1
|
Witts EC, Mathews MA, Murray AJ. The locus coeruleus directs sensory-motor reflex amplitude across environmental contexts. Curr Biol 2023; 33:4679-4688.e3. [PMID: 37741282 PMCID: PMC10957397 DOI: 10.1016/j.cub.2023.08.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/03/2023] [Accepted: 08/25/2023] [Indexed: 09/25/2023]
Abstract
Purposeful movement across unpredictable environments requires quick, accurate, and contextually appropriate motor corrections in response to disruptions in balance and posture.1,2,3 These responses must respect both the current position and limitations of the body, as well as the surrounding environment,4,5,6 and involve a combination of segmental reflexes in the spinal cord, vestibulospinal and reticulospinal pathways in the brainstem, and forebrain structures such as the motor cortex.7,8,9,10 These motor plans can be heavily influenced by the animal's surrounding environment, even when that environment has no mechanical influence on the perturbation itself. This environmental influence has been considered as cortical in nature, priming motor responses to a perturbation.8,11 Similarly, postural responses can be influenced by environments that alter threat levels in humans.12,13,14,15,16,17,18 Such studies are generally in agreement with work done in the mouse showing that optogenetic stimulation of the lateral vestibular nucleus (LVN) only results in motor responses when the animal is on a balance beam at height and not when walking on the stable surface of a treadmill.10 In general, this ability to flexibly modify postural responses across terrains and environmental conditions is a critically important component of the balance system.19,20 Here we show that LVN-generated motor corrections can be altered by manipulating the surrounding environment. Furthermore, environmental influence on corrections requires noradrenergic signaling from the locus coeruleus, suggesting a potential link between forebrain structures that convey sensory information about the environment and brainstem circuits that generate motor corrections.
Collapse
Affiliation(s)
- Emily C Witts
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, W1T 4JG London, UK.
| | - Miranda A Mathews
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, W1T 4JG London, UK
| | - Andrew J Murray
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, W1T 4JG London, UK.
| |
Collapse
|
2
|
Wuehr M, Eilles E, Lindner M, Grosch M, Beck R, Ziegler S, Zwergal A. Repetitive Low-Intensity Vestibular Noise Stimulation Partly Reverses Behavioral and Brain Activity Changes following Bilateral Vestibular Loss in Rats. Biomolecules 2023; 13:1580. [PMID: 38002261 PMCID: PMC10669117 DOI: 10.3390/biom13111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Low-intensity noisy galvanic vestibular stimulation (nGVS) can improve static and dynamic postural deficits in patients with bilateral vestibular loss (BVL). In this study, we aimed to explore the neurophysiological and neuroanatomical substrates underlying nGVS treatment effects in a rat model of BVL. Regional brain activation patterns and behavioral responses to a repeated 30 min nGVS treatment in comparison to sham stimulation were investigated by serial whole-brain 18F-FDG-PET measurements and quantitative locomotor assessments before and at nine consecutive time points up to 60 days after the chemical bilateral labyrinthectomy (BL). The 18F-FDG-PET revealed a broad nGVS-induced modulation on regional brain activation patterns encompassing biologically plausible brain networks in the brainstem, cerebellum, multisensory cortex, and basal ganglia during the entire observation period post-BL. nGVS broadly reversed brain activity adaptions occurring in the natural course post-BL. The parallel behavioral locomotor assessment demonstrated a beneficial treatment effect of nGVS on sensory-ataxic gait alterations, particularly in the early stage of post-BL recovery. Stimulation-induced locomotor improvements were finally linked to nGVS brain activity responses in the brainstem, hemispheric motor, and limbic networks. In conclusion, combined 18F-FDG-PET and locomotor analysis discloses the potential neurophysiological and neuroanatomical substrates that mediate previously observed therapeutic nGVS effects on postural deficits in patients with BVL.
Collapse
Affiliation(s)
- Max Wuehr
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.W.); (E.E.); (M.L.); (M.G.); (R.B.)
| | - Eva Eilles
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.W.); (E.E.); (M.L.); (M.G.); (R.B.)
| | - Magdalena Lindner
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.W.); (E.E.); (M.L.); (M.G.); (R.B.)
| | - Maximilian Grosch
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.W.); (E.E.); (M.L.); (M.G.); (R.B.)
| | - Roswitha Beck
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.W.); (E.E.); (M.L.); (M.G.); (R.B.)
- Pharmaceutical Radiochemistry, TUM School of Natural Sciences, TU Munich, 85748 Garching, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany;
| | - Andreas Zwergal
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.W.); (E.E.); (M.L.); (M.G.); (R.B.)
- Department of Neurology, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
3
|
Biomechanics and neural circuits for vestibular-induced fine postural control in larval zebrafish. Nat Commun 2023; 14:1217. [PMID: 36898983 PMCID: PMC10006170 DOI: 10.1038/s41467-023-36682-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/10/2023] [Indexed: 03/12/2023] Open
Abstract
Land-walking vertebrates maintain a desirable posture by finely controlling muscles. It is unclear whether fish also finely control posture in the water. Here, we showed that larval zebrafish have fine posture control. When roll-tilted, fish recovered their upright posture using a reflex behavior, which was a slight body bend near the swim bladder. The vestibular-induced body bend produces a misalignment between gravity and buoyancy, generating a moment of force that recovers the upright posture. We identified the neural circuits for the reflex, including the vestibular nucleus (tangential nucleus) through reticulospinal neurons (neurons in the nucleus of the medial longitudinal fasciculus) to the spinal cord, and finally to the posterior hypaxial muscles, a special class of muscles near the swim bladder. These results suggest that fish maintain a dorsal-up posture by frequently performing the body bend reflex and demonstrate that the reticulospinal pathway plays a critical role in fine postural control.
Collapse
|
4
|
Nakazono H, Taniguchi T, Mitsutake T, Takeda A, Yamada E, Ogata K. Phase-dependent modulation of the vestibular-cerebellar network via combined alternating current stimulation influences human locomotion and posture. Front Neurosci 2022; 16:1057021. [PMID: 36590300 PMCID: PMC9795064 DOI: 10.3389/fnins.2022.1057021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Background Human locomotion induces rhythmic movements of the trunk and head. Vestibular signaling is relayed to multiple regions in the brainstem and cerebellum, and plays an essential role in maintaining head stability. However, how the vestibular-cerebellar network contributes to the rhythmic locomotor pattern in humans is unclear. Transcranial alternating current stimulation (tACS) has been used to investigate the effects of the task-related network between stimulation regions in a phase-dependent manner. Here, we investigated the relationship between the vestibular system and the cerebellum during walking imagery using combined tACS over the left cerebellum and alternating current galvanic vestibular stimulation (AC-GVS). Methods In Experiment 1, we tested the effects of AC-GVS alone at around individual gait stride frequencies. In Experiment 2, we then determined the phase-specificity of combined stimulation at the gait frequency. Combined stimulation was applied at in-phase (0° phase lag) or anti-phase (180° phase lag) between the left vestibular and left cerebellar stimulation, and the sham stimulation. We evaluated the AC-GVS-induced periodic postural response during walking imagery or no-imagery using the peak oscillatory power on the angular velocity signals of the head in both experiments. In Experiment 2, we also examined the phase-locking value (PLV) between the periodic postural responses and the left AC-GVS signals to estimate entrainment of the postural response by AC-GVS. Results AC-GVS alone induced the periodic postural response in the yaw and roll axes, but no interactions with imagery walking were observed in Experiment 1 (p > 0.05). By contrast, combined in-phase stimulation increased yaw motion (0.345 ± 0.23) compared with sham (-0.044 ± 0.19) and anti-phase stimulation (-0.066 ± 0.18) during imaginary walking (in-phase vs. other conditions, imagery: p < 0.05; no-imagery: p ≥ 0.125). Furthermore, there was a positive correlation between the yaw peak power of actual locomotion and in-phase stimulation in the imagery session (imagery: p = 0.041; no-imagery: p = 0.177). Meanwhile, we found no imagery-dependent effects in roll peak power or PLV, although in-phase stimulation enhanced roll motion and PLV in Experiment 2. Conclusion These findings suggest that combined stimulation can influence vestibular-cerebellar network activity, and modulate postural control and locomotion systems in a temporally sensitive manner. This novel combined tACS/AC-GVS stimulation approach may advance development of therapeutic applications.
Collapse
Affiliation(s)
- Hisato Nakazono
- Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan,Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan,*Correspondence: Hisato Nakazono,
| | - Takanori Taniguchi
- Department of Physical Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Tsubasa Mitsutake
- Department of Physical Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Akinori Takeda
- Research Center for Brain Communication, Research Institute, Kochi University of Technology, Kochi, Japan
| | - Emi Yamada
- Department of Linguistics, Faculty of Humanities, Kyushu University, Fukuoka, Japan
| | - Katsuya Ogata
- Department of Pharmaceutical Sciences, School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
5
|
Once-Daily Incremental Vestibular-Ocular Reflex Adaptation Training in Patients With Chronic Peripheral Vestibular Hypofunction: A 1-Week Randomized Controlled Study. J Neurol Phys Ther 2021; 45:87-100. [PMID: 33675600 DOI: 10.1097/npt.0000000000000348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND PURPOSE This was a double-blinded randomized controlled study to investigate the effects of once-daily incremental vestibulo-ocular reflex (VOR) training over 1 week in people with chronic peripheral vestibular hypofunction. METHODS A total of 24 patients with peripheral vestibular hypofunction were randomly assigned to intervention (n = 13) or control (n = 11) groups. Training consisted of either x1 (control) or incremental VOR adaptation exercises, delivered once daily for 15 minutes over 4 days in 1 week. Primary outcome: VOR gain with video-oculography. Secondary outcomes: Compensatory saccades measured using scleral search coils, dynamic visual acuity, static balance, gait, and subjective symptoms. Between-group differences were analyzed with a linear mixed-model with repeated measures. RESULTS There was a difference in the VOR gain increase between groups (P < 0.05). The incremental training group gain increased during active (13.4% ± 16.3%) and passive (12.1% ± 19.9%) head impulse testing (P < 0.02), whereas it did not for the control group (P = 0.59). The control group had reduced compensatory saccade latency (P < 0.02). Both groups had similarly improved dynamic visual acuity scores (P < 0.05). Both groups had improved dynamic gait index scores (P < 0.002); however, only the incremental group had improved scores for the 2 walks involving head oscillations at approximately 2 Hz (horizontal: P < 0.05; vertical: P < 0.02), increased gait speed (P < 0.02), and step length (P < 0.01) during normal gait, and improved total Dizziness Handicap Inventory (P < 0.05). CONCLUSIONS Our results suggest incremental VOR adaptation significantly improves gain, gait with head rotation, balance during gait, and symptoms in patients with chronic peripheral vestibular hypofunction more so than conventional x1 gaze-stabilizing exercises.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A336).
Collapse
|
6
|
Akay T, Murray AJ. Relative Contribution of Proprioceptive and Vestibular Sensory Systems to Locomotion: Opportunities for Discovery in the Age of Molecular Science. Int J Mol Sci 2021; 22:1467. [PMID: 33540567 PMCID: PMC7867206 DOI: 10.3390/ijms22031467] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/29/2022] Open
Abstract
Locomotion is a fundamental animal behavior required for survival and has been the subject of neuroscience research for centuries. In terrestrial mammals, the rhythmic and coordinated leg movements during locomotion are controlled by a combination of interconnected neurons in the spinal cord, referred as to the central pattern generator, and sensory feedback from the segmental somatosensory system and supraspinal centers such as the vestibular system. How segmental somatosensory and the vestibular systems work in parallel to enable terrestrial mammals to locomote in a natural environment is still relatively obscure. In this review, we first briefly describe what is known about how the two sensory systems control locomotion and use this information to formulate a hypothesis that the weight of the role of segmental feedback is less important at slower speeds but increases at higher speeds, whereas the weight of the role of vestibular system has the opposite relation. The new avenues presented by the latest developments in molecular sciences using the mouse as the model system allow the direct testing of the hypothesis.
Collapse
Affiliation(s)
- Turgay Akay
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Life Science Research Institute, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Andrew J. Murray
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London W1T 4JG, UK
| |
Collapse
|
7
|
Liu Z, Kimura Y, Higashijima SI, Hildebrand DGC, Morgan JL, Bagnall MW. Central Vestibular Tuning Arises from Patterned Convergence of Otolith Afferents. Neuron 2020; 108:748-762.e4. [PMID: 32937099 DOI: 10.1016/j.neuron.2020.08.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/09/2020] [Accepted: 08/19/2020] [Indexed: 01/31/2023]
Abstract
As sensory information moves through the brain, higher-order areas exhibit more complex tuning than lower areas. Though models predict that complexity arises via convergent inputs from neurons with diverse response properties, in most vertebrate systems, convergence has only been inferred rather than tested directly. Here, we measure sensory computations in zebrafish vestibular neurons across multiple axes in vivo. We establish that whole-cell physiological recordings reveal tuning of individual vestibular afferent inputs and their postsynaptic targets. Strong, sparse synaptic inputs can be distinguished by their amplitudes, permitting analysis of afferent convergence in vivo. An independent approach, serial-section electron microscopy, supports the inferred connectivity. We find that afferents with similar or differing preferred directions converge on central vestibular neurons, conferring more simple or complex tuning, respectively. Together, these results provide a direct, quantifiable demonstration of feedforward input convergence in vivo.
Collapse
Affiliation(s)
- Zhikai Liu
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Yukiko Kimura
- Department of Neurobiology, National Institute for Basic Biology, Okazaki, Japan
| | | | | | - Joshua L Morgan
- Department of Ophthalmology, Washington University in St. Louis, St. Louis, MO, USA
| | - Martha W Bagnall
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
8
|
Rastoldo G, Marouane E, El Mahmoudi N, Péricat D, Bourdet A, Timon-David E, Dumas O, Chabbert C, Tighilet B. Quantitative Evaluation of a New Posturo-Locomotor Phenotype in a Rodent Model of Acute Unilateral Vestibulopathy. Front Neurol 2020; 11:505. [PMID: 32582016 PMCID: PMC7291375 DOI: 10.3389/fneur.2020.00505] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
Vestibular pathologies are difficult to diagnose. Existing devices make it possible to quantify and follow the evolution of posturo-locomotor symptoms following vestibular loss in static conditions. However, today, there are no diagnostic tools allowing the quantitative and spontaneous analysis of these symptoms in dynamic situations. With this in mind, we used an open-field video tracking test aiming at identifying specific posturo-locomotor markers in a rodent model of vestibular pathology. Using Ethovision XT 14 software (Noldus), we identified and quantified several behavioral parameters typical of unilateral vestibular lesions in a rat model of vestibular pathology. The unilateral vestibular neurectomy (UVN) rat model reproduces the symptoms of acute unilateral peripheral vestibulopathy in humans. Our data show deficits in locomotion velocity, distance traveled and animal mobility in the first day after the injury. We also highlighted alterations in several parameters, such as head and body acceleration, locomotor pattern, and position of the body, as well as “circling” behavior after vestibular loss. Here, we provide an enriched posturo-locomotor phenotype specific to full and irreversible unilateral vestibular loss. This test helps to strengthen the quantitative evaluation of vestibular disorders in unilateral vestibular lesion rat model. It may also be useful for testing pharmacological compounds promoting the restoration of balance. Transfer of these novel evaluation parameters to human pathology may improve the diagnosis of acute unilateral vestibulopathies and could better follow the evolution of the symptoms upon pharmacological and physical rehabilitation.
Collapse
Affiliation(s)
- Guillaume Rastoldo
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Sensorielles et Cognitives, LNSC UMR 7260, Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Groupe de Recherche Vertige (GDR#2074), Marseille, France
| | - Emna Marouane
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Sensorielles et Cognitives, LNSC UMR 7260, Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Groupe de Recherche Vertige (GDR#2074), Marseille, France
| | - Nada El Mahmoudi
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Sensorielles et Cognitives, LNSC UMR 7260, Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Groupe de Recherche Vertige (GDR#2074), Marseille, France
| | - David Péricat
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Sensorielles et Cognitives, LNSC UMR 7260, Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Groupe de Recherche Vertige (GDR#2074), Marseille, France
| | - Audrey Bourdet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Sensorielles et Cognitives, LNSC UMR 7260, Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Groupe de Recherche Vertige (GDR#2074), Marseille, France
| | - Elise Timon-David
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Sensorielles et Cognitives, LNSC UMR 7260, Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Groupe de Recherche Vertige (GDR#2074), Marseille, France
| | - Olivier Dumas
- Société Française de Kinésithérapie Vestibulaire, Lyon, France
| | - Christian Chabbert
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Sensorielles et Cognitives, LNSC UMR 7260, Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Groupe de Recherche Vertige (GDR#2074), Marseille, France
| | - Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Sensorielles et Cognitives, LNSC UMR 7260, Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Groupe de Recherche Vertige (GDR#2074), Marseille, France
| |
Collapse
|