1
|
Sharma S, Dhar S, Sengupta S. Balancing genome integrity and carcinogenesis: Insights into DNA damage response, repair pathways, and cancer therapies. Curr Opin Pharmacol 2025; 82:102522. [PMID: 40203648 DOI: 10.1016/j.coph.2025.102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Affiliation(s)
| | | | - Sagar Sengupta
- National Institute of Immunology, Gurgaon, Haryana 122011, India.
| |
Collapse
|
2
|
Quintanilla I, Azeroglu B, Sagar MAK, Stracker TH, Denchi EL, Pegoraro G. Optical pooled screening for the discovery of regulators of the alternative lengthening of telomeres pathway. Methods 2025; 241:1-12. [PMID: 40324704 DOI: 10.1016/j.ymeth.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/28/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025] Open
Abstract
Telomere elongation is essential for the proliferation of cancer cells. Telomere length control is achieved either by the activation of the telomerase enzyme, or by the recombination-based Alternative Lengthening of Telomeres (ALT) pathway. ALT is active in about 10-15% of human cancers, but its molecular underpinnings remain poorly understood, preventing the discovery of potential novel therapeutic targets. Pooled CRISPR-based functional genomic screens enable the unbiased discovery of molecular factors involved in cancer biology. Recently, Optical Pooled Screens (OPS) have significantly extended the capabilities of pooled functional genomics screens to enable sensitive imaging-based readouts at the single cell level and large scale. To gain a better understanding of the ALT pathway, we developed a novel OPS assay that employs telomeric native DNA FISH (nFISH) as an optical quantitative readout to measure ALT activity. The assay uses standard OPS protocols for library preparation and sequencing. As a critical element, an optimized nFISH protocol is performed before in situ sequencing to maximize the assay performance. We show that the modified nFISH protocol faithfully detects changes in ALT activity upon CRISPR knock-out (KO) of the FANCM and BLM genes, which were previously implicated in ALT. Overall, the OPS-nFISH assay is a reliable method that can provide deep insights into the ALT pathway in a high-throughput format.
Collapse
Affiliation(s)
- Isabel Quintanilla
- High-Throughput Imaging Facility (HiTIF), Laboratory of Receptor Biology, Center for Cancer Research, NCI/NIH, Bethesda, MD, United States
| | - Benura Azeroglu
- Telomere Biology Unit, Laboratory of Genome Integrity, Center for Cancer Research, NCI/NIH, Bethesda, MD, United States
| | - Md Abdul Kader Sagar
- High-Throughput Imaging Facility (HiTIF), Laboratory of Receptor Biology, Center for Cancer Research, NCI/NIH, Bethesda, MD, United States
| | - Travis H Stracker
- Radiation Oncology Branch, Center for Cancer Research, NCI/NIH, Bethesda, MD, United States
| | - Eros Lazzerini Denchi
- Telomere Biology Unit, Laboratory of Genome Integrity, Center for Cancer Research, NCI/NIH, Bethesda, MD, United States
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility (HiTIF), Laboratory of Receptor Biology, Center for Cancer Research, NCI/NIH, Bethesda, MD, United States.
| |
Collapse
|
3
|
Zhang K. Molecular Classification and Characterization of Noninsulinoma: Ready for Prime Time in Clinical Practice? Int J Surg Pathol 2025:10668969251327748. [PMID: 40156271 DOI: 10.1177/10668969251327748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Pancreatic neuroendocrine tumors are a heterogeneous group of rare clinical tumors, which can be classified into functional pancreatic neuroendocrine tumor (insulinoma is the most common) and noninsulinoma. Insulinoma and noninsulinoma have different mutation profiles. In noninsulinoma, ATRX/DAXX mutation is associated with alternative lengthening of telomeres-positive phenotype and positively correlated with poor prognosis. Copy number variation is also a prognostic marker for a high risk of recurrence. Scholars have used epigenetics as well as a multiomics approach (combining epigenetics, metabolomics, proteomics, etc) to molecularly type noninsulinoma, and there are huge differences in molecular expression and patient prognosis between different groups. In this manuscript, we summarize the published studies that utilized genome, epigenome, transcriptome, and proteome data to classify noninsulinoma.
Collapse
Affiliation(s)
- Kaijian Zhang
- Pathology Department, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Quintanilla I, Azeroglu B, Sagar MAK, Stracker TH, Denchi EL, Pegoraro G. Optical Pooled Screening for the Discovery of Regulators of the Alternative Lengthening of Telomeres Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.15.638448. [PMID: 39990381 PMCID: PMC11844499 DOI: 10.1101/2025.02.15.638448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Telomere elongation is essential for the proliferation of cancer cells. Telomere length control is achieved by either the activation of the telomerase enzyme or the recombination-based Alternative Lengthening of Telomeres (ALT) pathway. ALT is active in about 10-15% of human cancers, but its molecular underpinnings remain poorly understood, preventing the discovery of potential novel therapeutic targets. Pooled CRISPR-based functional genomic screens enable the unbiased discovery of molecular factors involved in cancer biology. Recently, Optical Pooled Screens (OPS) have significantly extended the capabilities of pooled functional genomics screens to enable sensitive imaging-based readouts at the single cell level and large scale. To gain a better understanding of the ALT pathway, we developed a novel OPS assay that employs telomeric native DNA FISH (nFISH) as an optical quantitative readout to measure ALT activity. The assay uses standard OPS protocols for library preparation and sequencing. As a critical element, an optimized nFISH protocol is performed before in situ sequencing to maximize the assay performance. We show that the modified nFISH protocol faithfully detects changes in ALT activity upon CRISPR knock-out (KO) of the FANCM and BLM genes which were previously implicated in ALT. Overall, the OPS-nFISH assay is a reliable method that can provide deep insights into the ALT pathway in a high-throughput format.
Collapse
Affiliation(s)
- Isabel Quintanilla
- High-Throughput Imaging Facility (HiTIF), Laboratory of Receptor Biology, Center for Cancer Research, NCI/NIH, Bethesda, MD
| | - Benura Azeroglu
- Telomere Biology Unit, Laboratory of Genome Integrity, Center for Cancer Research, NCI/NIH, Bethesda, MD
| | - Md Abdul Kader Sagar
- High-Throughput Imaging Facility (HiTIF), Laboratory of Receptor Biology, Center for Cancer Research, NCI/NIH, Bethesda, MD
| | - Travis H. Stracker
- Radiation Oncology Branch, Center for Cancer Research, NCI/NIH, Bethesda, MD
| | - Eros Lazzerini Denchi
- Telomere Biology Unit, Laboratory of Genome Integrity, Center for Cancer Research, NCI/NIH, Bethesda, MD
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility (HiTIF), Laboratory of Receptor Biology, Center for Cancer Research, NCI/NIH, Bethesda, MD
| |
Collapse
|
5
|
Azeroglu B, Khurana S, Wang SC, Tricola GM, Sharma S, Jubelin C, Cortolezzis Y, Pegoraro G, Miller KM, Stracker TH, Lazzerini Denchi E. Identification of modulators of the ALT pathway through a native FISH-based optical screen. Cell Rep 2025; 44:115114. [PMID: 39729394 PMCID: PMC11844024 DOI: 10.1016/j.celrep.2024.115114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/05/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
A significant portion of human cancers utilize a recombination-based pathway, alternative lengthening of telomeres (ALT), to extend telomeres. To gain further insights into this pathway, we developed a high-throughput imaging-based screen named TAILS (telomeric ALT in situ localization screen) to identify genes that either promote or inhibit ALT activity. Screening over 1,000 genes implicated in DNA transactions, TAILS reveals both well-established and putative ALT modulators. Here, we present the validation of factors that promote ALT, such as the nucleosome-remodeling factor CHD4 and the chromatin reader SGF29, as well as factors that suppress ALT, including the RNA helicases DExD-box helicase 39A/B (DDX39A/B), the replication factor TIMELESS, and components of the chromatin assembly factor CAF1. Our data indicate that defects in histone deposition significantly contribute to ALT-associated phenotypes. Based on these findings, we demonstrate that pharmacological treatments can be employed to either exacerbate or suppress ALT-associated phenotypes.
Collapse
Affiliation(s)
- Benura Azeroglu
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Simran Khurana
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shih-Chun Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Gianna M Tricola
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shalu Sharma
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Camille Jubelin
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ylenia Cortolezzis
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Department of Medicine, Università degli Studi di Udine, 33100 Udine, Italy
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Travis H Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Eros Lazzerini Denchi
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Dubois JC, Bonnell E, Filion A, Frion J, Zimmer S, Riaz Khan M, Teplitz GM, Casimir L, Méthot É, Marois I, Idrissou M, Jacques PÉ, Wellinger RJ, Maréchal A. The single-stranded DNA-binding factor SUB1/PC4 alleviates replication stress at telomeres and is a vulnerability of ALT cancer cells. Proc Natl Acad Sci U S A 2025; 122:e2419712122. [PMID: 39772744 PMCID: PMC11745411 DOI: 10.1073/pnas.2419712122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
To achieve replicative immortality, cancer cells must activate telomere maintenance mechanisms. In 10 to 15% of cancers, this is enabled by recombination-based alternative lengthening of telomeres pathways (ALT). ALT cells display several hallmarks including heterogeneous telomere length, extrachromosomal telomeric repeats, and ALT-associated PML bodies. ALT cells also have high telomeric replication stress (RS) enhanced by fork-stalling structures (R-loops and G4s) and altered chromatin states. In ALT cells, telomeric RS promotes telomere elongation but above a certain threshold becomes detrimental to cell survival. Manipulating RS at telomeres has thus been proposed as a therapeutic strategy against ALT cancers. Through analysis of genome-wide CRISPR fitness screens, we identified ALT-specific vulnerabilities and describe here our characterization of the roles of SUB1, a ssDNA-binding protein, in telomere stability. SUB1 depletion increases RS at ALT telomeres, profoundly impairing ALT cell growth without impacting telomerase-positive cells. During RS, SUB1 is recruited to stalled forks and ALT telomeres via its ssDNA-binding domain. This recruitment is potentiated by RPA depletion, suggesting that these factors may compete for ssDNA. The viability of ALT cells and their resilience toward RS also requires ssDNA binding by SUB1. SUB1 depletion accelerates cell death induced by FANCM depletion, triggering unsustainable levels of telomeric damage in ALT cells. Finally, combining SUB1 depletion with RS-inducing drugs rapidly induces replication catastrophe in ALT cells. Altogether, our work identifies SUB1 as an ALT susceptibility with roles in the mitigation of RS at ALT telomeres and suggests advanced therapeutic strategies for a host of still poorly managed cancers.
Collapse
Affiliation(s)
- Jean-Christophe Dubois
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Erin Bonnell
- Aging Research Center of Sherbrooke, Sherbrooke, QCJ1H 5N3, Canada
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, QCJ1E 4K8, Canada
| | - Amélie Filion
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Julie Frion
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Samuel Zimmer
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Muhammad Riaz Khan
- Aging Research Center of Sherbrooke, Sherbrooke, QCJ1H 5N3, Canada
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, QCJ1E 4K8, Canada
| | - Gabriela M. Teplitz
- Aging Research Center of Sherbrooke, Sherbrooke, QCJ1H 5N3, Canada
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, QCJ1E 4K8, Canada
| | - Lisa Casimir
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Élie Méthot
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Isabelle Marois
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Mouhamed Idrissou
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Pierre-Étienne Jacques
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Raymund J. Wellinger
- Aging Research Center of Sherbrooke, Sherbrooke, QCJ1H 5N3, Canada
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, QCJ1E 4K8, Canada
| | - Alexandre Maréchal
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
- Aging Research Center of Sherbrooke, Sherbrooke, QCJ1H 5N3, Canada
| |
Collapse
|
7
|
Azzalin CM. TERRA and the alternative lengthening of telomeres: a dangerous affair. FEBS Lett 2025; 599:157-165. [PMID: 38445359 PMCID: PMC11771730 DOI: 10.1002/1873-3468.14844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Eukaryotic telomeres are transcribed into the long noncoding RNA TERRA. A fraction of TERRA remains associated with telomeres by forming RNA:DNA hybrids dubbed telR-loops. TERRA and telR-loops are essential to promote telomere elongation in human cancer cells that maintain telomeres through a homology-directed repair pathway known as alternative lengthening of telomeres or ALT. However, TERRA and telR-loops compromise telomere integrity and cell viability if their levels are not finely tuned. The study of telomere transcription in ALT cells will enormously expand our understanding of the ALT mechanism and of how genome integrity is maintained. Moreover, telomere transcription, TERRA and telR-loops are likely to become exceptionally suited targets for the development of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Claus M. Azzalin
- Instituto de Medicina Molecular João Lobo Antunes (iMM)Faculdade de Medicina da Universidade de LisboaPortugal
| |
Collapse
|
8
|
Salgado S, Abreu PL, Moleirinho B, Guedes DS, Larcombe L, Azzalin CM. Human PC4 supports telomere stability and viability in cells utilizing the alternative lengthening of telomeres mechanism. EMBO Rep 2024; 25:5294-5315. [PMID: 39468351 PMCID: PMC11624207 DOI: 10.1038/s44319-024-00295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Cancer cells with an activated Alternative Lengthening of Telomeres (ALT) mechanism elongate telomeres via homology-directed repair. Sustained telomeric replication stress is an essential trigger of ALT activity; however, it can lead to cell death if not properly restricted. By analyzing publicly available data from genome-wide CRISPR KO screenings, we have identified the multifunctional protein PC4 as a novel factor essential for ALT cell viability. Depletion of PC4 results in rapid ALT cell death, while telomerase-positive cells show minimal effects. PC4 depletion induces replication stress and telomere fragility primarily in ALT cells, and increases ALT activity. PC4 binds to telomeric DNA in cells, and its binding can be enhanced by telomeric replication stress. Finally, a mutant PC4 with partly impaired single stranded DNA binding activity is capable to localize to telomeres and suppress ALT activity and telomeric replication stress. We propose that PC4 supports ALT cell viability, at least partly, by averting telomere dysfunction. Further studies of PC4 interactions at ALT telomeres may hold promise for innovative therapies to eradicate ALT cancers.
Collapse
Affiliation(s)
- Sara Salgado
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035, Lisbon, Portugal
| | - Patricia L Abreu
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035, Lisbon, Portugal
| | - Beatriz Moleirinho
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035, Lisbon, Portugal
| | - Daniela S Guedes
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035, Lisbon, Portugal
| | - Lee Larcombe
- Apexomic, Stevenage Bioscience Catalyst, Hertfordshire, SG1 2FX, UK
- TessellateBio Ltd, Stevenage Bioscience Catalyst, Hertfordshire, SG1 2FX, UK
| | - Claus M Azzalin
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035, Lisbon, Portugal.
- Faculty of Medicine, University of Lisbon, 1649-028, Lisbon, Portugal.
| |
Collapse
|
9
|
Azeroglu B, Khurana S, Wang SC, Tricola GM, Sharma S, Jubelin C, Cortolezzis Y, Pegoraro G, Miller KM, Stracker TH, Denchi EL. Identification of Novel Modulators of the ALT Pathway Through a Native FISH-Based Optical Screen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623791. [PMID: 39605432 PMCID: PMC11601530 DOI: 10.1101/2024.11.15.623791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A significant portion of human cancers utilize a recombination-based pathway, Alternative Lengthening of Telomeres (ALT), to extend telomeres. To gain further insights into this pathway, we developed a high-throughput imaging-based screen named TAILS (Telomeric ALT In situ Localization Screen), to identify genes that either promote or inhibit ALT activity. Screening over 1000 genes implicated in DNA transactions, TAILS revealed both well-established and novel ALT modulators. We have identified new factors that promote ALT, such as the nucleosome-remodeling factor CHD4 and the chromatin reader SGF29, as well as factors that suppress ALT, including the RNA helicases DDX39A/B, the replication factor TIMELESS, and components of the chromatin assembly factor CAF1. Our data indicate that defects in histone deposition significantly contribute to ALT-associated phenotypes. Based on these findings, we demonstrate that pharmacological treatments can be employed to either exacerbate or suppress ALT-associated phenotypes.
Collapse
Affiliation(s)
- Benura Azeroglu
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Simran Khurana
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shih-Chun Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Gianna M. Tricola
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shalu Sharma
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Camille Jubelin
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ylenia Cortolezzis
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kyle M. Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Travis H. Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eros Lazzerini Denchi
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
10
|
Katoueezadeh M, Maleki P, Torabizadeh SA, Farsinejad A, Khalilabadi RM, Valandani HM, Nurain IO, Ashoub MH, Fatemi A. Combinatorial targeting of telomerase and DNA-PK induces synergistic apoptotic effects against Pre-B acute lymphoblastic leukemia cells. Mol Biol Rep 2024; 51:163. [PMID: 38252348 DOI: 10.1007/s11033-023-09087-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Due to the high demand for novel approaches for leukemia-targeted therapy, this study investigates the impact of DNA-PK inhibitor NU7441 on the sensitivity of pre-B ALL cells to the telomerase inhibitor MST-312. METHODS The study involved NALM-6 cells treated with MST-312 and NU7441, assessing their viability and metabolic activity using trypan blue and MTT assays. The study also evaluated apoptosis, gene expression changes, and DNA damage using flow cytometry, qRT-PCR, and micronucleus assays. The binding energy of MST-312 in the active site of telomerase was calculated using molecular docking. RESULTS The study's findings revealed a synergistic decline in both cell viability and metabolic activity in NALM-6 cells when exposed to the combined treatment of MST-312 and NU7441, and this decrease occurred without any adverse effects on healthy PBMC cells. Furthermore, the combination treatment exhibited a significantly higher induction of apoptosis than treatment with MST-312 alone, as observed through flow cytometry assay. qRT-PCR analysis revealed that this enhanced apoptosis was associated with a notable downregulation of Bcl-2 expression and an upregulation of Bax gene expression. Moreover, the combination therapy decreased expression levels of hTERT and c-Myc genes. The micronucleus assay indicated that the combination treatment increased DNA damage in NALM-6 cells. Also, a good conformation between MST-312 and the active site of telomerase was revealed by docking data. CONCLUSIONS The study suggests that simultaneous inhibition of telomerase and DNA-PK in pre-B ALL presents a novel targeted therapy approach.
Collapse
Affiliation(s)
- Maryam Katoueezadeh
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Parisa Maleki
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyedeh Atekeh Torabizadeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Farsinejad
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Roohollah Mirzaee Khalilabadi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hajar Mardani Valandani
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ismaila Olanrewaju Nurain
- Postdoctoral Research Fellow, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Fatemi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran.
| |
Collapse
|
11
|
Mori JO, Keegan J, Flynn RL, Heaphy CM. Alternative lengthening of telomeres: mechanism and the pathogenesis of cancer. J Clin Pathol 2024; 77:82-86. [PMID: 37890990 PMCID: PMC11450735 DOI: 10.1136/jcp-2023-209005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
Telomere maintenance and elongation allows cells to gain replicative immortality and evade cellular senescence during cancer development. While most cancers use telomerase to maintain telomere lengths, a subset of cancers engage the alternative lengthening of telomeres (ALT) pathway for telomere maintenance. ALT is present in 5%-10% of all cancers, although the prevalence is dramatically higher in certain cancer types, including complex karyotype sarcomas, isocitrate dehydrogenase-mutant astrocytoma (WHO grade II-IV), pancreatic neuroendocrine tumours, neuroblastoma and chromophobe hepatocellular carcinomas. ALT is maintained through a homology-directed DNA repair mechanism. Resembling break-induced replication, this aberrant process results in dramatic cell-to-cell telomere length heterogeneity, widespread chromosomal instability and chronic replication stress. Additionally, ALT-positive cancers frequently harbour inactivating mutations in either chromatin remodelling proteins (ATRX, DAXX and H3F3A) or DNA damage repair factors (SMARCAL1 and SLX4IP). ALT can readily be detected in tissue by assessing the presence of unique molecular characteristics, such as large ultrabright nuclear telomeric foci or partially single-stranded telomeric DNA circles (C-circles). Importantly, ALT has been validated as a robust diagnostic and prognostic biomarker for certain cancer types and may even be exploited as a therapeutic target via small molecular inhibitors and/or synthetic lethality approaches.
Collapse
Affiliation(s)
- Joakin O Mori
- Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Joshua Keegan
- Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Rachel L Flynn
- Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Christopher M Heaphy
- Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Pathology and Laboratory Medicine, Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|