2025]
Abstract
Chronic kidney disease (CKD) affects over 10% of the global population and is a leading cause of mortality. Kidney fibrosis, a key endpoint of CKD, disrupts nephron tubule anatomy and filtration function, and disease pathomechanisms are not fully understood. Kidney fibrosis is currently investigated with in vivo models, that gradually support the identification of possible mechanisms of fibrosis, but with limited translational research, as they do not fully recapitulate human kidney physiology, metabolism, and molecular pathways. In vitro 2D cell culture models are currently used, as a starting point in disease modeling and pharmacology, however, they lack the 3D kidney architecture complexity and functions. The failure of several therapies and drugs in clinical trials highlights the urgent need for advanced 3D in vitro models. This review discusses the urinary system's anatomy, associated diseases, and diagnostic methods, including biomarker analysis and tissue biopsy. It evaluates 2D and in vivo models, highlighting their limitations. The review explores the state-of-the-art 3D-humanized in vitro models, such as 3D cell aggregates, on-chip models, biofabrication techniques, and hybrid models, which aim to mimic kidney morphogenesis and functions. These advanced models hold promise for translating new therapies and drugs for kidney fibrosis into clinics.
Collapse
Affiliation(s)
- Gabriele Addario
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityER Maastricht6229The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityER Maastricht6229The Netherlands
| | - Carlos Mota
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityER Maastricht6229The Netherlands
| |
Collapse
|
3
|
Addario G, Fernández‐Pérez J, Formica C, Karyniotakis K, Herkens L, Djudjaj S, Boor P, Moroni L, Mota C. 3D Humanized Bioprinted Tubulointerstitium Model to Emulate Renal Fibrosis In Vitro. Adv Healthc Mater 2024; 13:e2400807. [PMID: 39152919 PMCID: PMC11582511 DOI: 10.1002/adhm.202400807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Chronic kidney disease (CKD) leads to a gradual loss of kidney function, with fibrosis as pathological endpoint, which is characterized by extracellular matrix (ECM) deposition and remodeling. Traditionally, in vivo models are used to study interstitial fibrosis, through histological characterization of biopsy tissue. However, ethical considerations and the 3Rs (replacement, reduction, and refinement) regulations emphasizes the need for humanized 3D in vitro models. This study introduces a bioprinted in vitro model which combines primary human cells and decellularized and partially digested extracellular matrix (ddECM). A protocol was established to decellularize kidney pig tissue and the ddECM was used to encapsulate human renal cells. To investigate fibrosis progression, cells were treated with transforming growth factor beta 1 (TGF-β1), and the mechanical properties of the ddECM hydrogel were modulated using vitamin B2 crosslinking. The bioprinting perfusable model replicates the renal tubulointerstitium. Results show an increased Young's modulus over time, together with the increase of ECM components and cell dedifferentiation toward myofibroblasts. Multiple fibrotic genes resulted upregulated, and the model closely resembled fibrotic human tissue in terms of collagen deposition. This 3D bioprinted model offers a more physiologically relevant platform for studying kidney fibrosis, potentially improving disease progression research and high-throughput drug screening.
Collapse
Affiliation(s)
- Gabriele Addario
- MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ETThe Netherlands
| | - Julia Fernández‐Pérez
- MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ETThe Netherlands
| | - Chiara Formica
- MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ETThe Netherlands
| | | | - Lea Herkens
- Institute of PathologyRWTH University of Aachen52074AachenGermany
| | - Sonja Djudjaj
- Institute of PathologyRWTH University of Aachen52074AachenGermany
| | - Peter Boor
- Institute of PathologyRWTH University of Aachen52074AachenGermany
- Electron Microscopy FacilityRWTH University of Aachen52074AachenGermany
| | - Lorenzo Moroni
- MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ETThe Netherlands
| | - Carlos Mota
- MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ETThe Netherlands
| |
Collapse
|
4
|
Bai M, Xu S, Jiang M, Guo Y, Hu D, He J, Wang T, Zhang Y, Guo Y, Zhang Y, Huang S, Jia Z, Zhang A. Meis1 Targets Protein Tyrosine Phosphatase Receptor J in Fibroblast to Retard Chronic Kidney Disease Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309754. [PMID: 39162106 PMCID: PMC11497016 DOI: 10.1002/advs.202309754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/11/2024] [Indexed: 08/21/2024]
Abstract
Renal fibrosis is a common pathological feature of chronic kidney disease (CKD) with the proliferation and activation of myofibroblasts being definite effectors and drivers. Here, increased expression of Meis1 (myeloid ecotropic viral integration site 1) is observed, predominantly in the nucleus of the kidney of CKD patients and mice, and negatively correlates with serum creatinine. Fibroblast-specific knock-in of Meis1 inhibits myofibroblast activation and attenuates renal fibrosis and kidney dysfunction in CKD models. Overexpression of Meis1 in NRK-49F cells suppresses the pro-fibrotic response induced by transforming growth factor-β1 but accelerates by its knockdown. Mechanistically, Meis1 targets protein tyrosine phosphatase receptor J (Ptprj) to block renal fibrosis by inhibiting the proliferation and activation of fibroblasts. Finally, a new activator of Ptprj is identified through computer-aided virtual screening, which has the effect of alleviating renal fibrosis. Collectively, these results illustrate that the Meis1/Ptprj axis has therapeutic potential for clinically treating CKD.
Collapse
Affiliation(s)
- Mi Bai
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
- Nanjing Key Lab of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008China
| | - Shuang Xu
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
| | - Mingzhu Jiang
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
| | - Yuxian Guo
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
| | - Dandan Hu
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
| | - Jia He
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
| | - Ting Wang
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
| | - Yu Zhang
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
- Medical School of Nanjing UniversityNanjing210093China
| | - Yan Guo
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
| | - Yue Zhang
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
- Nanjing Key Lab of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008China
| | - Songming Huang
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
- Nanjing Key Lab of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008China
| | - Zhanjun Jia
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
- Nanjing Key Lab of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008China
| | - Aihua Zhang
- Department of Nephrology, State Key Laboratory of Reproductive MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029China
- Nanjing Key Lab of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008China
| |
Collapse
|
5
|
Abedini A, Levinsohn J, Klötzer KA, Dumoulin B, Ma Z, Frederick J, Dhillon P, Balzer MS, Shrestha R, Liu H, Vitale S, Bergeson AM, Devalaraja-Narashimha K, Grandi P, Bhattacharyya T, Hu E, Pullen SS, Boustany-Kari CM, Guarnieri P, Karihaloo A, Traum D, Yan H, Coleman K, Palmer M, Sarov-Blat L, Morton L, Hunter CA, Kaestner KH, Li M, Susztak K. Single-cell multi-omic and spatial profiling of human kidneys implicates the fibrotic microenvironment in kidney disease progression. Nat Genet 2024; 56:1712-1724. [PMID: 39048792 PMCID: PMC11592391 DOI: 10.1038/s41588-024-01802-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/15/2024] [Indexed: 07/27/2024]
Abstract
Kidneys are intricate three-dimensional structures in the body, yet the spatial and molecular principles of kidney health and disease remain inadequately understood. We generated high-quality datasets for 81 samples, including single-cell, single-nuclear, spot-level (Visium) and single-cell resolution (CosMx) spatial-RNA expression and single-nuclear open chromatin, capturing cells from healthy, diabetic and hypertensive diseased human kidneys. Combining these data, we identify cell types and map them to their locations within the tissue. Unbiased deconvolution of the spatial data identifies the following four distinct microenvironments: glomerular, immune, tubule and fibrotic. We describe the complex organization of microenvironments in health and disease and find that the fibrotic microenvironment is able to molecularly classify human kidneys and offers an improved prognosis compared to traditional histopathology. We provide a comprehensive spatially resolved molecular roadmap of the human kidney and the fibrotic process, demonstrating the clinical utility of spatial transcriptomics.
Collapse
Affiliation(s)
- Amin Abedini
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jonathan Levinsohn
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Konstantin A Klötzer
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Bernhard Dumoulin
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ziyuan Ma
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Julia Frederick
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Poonam Dhillon
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael S Balzer
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Nephrology, Charité - Universitätsmedizin, Berlin, Germany
| | - Rojesh Shrestha
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Hongbo Liu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Steven Vitale
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Andi M Bergeson
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Paola Grandi
- Genomic Sciences, GSK-Cellzome, Heidelberg, Germany
| | | | - Erding Hu
- Research and Development, GSK, Crescent Drive, Philadelphia, PA, USA
| | - Steven S Pullen
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Carine M Boustany-Kari
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Paolo Guarnieri
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | | | - Daniel Traum
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Hanying Yan
- Department of Epidemiology, Biostatistics and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kyle Coleman
- Department of Epidemiology, Biostatistics and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Matthew Palmer
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Lea Sarov-Blat
- Research and Development, GSK, Crescent Drive, Philadelphia, PA, USA
| | - Lori Morton
- Cardiovascular and Renal Research, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Christopher A Hunter
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Klaus H Kaestner
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Mingyao Li
- Department of Epidemiology, Biostatistics and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Kundra S, Kaur R, Pasricha C, Kumari P, Gurjeet Singh T, Singh R. Pathological insights into activin A: Molecular underpinnings and therapeutic prospects in various diseases. Int Immunopharmacol 2024; 139:112709. [PMID: 39032467 DOI: 10.1016/j.intimp.2024.112709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/14/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Activin A (Act A) is a member of the TGFβ (transforming growth factor β) superfamily. It communicates via the Suppressor of Mothers against Decapentaplegic Homolog (SMAD2/3) proteins which govern processes such as cell proliferation, wound healing, apoptosis, and metabolism. Act A produces its action by attaching to activin receptor type IIA (ActRIIA) or activin receptor type IIB (ActRIIB). Increasing circulating Act A increases ActRII signalling, which on phosphorylation initiates the ALK4 (activin receptor-like kinase 4) type 1 receptor which further turns on the SMAD pathway and hinders cell functioning. Once triggered, this route leads to gene transcription, differentiation, apoptosis, and extracellular matrix (ECM) formation. Act A also governs the immunological and inflammatory responses of the body, as well as cell death. Moreover, Act A levels have been observed to elevate in several disorders like renal fibrosis, CKD, asthma, NAFLD, cardiovascular diseases, cancer, inflammatory conditions etc. Here, we provide an update on the recent studies relevant to the role of Act A in the modulation of various pathological disorders, giving an overview of the biology of Act A and its signalling pathways, and discuss the possibility of incorporating activin-A targeting as a novel therapeutic approach for the control of various disorders. Pathways such as SMAD signaling, in which SMAD moves to the nucleus by making a complex and leads to tissue fibrosis in CKD, STAT3, which drives renal fibroblast activity and the production of ECM, Kidney injury molecule (KIM-1) in the synthesis, deposition of ECM proteins, SERCA2a (sarcoplasmic reticulum Ca2+ ATPase) in cardiac dysfunction, and NF-κB (Nuclear factor kappa-light-chain-enhancer of activated B cells) in inflammation are involved in Act A signaling, have also been discussed.
Collapse
Affiliation(s)
- Sejal Kundra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rupinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Chirag Pasricha
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pratima Kumari
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
7
|
Zhang A, Wang J, Hu Y, Qiu Y, Dong C. Polysaccharides play an anti-fibrotic role by regulating intestinal flora: A review of research progress. Int J Biol Macromol 2024; 271:131982. [PMID: 38724335 DOI: 10.1016/j.ijbiomac.2024.131982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 06/20/2024]
Abstract
Fibrosis is a common pathological process affecting multiple organs. It refers to an increase in fibrous connective tissue and a decrease in parenchymal cells in damaged tissues or organs. This may lead to structural damage and functional decline or even organ failure. The incidence of fibrosis is increasing worldwide, and the need for safe and effective therapeutic drugs and treatments is pivotal. The intestinal tract has a complex network of exchanging information with various tissues in the body. It contains a sizeable microbial community of which the homeostasis and metabolites are closely related to fibrosis. Polysaccharides are a class of biomolecules present in natural products; they have potential value as anti-fibrotic prebiotics. Recently, polysaccharides have been found to improve fibrosis in different organs by decreasing inflammation and modulating the immune function and intestinal microbiota. In this paper, we reviewed the progress made in research concerning polysaccharides and organ fibrosis in relation to the intestinal microbiota from the pathogenesis of fibrosis to the relationship between the intestinal flora and fibrosis. Furthermore, we provide ideas and references for future polysaccharide-drug discovery and strategies for the treatment of fibrosis.
Collapse
Affiliation(s)
- Aoying Zhang
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; College of Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Jie Wang
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; College of Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Yulong Hu
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Yuanhao Qiu
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; College of Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China.
| | - Chunhong Dong
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| |
Collapse
|
8
|
Moreno J, Gluud LL, Galsgaard ED, Hvid H, Mazzoni G, Das V. Identification of ligand and receptor interactions in CKD and MASH through the integration of single cell and spatial transcriptomics. PLoS One 2024; 19:e0302853. [PMID: 38768139 PMCID: PMC11104622 DOI: 10.1371/journal.pone.0302853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Chronic Kidney Disease (CKD) and Metabolic dysfunction-associated steatohepatitis (MASH) are metabolic fibroinflammatory diseases. Combining single-cell (scRNAseq) and spatial transcriptomics (ST) could give unprecedented molecular disease understanding at single-cell resolution. A more comprehensive analysis of the cell-specific ligand-receptor (L-R) interactions could provide pivotal information about signaling pathways in CKD and MASH. To achieve this, we created an integrative analysis framework in CKD and MASH from two available human cohorts. RESULTS The analytical framework identified L-R pairs involved in cellular crosstalk in CKD and MASH. Interactions between cell types identified using scRNAseq data were validated by checking the spatial co-presence using the ST data and the co-expression of the communicating targets. Multiple L-R protein pairs identified are known key players in CKD and MASH, while others are novel potential targets previously observed only in animal models. CONCLUSION Our study highlights the importance of integrating different modalities of transcriptomic data for a better understanding of the molecular mechanisms. The combination of single-cell resolution from scRNAseq data, combined with tissue slide investigations and visualization of cell-cell interactions obtained through ST, paves the way for the identification of future potential therapeutic targets and developing effective therapies.
Collapse
Affiliation(s)
- Jaime Moreno
- Digital Science and Innovation, Computational Biology – AI & Digital Research, Novo Nordisk A/S, Maløv, Denmark
| | - Lise Lotte Gluud
- Gastro Unit, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Henning Hvid
- Global Drug Discovery, Novo Nordisk A/S, Maløv, Denmark
| | - Gianluca Mazzoni
- Digital Science and Innovation, Computational Biology – AI & Digital Research, Novo Nordisk A/S, Maløv, Denmark
| | - Vivek Das
- Digital Science and Innovation, Computational Biology – AI & Digital Research, Novo Nordisk A/S, Maløv, Denmark
| |
Collapse
|
9
|
Hitraya E, Gaidarova S, Piera-Velazquez S, Jimenez SA. COL1A1 proximal promoter topology regulates its transcriptional response to transforming growth factor β. Connect Tissue Res 2024; 65:161-169. [PMID: 38436275 PMCID: PMC10994737 DOI: 10.1080/03008207.2024.2319051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/26/2023] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE The COL1A1 proximal promoter contains two GC-rich regions and two inverted CCAAT boxes. The transcription factors Sp1 and CBF bind to the GC sequence at -122 to -115 bp and the inverted CCAAT box at -101 to -96 bp, respectively, and stimulate COL1A1 transcriptional activity. METHODS To further define the regulatory mechanisms controlling COL1A1 expression by Sp1 and CBF, we introduced 2, 4, 6, or 8 thymidine nucleotides (T-tracts) at position -111 bp of the COL1A1 gene promoter to increase the physical distance between these two binding sites and examined in vitro the transcriptional activities of the resulting constructs and their response to TGF-β1.`. RESULTS Insertion of 2 or 4 nucleotides decreased COL1A1 promoter activity by up to 70%. Furthermore, the expected increase in COL1A1 transcription in response to TGF-β1 was abolished. Computer modeling of the modified DNA structure indicated that increasing the physical distance between the Sp1 and CBF binding sites introduces a rotational change in the DNA topology that disrupts the alignment of Sp1 and CBF binding sites and likely alters protein-protein interactions among these transcription factors or their associated co-activators. CONCLUSION The topology of the COL1A1 proximal promoter is crucial in determining the transcriptional activity of the gene and its response to the stimulatory effects of TGF-β1.
Collapse
Affiliation(s)
- Elena Hitraya
- Jefferson Institute of Molecular Medicine and Scleroderma Center. Thomas Jefferson University. Philadelphia, PA 19107
- Current address: Alumis Inc. San Francisco, CA 94108
| | - Svetlana Gaidarova
- Jefferson Institute of Molecular Medicine and Scleroderma Center. Thomas Jefferson University. Philadelphia, PA 19107
- Current address: Fate Therapeutics, San Diego, CA 92121
| | - Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine and Scleroderma Center. Thomas Jefferson University. Philadelphia, PA 19107
| | - Sergio A. Jimenez
- Jefferson Institute of Molecular Medicine and Scleroderma Center. Thomas Jefferson University. Philadelphia, PA 19107
| |
Collapse
|
10
|
Ruliffson BNK, Whittington CF. Regulating Lymphatic Vasculature in Fibrosis: Understanding the Biology to Improve the Modeling. Adv Biol (Weinh) 2023; 7:e2200158. [PMID: 36792967 DOI: 10.1002/adbi.202200158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/19/2022] [Indexed: 02/17/2023]
Abstract
Fibrosis occurs in many chronic diseases with lymphatic vascular insufficiency (e.g., kidney disease, tumors, and lymphedema). New lymphatic capillary growth can be triggered by fibrosis-related tissue stiffening and soluble factors, but questions remain for how related biomechanical, biophysical, and biochemical cues affect lymphatic vascular growth and function. The current preclinical standard for studying lymphatics is animal modeling, but in vitro and in vivo outcomes often do not align. In vitro models can also be limited in their ability to separate vascular growth and function as individual outcomes, and fibrosis is not traditionally included in model design. Tissue engineering provides an opportunity to address in vitro limitations and mimic microenvironmental features that impact lymphatic vasculature. This review discusses fibrosis-related lymphatic vascular growth and function in disease and the current state of in vitro lymphatic vascular models while highlighting relevant knowledge gaps. Additional insights into the future of in vitro lymphatic vascular models demonstrate how prioritizing fibrosis alongside lymphatics will help capture the complexity and dynamics of lymphatics in disease. Overall, this review aims to emphasize that an advanced understanding of lymphatics within a fibrotic disease-enabled through more accurate preclinical modeling-will significantly impact therapeutic development toward restoring lymphatic vessel growth and function in patients.
Collapse
Affiliation(s)
- Brian N K Ruliffson
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA, 01609, USA
| | - Catherine F Whittington
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA, 01609, USA
| |
Collapse
|
11
|
Ryou H, Sirinukunwattana K, Aberdeen A, Grindstaff G, Stolz BJ, Byrne H, Harrington HA, Sousos N, Godfrey AL, Harrison CN, Psaila B, Mead AJ, Rees G, Turner GDH, Rittscher J, Royston D. Continuous Indexing of Fibrosis (CIF): improving the assessment and classification of MPN patients. Leukemia 2023; 37:348-358. [PMID: 36470992 PMCID: PMC9898027 DOI: 10.1038/s41375-022-01773-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/09/2022]
Abstract
The grading of fibrosis in myeloproliferative neoplasms (MPN) is an important component of disease classification, prognostication and monitoring. However, current fibrosis grading systems are only semi-quantitative and fail to fully capture sample heterogeneity. To improve the quantitation of reticulin fibrosis, we developed a machine learning approach using bone marrow trephine (BMT) samples (n = 107) from patients diagnosed with MPN or a reactive marrow. The resulting Continuous Indexing of Fibrosis (CIF) enhances the detection and monitoring of fibrosis within BMTs, and aids MPN subtyping. When combined with megakaryocyte feature analysis, CIF discriminates between the frequently challenging differential diagnosis of essential thrombocythemia (ET) and pre-fibrotic myelofibrosis with high predictive accuracy [area under the curve = 0.94]. CIF also shows promise in the identification of MPN patients at risk of disease progression; analysis of samples from 35 patients diagnosed with ET and enrolled in the Primary Thrombocythemia-1 trial identified features predictive of post-ET myelofibrosis (area under the curve = 0.77). In addition to these clinical applications, automated analysis of fibrosis has clear potential to further refine disease classification boundaries and inform future studies of the micro-environmental factors driving disease initiation and progression in MPN and other stem cell disorders.
Collapse
Affiliation(s)
- Hosuk Ryou
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Korsuk Sirinukunwattana
- Institute of Biomedical Engineering (IBME), Department of Engineering Science, University of Oxford, Oxford, UK
- Big Data Institute/Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Ground Truth Labs, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Gillian Grindstaff
- Department of Mathematics, University of California, Los Angeles, CA, USA
| | - Bernadette J Stolz
- Mathematical Institute, University of Oxford, Oxford, UK
- Laboratory for Topology and Neuroscience, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Helen Byrne
- Mathematical Institute, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Heather A Harrington
- Mathematical Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nikolaos Sousos
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Anna L Godfrey
- Haematopathology & Oncology Diagnostics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Claire N Harrison
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Bethan Psaila
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Adam J Mead
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Gabrielle Rees
- Department of Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Gareth D H Turner
- Department of Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jens Rittscher
- Institute of Biomedical Engineering (IBME), Department of Engineering Science, University of Oxford, Oxford, UK
- Big Data Institute/Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Ground Truth Labs, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Daniel Royston
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Department of Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
12
|
Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant In Vivo Models, Prognostic and Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms232314959. [PMID: 36499287 PMCID: PMC9735580 DOI: 10.3390/ijms232314959] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary fibrosis is a chronic progressive lung disease that steadily leads to lung architecture disruption and respiratory failure. The development of pulmonary fibrosis is mostly the result of previous acute lung inflammation, caused by a wide variety of etiological factors, not resolved over time and causing the deposition of fibrotic tissue in the lungs. Despite a long history of study and good coverage of the problem in the scientific literature, the effective therapeutic approaches for pulmonary fibrosis treatment are currently lacking. Thus, the study of the molecular mechanisms underlying the transition from acute lung inflammation to pulmonary fibrosis, and the search for new molecular markers and promising therapeutic targets to prevent pulmonary fibrosis development, remain highly relevant tasks. This review focuses on the etiology, pathogenesis, morphological characteristics and outcomes of acute lung inflammation as a precursor of pulmonary fibrosis; the pathomorphological changes in the lungs during fibrosis development; the known molecular mechanisms and key players of the signaling pathways mediating acute lung inflammation and pulmonary fibrosis, as well as the characteristics of the most common in vivo models of these processes. Moreover, the prognostic markers of acute lung injury severity and pulmonary fibrosis development as well as approved and potential therapeutic approaches suppressing the transition from acute lung inflammation to fibrosis are discussed.
Collapse
|
13
|
Targeting fibrosis, mechanisms and cilinical trials. Signal Transduct Target Ther 2022; 7:206. [PMID: 35773269 PMCID: PMC9247101 DOI: 10.1038/s41392-022-01070-3] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
Fibrosis is characterized by the excessive extracellular matrix deposition due to dysregulated wound and connective tissue repair response. Multiple organs can develop fibrosis, including the liver, kidney, heart, and lung. Fibrosis such as liver cirrhosis, idiopathic pulmonary fibrosis, and cystic fibrosis caused substantial disease burden. Persistent abnormal activation of myofibroblasts mediated by various signals, such as transforming growth factor, platelet-derived growth factor, and fibroblast growh factor, has been recongized as a major event in the occurrence and progression of fibrosis. Although the mechanisms driving organ-specific fibrosis have not been fully elucidated, drugs targeting these identified aberrant signals have achieved potent anti-fibrotic efficacy in clinical trials. In this review, we briefly introduce the aetiology and epidemiology of several fibrosis diseases, including liver fibrosis, kidney fibrosis, cardiac fibrosis, and pulmonary fibrosis. Then, we summarise the abnormal cells (epithelial cells, endothelial cells, immune cells, and fibroblasts) and their interactions in fibrosis. In addition, we also focus on the aberrant signaling pathways and therapeutic targets that regulate myofibroblast activation, extracellular matrix cross-linking, metabolism, and inflammation in fibrosis. Finally, we discuss the anti-fibrotic drugs based on their targets and clinical trials. This review provides reference for further research on fibrosis mechanism, drug development, and clinical trials.
Collapse
|
14
|
Kresse J, Mutsaers HAM, Jensen MS, Tingskov SJ, Madsen MG, Nejsum LN, Prætorius H, Nørregaard R. EP 1 receptor antagonism mitigates early and late stage renal fibrosis. Acta Physiol (Oxf) 2022; 234:e13780. [PMID: 34989478 PMCID: PMC9286353 DOI: 10.1111/apha.13780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/09/2021] [Accepted: 01/01/2022] [Indexed: 12/23/2022]
Abstract
AIM Renal fibrosis is a major driver of chronic kidney disease, yet current treatment strategies are ineffective in attenuating fibrogenesis. The cyclooxygenase/prostaglandin system plays a key role in renal injury and holds great promise as a therapeutic target. Here, we used a translational approach to evaluate the role of the PGE2 -EP1 receptor in the pathogenesis of renal fibrosis in several models of kidney injury, including human (fibrotic) kidney slices. METHODS The anti-fibrotic efficacy of a selective EP1 receptor antagonist (SC-19220) was studied in mice subjected to unilateral ureteral obstruction (UUO), healthy and fibrotic human precision-cut kidney slices (PCKS), Madin-Darby Canine Kidney (MDCK) cells and primary human renal fibroblasts (HRFs). Fibrosis was evaluated on gene and protein level using qPCR, western blot and immunostaining. RESULTS EP1 receptor inhibition diminished fibrosis in UUO mice, illustrated by a decreased protein expression of fibronectin (FN) and α-smooth muscle actin (αSMA) and a reduction in collagen deposition. Moreover, treatment of healthy human PCKS with SC-19220 reduced TGF-β-induced fibrosis as shown by decreased expression of collagen 1A1, FN and αSMA as well as reduced collagen deposition. Similar observations were made using fibrotic human PCKS. In addition, SC-19220 reduced TGF-β-induced FN expression in MDCK cells and HRFs. CONCLUSION This study highlights the EP1 receptor as a promising target for preventing both the onset and late stage of renal fibrosis. Moreover, we provide strong evidence that the effect of SC-19220 may translate to clinical care since its effects were observed in UUO mice, cells and human kidney slices.
Collapse
Affiliation(s)
| | | | | | | | | | - Lene N. Nejsum
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | | | |
Collapse
|
15
|
Dai X, Zeng Y, Zhang H, Gu Z, Gong Q, Luo K. Advances on Nanomedicines for Diagnosis and Theranostics of Hepatic Fibrosis. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Xinghang Dai
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
- West China School of Medicine Sichuan University Chengdu 610041 China
| | - Yujun Zeng
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
| | - Hu Zhang
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
- Amgen Bioprocessing Centre Keck Graduate Institute CA 91711 USA
| | - Zhongwei Gu
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| |
Collapse
|
16
|
BAFF signaling drives interstitial transformation of mouse renal tubular epithelial cells in a Pin1-dependent manner. In Vitro Cell Dev Biol Anim 2021; 57:649-659. [PMID: 34128158 PMCID: PMC8316171 DOI: 10.1007/s11626-021-00598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022]
Abstract
Aberrant expression of B cell–activating factor belonging to TNF superfamily (BAFF) and its receptors results in abnormal biological activities in hematopoietic and non-hematopoietic cells and is closely associated with the occurrence and development of various diseases. However, the biological significance and potential mechanisms underlying BAFF signaling in renal tubular epithelial cells (RTECs) remain unknown. This study aimed to investigate the biological role of BAFF signaling in RTECs. Mice primary RTECs were applied. The proliferation status and apoptotic rates were examined by MTS assay and flow cytometry, respectively. The expression of BAFF and its receptors was analyzed via flow cytometry and sodium ion transport function, and cytokeratin-18 expression was detected through immunofluorescence staining. In addition, Pin1 was knocked down via siRNA and its expression was assessed through reverse transcription PCR. Lastly, western blotting was performed to analyze E-cadherin, ɑ-SMA, and Pin1 expression. Results suggested that BAFF-R was significantly upregulated upon IFN-γ stimulation, and enhancement of BAFF signaling promoted cell survival and reduced their apoptotic rate, while simultaneously reducing the epithelial phenotype and promoting the interstitial transformation of cells. Furthermore, Pin1 was significantly increased, along with the upregulation of BAFF signaling in the RTECs, and participated in interstitial transformation induced by BAFF signaling. Collectively, the present results elucidate the potential mechanism of loss of normal function of RTECs under long-term high dose of BAFF stimulation provides a potential therapeutic target for renal interstitial fibrosis, and underlining mechanisms of shortening of long-term outcomes of kidney allografts via augmenting of BAFF signaling.
Collapse
|
17
|
Gu YY, Dou JY, Huang XR, Liu XS, Lan HY. Transforming Growth Factor-β and Long Non-coding RNA in Renal Inflammation and Fibrosis. Front Physiol 2021; 12:684236. [PMID: 34054586 PMCID: PMC8155637 DOI: 10.3389/fphys.2021.684236] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Renal fibrosis is one of the most characterized pathological features in chronic kidney disease (CKD). Progressive fibrosis eventually leads to renal failure, leaving dialysis or allograft transplantation the only clinical option for CKD patients. Transforming growth factor-β (TGF-β) is the key mediator in renal fibrosis and is an essential regulator for renal inflammation. Therefore, the general blockade of the pro-fibrotic TGF-β may reduce fibrosis but may risk promoting renal inflammation and other side effects due to the diverse role of TGF-β in kidney diseases. Long non-coding RNAs (lncRNAs) are RNA transcripts with more than 200 nucleotides and have been regarded as promising therapeutic targets for many diseases. This review focuses on the importance of TGF-β and lncRNAs in renal inflammation, fibrogenesis, and the potential applications of TGF-β and lncRNAs as the therapeutic targets and biomarkers in renal fibrosis and CKD are highlighted.
Collapse
Affiliation(s)
- Yue-Yu Gu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing-Yun Dou
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Weihai Hospital of Traditional Chinese Medicine, Weihai, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xu-Sheng Liu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Zhou Y, Yang X, Liu H, Luo W, Liu H, Lv T, Wang J, Qin J, Ou S, Chen Y. Value of [ 68Ga]Ga-FAPI-04 imaging in the diagnosis of renal fibrosis. Eur J Nucl Med Mol Imaging 2021; 48:3493-3501. [PMID: 33829416 DOI: 10.1007/s00259-021-05343-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Renal fibrosis is a pathological state in the progression of chronic kidney disease. Early detection and treatment are vital to prolonging patient survival. Renal puncture examination is the gold standard for renal fibrosis, but it has several limitations. This study aims to evaluate the diagnostic performance of a novel PET radiotracer, [68Ga]Ga-fibroblast activation protein inhibitor (FAPI)-04, which specifically images fibroblast activation protein (FAP) expression for renal fibrosis. METHODS All patients underwent renal puncture before receiving [68Ga]Ga-FAPI-04 PET/CT imaging. They then underwent [68Ga]Ga-FAPI-04 PET/CT and immunochemistry examinations. The data obtained were analyzed. RESULTS The [68Ga]Ga-FAPI-04 PET/CT examination results demonstrated that almost all patients (12/13) exhibited increased radiotracer uptake. The maximum standardized uptake value (SUVmax) in patients with mild, moderate, and severe fibrosis was 3.92 ± 1.50, 5.98 ± 1.6, and 7.67 ± 2.23, respectively. CONCLUSION Compared with renal puncture examination, non-invasive imaging of FAP expression through [68Ga]Ga-FAPI-04 PET/CT quickly demonstrates bilateral kidney conditions with high sensitivity. [68Ga]Ga-FAPI-04 PET/CT can facilitate the evaluation of disease progression, diagnosis, and the development of a treatment plan.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, Sichuan, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China, 646000
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China, 646000
| | - Xin Yang
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District. No 25 TaiPing St, Jiangyang District, Luzhou, Sichuan, 646000, People's Republic of China
- Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China, 646000
| | - Huipan Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, Sichuan, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China, 646000
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China, 646000
| | - Wenbin Luo
- Department of Cardiology, Daping Hospital of The Third Military Medical University, Chongqing, People's Republic of China, 400042
| | - Hanxiang Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, Sichuan, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China, 646000
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China, 646000
| | - Taiyong Lv
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, Sichuan, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China, 646000
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China, 646000
| | - Junzheng Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, Sichuan, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China, 646000
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China, 646000
| | - Jianhua Qin
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District. No 25 TaiPing St, Jiangyang District, Luzhou, Sichuan, 646000, People's Republic of China
- Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China, 646000
| | - Santao Ou
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District. No 25 TaiPing St, Jiangyang District, Luzhou, Sichuan, 646000, People's Republic of China
- Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China, 646000
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, Sichuan, 646000, People's Republic of China.
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China, 646000.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China, 646000.
| |
Collapse
|
19
|
Yuan C, Ni L, Wu X. Activin A activation drives renal fibrosis through the STAT3 signaling pathway. Int J Biochem Cell Biol 2021; 134:105950. [PMID: 33609746 DOI: 10.1016/j.biocel.2021.105950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/27/2022]
Abstract
The present study investigated whether TGF-β1 promotes fibrotic changes in HK-2 cells through the Activin A and STAT3 signaling pathways in vitro. Bioinformatics analysis of microarray profiles (GSE20247 and GSE23338) and a protein-protein interaction (PPI) analysis were performed to select hub genes. For the in vitro study, HK-2 cells were exposed to TGF-β1. The expression of Activin A and STAT3 was assayed, and the effect of Activin A and STAT3 expression on fibrosis was assessed (Collagen I and Fibronectin). The bioinformatics study revealed TGF-β1 and Activin A as hub genes. The in vitro study showed that Activin A expression was significantly increased after TGF-β1 incubation. Blocking Activin A attenuated TGF-β1-induced fibrosis. In addition, Activin A blockade attenuated TGF-β1-induced STAT3 signaling pathway activation and related fibrosis. More importantly, STAT3 inhibition by S3I-201 alleviated TGF-β1-induced fibrosis. Activin A promoted cellular fibrotic changes through the STAT3 signaling pathway. Attenuating Activin A expression to mediate the STAT3 signaling pathway might be a strategy for potent renal fibrosis treatment.
Collapse
Affiliation(s)
- Cheng Yuan
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
20
|
Complexation with Random Methyl-β-Cyclodextrin and (2-Hidroxypropyl)-β-Cyclodextrin Enhances In Vivo Anti-Fibrotic and Anti-Inflammatory Effects of Chrysin via the Inhibition of NF-κB and TGF-β1/Smad Signaling Pathways and Modulation of Hepatic Pro/Anti-Fibrotic miRNA. Int J Mol Sci 2021; 22:ijms22041869. [PMID: 33668543 PMCID: PMC7917810 DOI: 10.3390/ijms22041869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/24/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chrysin (CHR) is a natural flavonoid with a wide range of pharmacological activities, including hepatoprotection, but poor water solubility. By including water-soluble hydroxypropyl (HPBCD) and randomly methylated (RAMEB) β-cyclodextrin, we aimed to increase its biodisponibility and the effectiveness of the antifibrotic effects of chrysin at oral administration. Liver fibrosis in mice was induced in 7 weeks by CCl4 i.p. administration, and afterwards treated with 50 mg/kg of CHR-HPBCD, CHR-RAMEB, and free chrysin. CCl4 administration increased hepatic inflammation (which was augmented by the upregulation of nuclear factor kappa-light-chain enhancer of activated B cells (NF-kB), tumor necrosis factor (TNF)-α, and interleukin 6 (IL-6) and induced fibrosis, as determined using histopathology and electron microscopy. These results were also confirmed by the upregulation of Collagen I (Col I) and matrix metalloproteinase (MMP) expression, which led to extracellular fibrotic matrix proliferation. Moreover, the immunopositivity of alpha-smooth muscle actin (a-SMA) in the CCl4 group was evidence of hepatic stellate cell (HSC) activation. The main profibrotic pathway was activated, as confirmed by an increase in the transforming growth factor- β1 (TGF-β1) and Smad 2/3 expression, while Smad 7 expression was decreased. Treatment with CHR–HPBCD and CHR–RAMEB considerably reduced liver injury, attenuated inflammation, and decreased extracellular liver collagen deposits. CHR–RAMEB was determined to be the most active antifibrotic complex. We conclude that both nanocomplexes exert anti-inflammatory effects and antifibrotic effects in a considerably stronger manner than for free chrysin administration.
Collapse
|
21
|
Panizo S, Martínez-Arias L, Alonso-Montes C, Cannata P, Martín-Carro B, Fernández-Martín JL, Naves-Díaz M, Carrillo-López N, Cannata-Andía JB. Fibrosis in Chronic Kidney Disease: Pathogenesis and Consequences. Int J Mol Sci 2021; 22:E408. [PMID: 33401711 PMCID: PMC7795409 DOI: 10.3390/ijms22010408] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is a process characterized by an excessive accumulation of the extracellular matrix as a response to different types of tissue injuries, which leads to organ dysfunction. The process can be initiated by multiple and different stimuli and pathogenic factors which trigger the cascade of reparation converging in molecular signals responsible of initiating and driving fibrosis. Though fibrosis can play a defensive role, in several circumstances at a certain stage, it can progressively become an uncontrolled irreversible and self-maintained process, named pathological fibrosis. Several systems, molecules and responses involved in the pathogenesis of the pathological fibrosis of chronic kidney disease (CKD) will be discussed in this review, putting special attention on inflammation, renin-angiotensin system (RAS), parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), Klotho, microRNAs (miRs), and the vitamin D hormonal system. All of them are key factors of the core and regulatory pathways which drive fibrosis, having a great negative kidney and cardiac impact in CKD.
Collapse
Affiliation(s)
- Sara Panizo
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Laura Martínez-Arias
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Cristina Alonso-Montes
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Pablo Cannata
- Pathology Department, Fundación Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Retic REDinREN-ISCIII, 28040 Madrid, Spain;
| | - Beatriz Martín-Carro
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - José L. Fernández-Martín
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Natalia Carrillo-López
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Jorge B. Cannata-Andía
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| |
Collapse
|
22
|
Addario G, Djudjaj S, Farè S, Boor P, Moroni L, Mota C. Microfluidic bioprinting towards a renal in vitro model. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bprint.2020.e00108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
Zidar N. Histopathology of Fibrosis in Crohn's Disease: The Importance of Understanding Its Pathogenesis. Gastroenterology 2020; 158:2313-2314. [PMID: 32201180 DOI: 10.1053/j.gastro.2020.02.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/06/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
24
|
Van De Vlekkert D, Machado E, d'Azzo A. Analysis of Generalized Fibrosis in Mouse Tissue Sections with Masson's Trichrome Staining. Bio Protoc 2020; 10:e3629. [PMID: 33659302 DOI: 10.21769/bioprotoc.3629] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/26/2020] [Accepted: 04/15/2020] [Indexed: 11/02/2022] Open
Abstract
Expansion of fibrous connective tissue and abnormal deposition of extracellular matrix (ECM) are at the basis of many fibrotic diseases. Fibrosis can occur in response to both physiological and pathological cues, including wound healing, tissue remodeling/repair and inflammation. Chronic fibrosis can lead to severe tissue damage, organ failure and death. Assessing the extent of organ fibrosis is crucial for accurate diagnosis of this condition. The use of Masson's trichrome staining of tissue sections from skeletal muscle is a fast method for detection of morphological alterations indicative of a fibrotic phenotype in this organ. This staining method detects the extent of collagen fibers deposition and, because it employs the combination of three dyes, can also distinguish muscle fibers (red), from collagen (blue) and nuclei (black), simultaneously.
Collapse
Affiliation(s)
| | - Eda Machado
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alessandra d'Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|