1
|
Soma S, Hayatsu N, Nomura K, Sherwood MW, Murakami T, Sugiyama Y, Suematsu N, Aoki T, Yamada Y, Asayama M, Kaneko M, Ohbayashi K, Arizono M, Ohtsuka M, Hamada S, Matsumoto I, Iwasaki Y, Ohno N, Okazaki Y, Taruno A. Channel synapse mediates neurotransmission of airway protective chemoreflexes. Cell 2025:S0092-8674(25)00280-6. [PMID: 40187347 DOI: 10.1016/j.cell.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 12/05/2024] [Accepted: 03/05/2025] [Indexed: 04/07/2025]
Abstract
Neural reflexes to chemicals in the throat protect the airway from aspiration and infection. Mechanistic understanding of these reflexes remains premature, exemplified by chronic cough-a sensitized cough reflex-being a prevalent unmet clinical need. Here, in mice, a whole-body search for channel synapses-featuring CALHM1/3 channel-mediated neurotransmitter release-and single-cell transcriptomics uncovered subclasses of the Pou2f3+ chemosensory cell family in the throat communicating with vagal neurons via this synapse. They express G protein-coupled receptors (GPCRs) for noxious chemicals, T2Rs, which upon stimulation trigger swallow and cough-like expulsive reflexes in the hypopharynx and larynx, respectively. These reflexes were abolished by Calhm3 and Pou2f3 knockout and could be triggered by targeted optogenetic stimulation. Furthermore, aeroallergen exposure augmented CALHM3-dependent expulsive reflex. This study identifies Pou2f3+ epithelial cells with channel synapses as chemosensory end organs of airway protective reflexes and sites of their hyperresponsiveness, advancing mechanistic understanding of airway defense programs with distinct therapeutic potential.
Collapse
Affiliation(s)
- Shogo Soma
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Norihito Hayatsu
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Kengo Nomura
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Mark W Sherwood
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Tatsuro Murakami
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan; Department of Otolaryngology-Head and Neck Surgery, Saga University, Saga 849-8501, Japan
| | - Naofumi Suematsu
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Takanori Aoki
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Yu Yamada
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Moe Asayama
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Mami Kaneko
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Kento Ohbayashi
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Kyoto 606-8522, Japan
| | - Misa Arizono
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto 606-8501, Japan; The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Shun Hamada
- International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8529, Japan
| | | | - Yusaku Iwasaki
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Kyoto 606-8522, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan; Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Yasushi Okazaki
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Akiyuki Taruno
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan.
| |
Collapse
|
2
|
Xian M, Maskey AR, Kopulos D, Li XM. The roles of bitter and sweet taste receptors in food allergy: Where are we now? Allergol Int 2025:S1323-8930(25)00010-3. [PMID: 40037957 DOI: 10.1016/j.alit.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/31/2024] [Accepted: 01/17/2025] [Indexed: 03/06/2025] Open
Abstract
Food allergy (FA) is a growing global concern, which contributes significantly to anaphylaxis and severe allergic reactions. Despite advancements in treatments like allergen immunotherapy and biologics, current approaches have notable limitations and there is a pressing need for new therapeutic strategies. Recent research into taste receptors has unveiled their potential role in FA, offering fresh perspectives for understanding and managing this condition. Taste receptors, particularly type 1 taste receptors (TAS1Rs/T1Rs, sweet taste receptors) and type 2 taste receptors (TAS2Rs/T2Rs, bitter taste receptors), are distributed not only in the oral cavity but also in various extra-oral tissues, and their interactions with immune responses are increasingly recognized. This review highlights the connections between taste receptors and FA, exploring how taste receptor mechanisms might contribute to FA pathogenesis and treatment. Taste receptors, especially TAS2Rs, which include multiple subtypes with varying ligand specificities, have been implicated in modulating allergic responses and could serve as targets for novel FA therapies. Additionally, compounds such as bitter agents and sweeteners that interact with taste receptors show promise in influencing FA outcomes. This review emphasizes the need for further research into the mechanisms of taste receptor involvement in FA and suggests that targeting these receptors could provide new avenues for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Mo Xian
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Anish R Maskey
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Daniel Kopulos
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA; Department of Otolaryngology, New York Medical College, Valhalla, NY, USA; Department of Dermatology, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
3
|
Jalševac F, Descamps-Solà M, Grau-Bové C, Segú H, Auguet T, Avilés-Jurado FX, Balaguer F, Jorba R, Beltrán-Debón R, Blay MT, Terra Barbadora X, Pinent M, Ardévol A. Profiling bitter taste receptors (TAS2R) along the gastrointestinal tract and their influence on enterohormone secretion. Gender- and age-related effects in the colon. Front Endocrinol (Lausanne) 2024; 15:1436580. [PMID: 39512758 PMCID: PMC11541047 DOI: 10.3389/fendo.2024.1436580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024] Open
Abstract
Extraoral bitter taste receptors offer intriguing potential for modulating metabolism and the gut-brain axis through dietary interventions. Our understanding of these receptors is limited, and data on their effects on ageing are scarce. The complexity conveyed by their high diversity, low expression levels and species-dependent variability challenges our comprehension. We used real-time PCR to examine the relative abundance of multiple TAS2R across different segments of gastrointestinal mucosa in four human cohorts and related them to enteroendocrine secretions at the colon site. TAS2R14 exhibited the highest expression levels in all analyzed tissues. In contrast, TAS2R39, -38 and -42 consistently exhibited lower expression levels. Ageing was found to upregulate TAS2R4, -5, -13, -20 and GLP-1 mRNA in the descending colon. Stimulating TAS2R14 in Hutu-80 cells induced GLP-1 secretion, while stimulating TAS2R5 modulated GLP-1 and PYY secretion. Given the modifications TAS2R agonists may undergo along the GIT, as well as the distinctive expression patterns and possible functional roles of TAS2R receptors along the intestinal tract, our findings suggest the viability of a targeted strategy aimed at enhancing specific functions to improve health outcomes. This study offers valuable insights into the intricate interplay between bitter taste receptors, gut physiology and potential dietary interventions.
Collapse
Affiliation(s)
- Florijan Jalševac
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, MoBioFood Research Group, Tarragona, Spain
| | - Maria Descamps-Solà
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, MoBioFood Research Group, Tarragona, Spain
| | - Carme Grau-Bové
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, MoBioFood Research Group, Tarragona, Spain
| | - Helena Segú
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, MoBioFood Research Group, Tarragona, Spain
| | - Teresa Auguet
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Joan XXIII, GEMMAIR Research Group, Tarragona, Spain
| | - Francesc Xavier Avilés-Jurado
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Joan XXIII, Tarragona, Spain
- Head Neck Tumors Unit, Hospital Clínic de Barcelona, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | - Francesc Balaguer
- Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Rosa Jorba
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Joan XXIII, Tarragona, Spain
| | - Raúl Beltrán-Debón
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, MoBioFood Research Group, Tarragona, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Joan XXIII, MoBioFood Research Group, Tarragona, Spain
| | - Maria Teresa Blay
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, MoBioFood Research Group, Tarragona, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Joan XXIII, MoBioFood Research Group, Tarragona, Spain
| | - Ximena Terra Barbadora
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, MoBioFood Research Group, Tarragona, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Joan XXIII, MoBioFood Research Group, Tarragona, Spain
| | - Montserrat Pinent
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, MoBioFood Research Group, Tarragona, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Joan XXIII, MoBioFood Research Group, Tarragona, Spain
| | - Anna Ardévol
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, MoBioFood Research Group, Tarragona, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Joan XXIII, MoBioFood Research Group, Tarragona, Spain
| |
Collapse
|
4
|
Joseph PV, Abbas M, Goodney G, Diallo A, Gaye A. Genomic study of taste perception genes in African Americans reveals SNPs linked to Alzheimer's disease. Sci Rep 2024; 14:21560. [PMID: 39284855 PMCID: PMC11405524 DOI: 10.1038/s41598-024-71669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
While previous research has shown the potential links between taste perception pathways and brain-related conditions, the area involving Alzheimer's disease remains incompletely understood. Taste perception involves neurotransmitter signaling, including serotonin, glutamate, and dopamine. Disruptions in these pathways are implicated in neurodegenerative diseases. The integration of olfactory and taste signals in flavor perception may impact brain health, evident in olfactory dysfunction as an early symptom in neurodegenerative conditions. Shared immune response and inflammatory pathways may contribute to the association between altered taste perception and conditions like neurodegeneration, present in Alzheimer's disease. This study consists of an exploration of expression-quantitative trait loci (eQTL), utilizing whole-blood transcriptome profiles, of 28 taste perception genes, from a combined cohort of 475 African American subjects. This comprehensive dataset was subsequently intersected with single-nucleotide polymorphisms (SNPs) identified in Genome-Wide Association Studies (GWAS) of Alzheimer's Disease (AD). Finally, the investigation delved into assessing the association between eQTLs reported in GWAS of AD and the profiles of 741 proteins from the Olink Neurological Panel. The eQTL analysis unveiled 3,547 statistically significant SNP-Gene associations, involving 412 distinct SNPs that spanned all 28 taste genes. In 17 GWAS studies encompassing various traits, a total of 14 SNPs associated with 12 genes were identified, with three SNPs consistently linked to Alzheimer's disease across four GWAS studies. All three SNPs demonstrated significant associations with the down-regulation of TAS2R41, and two of them were additionally associated with the down-regulation of TAS2R60. In the subsequent pQTL analysis, two of the SNPs linked to TAS2R41 and TAS2R60 genes (rs117771145 and rs10228407) were correlated with the upregulation of two proteins, namely EPHB6 and ADGRB3. Our investigation introduces a new perspective to the understanding of Alzheimer's disease, emphasizing the significance of bitter taste receptor genes in its pathogenesis. These discoveries set the stage for subsequent research to delve into these receptors as promising avenues for both intervention and diagnosis. Nevertheless, the translation of these genetic insights into clinical practice requires a more profound understanding of the implicated pathways and their pertinence to the disease's progression across diverse populations.
Collapse
Affiliation(s)
- Paule Valery Joseph
- Sensory Science and Metabolism Unit, Biobehavioral Branch, National Institute On Alcohol Abuse and Alcoholism, National Institue of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Malak Abbas
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gabriel Goodney
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ana Diallo
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Amadou Gaye
- Department of Integrative Genomics and Epidemiology, School of Graduate Studies, Meharry Medical College, Nashville, TN, USA.
| |
Collapse
|
5
|
Liu S, Shi T, Yu J, Li R, Lin H, Deng K. Research on Bitter Peptides in the Field of Bioinformatics: A Comprehensive Review. Int J Mol Sci 2024; 25:9844. [PMID: 39337334 PMCID: PMC11432553 DOI: 10.3390/ijms25189844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Bitter peptides are small molecular peptides produced by the hydrolysis of proteins under acidic, alkaline, or enzymatic conditions. These peptides can enhance food flavor and offer various health benefits, with attributes such as antihypertensive, antidiabetic, antioxidant, antibacterial, and immune-regulating properties. They show significant potential in the development of functional foods and the prevention and treatment of diseases. This review introduces the diverse sources of bitter peptides and discusses the mechanisms of bitterness generation and their physiological functions in the taste system. Additionally, it emphasizes the application of bioinformatics in bitter peptide research, including the establishment and improvement of bitter peptide databases, the use of quantitative structure-activity relationship (QSAR) models to predict bitterness thresholds, and the latest advancements in classification prediction models built using machine learning and deep learning algorithms for bitter peptide identification. Future research directions include enhancing databases, diversifying models, and applying generative models to advance bitter peptide research towards deepening and discovering more practical applications.
Collapse
Affiliation(s)
| | | | | | | | - Hao Lin
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; (S.L.); (T.S.); (J.Y.); (R.L.)
| | - Kejun Deng
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; (S.L.); (T.S.); (J.Y.); (R.L.)
| |
Collapse
|
6
|
Joseph PV, Abbas M, Goodney G, Diallo A, Gaye A. Genomic Study of Taste Perception Genes in African Americans Reveals SNPs Linked to Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.10.607452. [PMID: 39372803 PMCID: PMC11451608 DOI: 10.1101/2024.08.10.607452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background While previous research has shown the potential links between taste perception pathways and brain-related conditions, the area involving Alzheimer's disease remains incompletely understood. Taste perception involves neurotransmitter signaling, including serotonin, glutamate, and dopamine. Disruptions in these pathways are implicated in neurodegenerative diseases. The integration of olfactory and taste signals in flavor perception may impact brain health, evident in olfactory dysfunction as an early symptom in neurodegenerative conditions. Shared immune response and inflammatory pathways may contribute to the association between altered taste perception and conditions like neurodegeneration, present in Alzheimer's disease. Methods This study consists of an exploration of expression-quantitative trait loci (eQTL), utilizing whole-blood transcriptome profiles, of 28 taste perception genes, from a combined cohort of 475 African American subjects. This comprehensive dataset was subsequently intersected with single-nucleotide polymorphisms (SNPs) identified in Genome-Wide Association Studies (GWAS) of Alzheimer's Disease (AD). Finally, the investigation delved into assessing the association between eQTLs reported in GWAS of AD and the profiles of 741 proteins from the Olink Neurological Panel. Results The eQTL analysis unveiled 3,547 statistically significant SNP-Gene associations, involving 412 distinct SNPs that spanned all 28 taste genes. In 17 GWAS studies encompassing various traits, a total of 14 SNPs associated with 12 genes were identified, with three SNPs consistently linked to Alzheimer's disease across four GWAS studies. All three SNPs demonstrated significant associations with the down-regulation of TAS2R41, and two of them were additionally associated with the down-regulation of TAS2R60. In the subsequent pQTL analysis, two of the SNPs linked to TAS2R41 and TAS2R60 genes (rs117771145 and rs10228407) were correlated with the upregulation of two proteins, namely EPHB6 and ADGRB3. Conclusions Our investigation introduces a new perspective to the understanding of Alzheimer's disease, emphasizing the significance of bitter taste receptor genes in its pathogenesis. These discoveries set the stage for subsequent research to delve into these receptors as promising avenues for both intervention and diagnosis. Nevertheless, the translation of these genetic insights into clinical practice requires a more profound understanding of the implicated pathways and their pertinence to the disease's progression across diverse populations.
Collapse
Affiliation(s)
- Paule Valery Joseph
- National Institute on Alcohol Abuse and Alcoholism, National Institue of Nursing Research, Sensory Science and Metabolism Unit, Biobehavioral Branch, National Institutes of Health, Bethesda, MD, USA
| | - Malak Abbas
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gabriel Goodney
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ana Diallo
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University, Richmond, VA
| | - Amadou Gaye
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Murphey JT, Temple JL, Hostler D. Taste and Appetite at Altitude: A Comprehensive Review of Sensory and Hunger Modulation in High-Altitude Environments. High Alt Med Biol 2024. [PMID: 39122250 DOI: 10.1089/ham.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024] Open
Abstract
Introduction: Individuals living or working at high altitudes typically experience altered taste perceptions and reduced appetite. These changes can lead to nutritional deficiencies, affecting the energy balance and body composition. Methods: We conducted a nonsystematic review of PubMed to explore these phenomena and expound on their findings to offer additional insights. Results: Changes in taste and perception are common and typically lead to loss of mass. There are limited practical solutions to mitigate these challenges. Discussion: Gradual acclimatization and tailored nutritional strategies are required to enhance health and performance in high-altitude environments. This review provides critical insights into the intersection of altitude, nutrition, and health.
Collapse
Affiliation(s)
- Joshua T Murphey
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jennifer L Temple
- Nutrition and Health Research Laboratory, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York, USA
| | - David Hostler
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
8
|
Morini G. The taste for health: the role of taste receptors and their ligands in the complex food/health relationship. Front Nutr 2024; 11:1396393. [PMID: 38873558 PMCID: PMC11169839 DOI: 10.3389/fnut.2024.1396393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
Taste, food, and health are terms that have since always accompanied the act of eating, but the association was simple: taste serves to classify a food as good or bad and therefore influences food choices, which determine the nutritional status and therefore health. The identification of taste receptors, particularly, the G protein-coupled receptors that mediate sweet, umami, and bitter tastes, in the gastrointestinal tract has assigned them much more relevant tasks, from nutrient sensing and hormone release to microbiota composition and immune response and finally to a rationale for the gut-brain axis. Particularly interesting are bitter taste receptors since most of the times they do not mediate macronutrients (energy). The relevant roles of bitter taste receptors in the gut indicate that they could become new drug targets and their ligands new medications or components in nutraceutical formulations. Traditional knowledge from different cultures reported that bitterness intensity was an indicator for distinguishing plants used as food from those used as medicine, and many non-cultivated plants were used to control glucose level and treat diabetes, modulate hunger, and heal gastrointestinal disorders caused by pathogens and parasites. This concept represents a means for the scientific integration of ancient wisdom with advanced medicine, constituting a possible boost for more sustainable food and functional food innovation and design.
Collapse
|
9
|
Qu M, Lu P, Lifshitz LM, Moore Simas TA, Delpapa E, ZhuGe R. Phenanthroline relaxes uterine contractions induced by diverse contractile agents by decreasing cytosolic calcium concentration. Eur J Pharmacol 2024; 968:176343. [PMID: 38281680 PMCID: PMC10939717 DOI: 10.1016/j.ejphar.2024.176343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Uterine contractions during labor and preterm labor are influenced by a complex interplay of factors, including hormones and inflammatory mediators. This complexity may contribute to the limited efficacy of current tocolytics for preterm labor, a significant challenge in obstetrics with 15 million cases annually and approximately 1 million resulting deaths worldwide. We have previously shown that the myometrium expresses bitter taste receptors (TAS2Rs) and that their activation leads to uterine relaxation. Here, we investigated whether the selective TAS2R5 agonist phenanthroline can induce relaxation across a spectrum of human uterine contractions and whether the underlying mechanism involves changes in intracellular Ca2+ signaling. We performed experiments using samples from pregnant women undergoing scheduled cesarean delivery, assessing responses to various inflammatory mediators and oxytocin with and without phenanthroline. Our results showed that phenanthroline concentration-dependently inhibited contractions induced by PGF2α, U46619, 5-HT, endothelin-1 and oxytocin. Furthermore, in hTERT-infected human myometrial cells exposed to uterotonics, phenanthroline effectively suppressed the increase in intracellular Ca2+ concentration induced by PGF2α, U46619, oxytocin, and endothelin-1. These results suggest that the selective TAS2R5 agonist may not only significantly reduce uterine contractions but also decrease intracellular Ca2+ levels. This study highlights the potential development of TAS2R5 agonists as a new class of uterine relaxants, providing a novel avenue for improving the management of preterm labor.
Collapse
Affiliation(s)
- Mingzi Qu
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 363 Plantation St., Worcester, MA, USA
| | - Ping Lu
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 363 Plantation St., Worcester, MA, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, UMass Chan Medical School, 373 Plantation St., Worcester, MA, USA
| | - Tiffany A Moore Simas
- Department of Obstetrics and Gynecology, UMass Chan Medical School/UMass Memorial Health, 119 Belmont St, Worcester, MA, USA
| | - Ellen Delpapa
- Department of Obstetrics and Gynecology, UMass Chan Medical School/UMass Memorial Health, 119 Belmont St, Worcester, MA, USA.
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 363 Plantation St., Worcester, MA, USA.
| |
Collapse
|
10
|
Holmes IA, Durso AM, Myers CR, Hendry TA. Changes in capture availability due to infection can lead to detectable biases in population-level infectious disease parameters. PeerJ 2024; 12:e16910. [PMID: 38436008 PMCID: PMC10909344 DOI: 10.7717/peerj.16910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/17/2024] [Indexed: 03/05/2024] Open
Abstract
Correctly identifying the strength of selection that parasites impose on hosts is key to predicting epidemiological and evolutionary outcomes of host-parasite interactions. However, behavioral changes due to infection can alter the capture probability of infected hosts and thereby make selection difficult to estimate by standard sampling techniques. Mark-recapture approaches, which allow researchers to determine if some groups in a population are less likely to be captured than others, can be used to identify infection-driven capture biases. If a metric of interest directly compares infected and uninfected populations, calculated detection probabilities for both groups may be useful in identifying bias. Here, we use an individual-based simulation to test whether changes in capture rate due to infection can alter estimates of three key metrics: 1) reduction in the reproductive success of infected parents relative to uninfected parents, 2) the relative risk of infection for susceptible genotypes compared to resistant genotypes, and 3) changes in allele frequencies between generations. We explore the direction and underlying causes of the biases that emerge from these simulations. Finally, we argue that short series of mark-recapture sampling bouts, potentially implemented in under a week, can yield key data on detection bias due to infection while not adding a significantly higher burden to disease ecology studies.
Collapse
Affiliation(s)
- Iris A. Holmes
- Department of Microbiology, Cornell University, Ithaca, NY, United States
- Cornell Institute of Host Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States
| | - Andrew M. Durso
- Department of Biological Sciences, Florida Gulf Coast University, Ft. Myers, FL, USA
| | - Christopher R. Myers
- Center for Advanced Computing & Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, United States
| | - Tory A. Hendry
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
11
|
Lu P, Simas TAM, Delpapa E, ZhuGe R. Bitter taste receptors in the reproductive system: Function and therapeutic implications. J Cell Physiol 2024; 239:e31179. [PMID: 38219077 PMCID: PMC10922893 DOI: 10.1002/jcp.31179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 01/15/2024]
Abstract
Type 2 taste receptors (TAS2Rs), traditionally known for their role in bitter taste perception, are present in diverse reproductive tissues of both sexes. This review explores our current understanding of TAS2R functions with a particular focus on reproductive health. In males, TAS2Rs are believed to play potential roles in processes such as sperm chemotaxis and male fertility. Genetic insights from mouse models and human polymorphism studies provide some evidence for their contribution to male infertility. In female reproduction, it is speculated that TAS2Rs influence the ovarian milieu, shaping the functions of granulosa and cumulus cells and their interactions with oocytes. In the uterus, TAS2Rs contribute to uterine relaxation and hold potential as therapeutic targets for preventing preterm birth. In the placenta, they are proposed to function as vigilant sentinels, responding to infection and potentially modulating mechanisms of fetal protection. In the cervix and vagina, their analogous functions to those in other extraoral tissues suggest a potential role in infection defense. In addition, TAS2Rs exhibit altered expression patterns that profoundly affect cancer cell proliferation and apoptosis in reproductive cancers. Notably, TAS2R agonists show promise in inducing apoptosis and overcoming chemoresistance in these malignancies. Despite these advances, challenges remain, including a lack of genetic and functional studies. The application of techniques such as single-cell RNA sequencing and clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated endonuclease 9 gene editing could provide deeper insights into TAS2Rs in reproduction, paving the way for novel therapeutic strategies for reproductive disorders.
Collapse
Affiliation(s)
- Ping Lu
- Department of Microbiology and Physiological System, UMass Chan Medical School, 363 Plantation St., Worcester, MA, USA
| | - Tiffany A. Moore Simas
- Department of Obstetrics and Gynecology, UMass Chan Medical School/UMass Memorial Health, Memorial Campus 119 Belmont St., Worcester, MA, USA
| | - Ellen Delpapa
- Department of Obstetrics and Gynecology, UMass Chan Medical School/UMass Memorial Health, Memorial Campus 119 Belmont St., Worcester, MA, USA
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological System, UMass Chan Medical School, 363 Plantation St., Worcester, MA, USA
| |
Collapse
|
12
|
Bartnik M. Methoxyfuranocoumarins of Natural Origin-Updating Biological Activity Research and Searching for New Directions-A Review. Curr Issues Mol Biol 2024; 46:856-883. [PMID: 38275669 PMCID: PMC10813879 DOI: 10.3390/cimb46010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Plant secondary metabolites, including furanocoumarins, have attracted attention for decades as active molecules with therapeutic potential, especially those occurring in a limited number of species as evolutionarily specific and chemotaxonomically important. The most famous methoxyfuranocoumarins (MFCs), bergapten, xanthotoxin, isopimpinellin, phellopterin, byakangelicol, byakangelicin, isobergapten, pimpinellin, sphondin, as well as rare ones such as peucedanin and 8-methoxypeucedanin, apaensin, cnidilin, moellendorffiline and dahuribiethrins, have recently been investigated for their various biological activities. The α-glucosidase inhibitory activity and antioxidant potential of moellendorffiline, the antiproliferative and proapoptotic properties of non-UV-activated bergapten and xanthotoxin, the effect of MFC on the activity of tyrosinase, acetyl- and butylcholinesterase, and the role of these compounds as adjuvants in anticancer and antibacterial tests have been confirmed. The anticonvulsant effects of halfordin, the antidepressant effects of xanthotoxin, and the antiadipogenic, neuroprotective, anti-amyloid-β, and anti-inflammatory (via increasing SIRT 1 protein expression) properties of phellopterin, as well as the activity of sphondin against hepatitis B virus, have also attracted interest. It is worth paying attention to the agonistic effect of xanthotoxin on bitter taste receptors (TAS2Rs) on cardiomyocytes, which may be important in the future treatment of tachycardia, as well as the significant anti-inflammatory activity of dahuribiethrins. It should be emphasized that MFCs, although in many cases isolated for the first time many years ago, are still of great interest as bioactive molecules. The aim of this review is to highlight key recent developments in the study of the diverse biological activities of MFCs and attempt to highlight promising directions for their further research. Where possible, descriptions of the mechanisms of action of MFC are provided, which is related to the constantly discovered therapeutic potential of these molecules. The review covers the results of experiments from the last ten years (2014-2023) conducted on isolated natural cMFCs and includes the activity of molecules that have not been activated by UV rays.
Collapse
Affiliation(s)
- Magdalena Bartnik
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodźki 1 Street, 20-093 Lublin, Poland
| |
Collapse
|
13
|
Antoniadi L, Bartnik M, Angelis A, Wawruszak A, Halabalaki M, Kukula-Koch W, Skaltsounis LA. Gentiopicroside-An Insight into Its Pharmacological Significance and Future Perspectives. Cells 2023; 13:70. [PMID: 38201274 PMCID: PMC10778152 DOI: 10.3390/cells13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Gentiopicroside (GPS) is a leading component of several plant species from the Gentianaceae botanical family. As a compound with plenty of biological activities and a component of herbal drugs, GPS has an important role in the regulation of physiological processes in humans. The results of recently published scientific studies underline a meaningful role of this molecule as an active factor in metabolic pathways and mechanisms, which may have an influence in the treatment of different diseases, including digestive tract disorders, malignant changes, neurological disorders, microbial infections, bone formation disorders, inflammatory conditions, and others. This review aims to collect previously published reports on the biological properties of GPS as a single compound that were confirmed by in vitro and in vivo studies, and to draw attention to the newly discovered role of this bitter-tasting secoiridoid. Thanks to these properties, the research on this substance could be revisited.
Collapse
Affiliation(s)
- Lemonia Antoniadi
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (L.A.); (A.A.); (M.H.); (L.A.S.)
| | - Magdalena Bartnik
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland;
| | - Apostolis Angelis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (L.A.); (A.A.); (M.H.); (L.A.S.)
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (L.A.); (A.A.); (M.H.); (L.A.S.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland;
| | - Leandros A. Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (L.A.); (A.A.); (M.H.); (L.A.S.)
| |
Collapse
|
14
|
Pieroni A, Morini G, Piochi M, Sulaiman N, Kalle R, Haq SM, Devecchi A, Franceschini C, Zocchi DM, Migliavada R, Prakofjewa J, Sartori M, Krigas N, Ahmad M, Torri L, Sõukand R. Bitter Is Better: Wild Greens Used in the Blue Zone of Ikaria, Greece. Nutrients 2023; 15:3242. [PMID: 37513661 PMCID: PMC10385191 DOI: 10.3390/nu15143242] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The current study reports an ethnobotanical field investigation of traditionally gathered and consumed wild greens (Chorta) in one of the five so-called Blue Zones in the world: Ikaria Isle, Greece. Through 31 semi-structured interviews, a total of 56 wild green plants were documented along with their culinary uses, linguistic labels, and locally perceived tastes. Most of the gathered greens were described as bitter and associated with members of Asteraceae and Brassicaceae botanical families (31%), while among the top-quoted wild greens, species belonging to these two plant families accounted for 50% of the wild vegetables, which were consumed mostly cooked. Cross-cultural comparison with foraging in other areas of the central-eastern Mediterranean and the Near East demonstrated a remarkable overlapping of Ikarian greens with Cretan and Sicilian, as well as in the prevalence of bitter-tasting botanical genera. Important differences with other wild greens-related food heritage were found, most notably with the Armenian and Kurdish ones, which do not commonly feature many bitter greens. The proven role of extra-oral bitter taste receptors in the modulation of gastric emptying, glucose absorption and crosstalk with microbiota opens new ways of looking at these differences, in particular with regard to possible health implications. The present study is also an important attempt to preserve and document the bio-cultural gastronomic heritage of Chorta as a quintessential part of the Mediterranean diet. The study recommends that nutritionists, food scientists, and historians, as well as policymakers and practitioners, pay the required attention to traditional rural dietary systems as models of sustainable health.
Collapse
Affiliation(s)
- Andrea Pieroni
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
- Department of Medical Analysis, Tishk International University, Erbil 44001, Iraq
| | - Gabriella Morini
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
| | - Maria Piochi
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
| | - Naji Sulaiman
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
- Department of Ethnology, Charles University, 116 38 Prague, Czech Republic
| | - Raivo Kalle
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
- Estonian Literary Museum, Vanemuise 42, 51003 Tartu, Estonia
| | - Shiekh Marifatul Haq
- Department of Ethnobotany, Institute of Botany, Ilia State University, 0162 Tbilisi, Georgia
| | - Andrea Devecchi
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
| | - Cinzia Franceschini
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
| | - Dauro M Zocchi
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
| | - Riccardo Migliavada
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
| | - Julia Prakofjewa
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia, Italy
| | - Matteo Sartori
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia, Italy
| | - Nikos Krigas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, 57001 Thessaloniki, Greece
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Luisa Torri
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
| | - Renata Sõukand
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia, Italy
| |
Collapse
|
15
|
Yamase Y, Huang H, Mitoh Y, Egusa M, Miyawaki T, Yoshida R. Taste Responses and Ingestive Behaviors to Ingredients of Fermented Milk in Mice. Foods 2023; 12:1150. [PMID: 36981077 PMCID: PMC10048529 DOI: 10.3390/foods12061150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/13/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Fermented milk is consumed worldwide because of its nutritious and healthful qualities. Although it is somewhat sour, causing some to dislike it, few studies have examined taste aspects of its ingredients. Wild-type mice and T1R3-GFP-KO mice lacking sweet/umami receptors were tested with various taste components (sucrose, galactose, lactose, galacto-oligosaccharides, fructo-oligosaccharides, l- and d-lactic acid) using 48 h two-bottle tests and short-term lick tests. d-lactic acid levels were measured after the ingestion of d- or; l-lactic acid or water to evaluate d-lactic acidosis. In wild-type mice, for the sweet ingredients the number of licks increased in a concentration-dependent manner, but avoidance was observed at higher concentrations in 48 h two-bottle tests; the sour ingredients d- and l-lactic acid showed concentration-dependent decreases in preference in both short- and long-term tests. In 48 h two-bottle tests comparing d- and l-lactic acid, wild-type but not T1R3-GFP-KO mice showed higher drinking rates for l-lactic acid. d-lactic acidosis did not occur and thus did not contribute to this preference. These results suggest that intake in short-term lick tests varied by preference for each ingredient, whereas intake variation in long-term lick tests reflects postingestive effects. l-lactic acid may have some palatable taste in addition to sour taste.
Collapse
Affiliation(s)
- Yuko Yamase
- Department of Dental Anesthesiology and Special Care Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hai Huang
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Yoshihiro Mitoh
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama 700-8525, Japan
| | - Masahiko Egusa
- Department of Dental Anesthesiology and Special Care Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Takuya Miyawaki
- Department of Dental Anesthesiology and Special Care Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Ryusuke Yoshida
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama 700-8525, Japan
| |
Collapse
|
16
|
Holmes IA, Grundler MC. Phylogenetically under-dispersed gut microbiomes are not correlated with host genomic heterozygosity in a genetically diverse reptile community. Mol Ecol 2023; 32:258-274. [PMID: 36221927 PMCID: PMC9797449 DOI: 10.1111/mec.16733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 12/31/2022]
Abstract
While key elements of fitness in vertebrate animals are impacted by their microbiomes, the host genetic characteristics that factor into microbiome composition are not fully understood. Here, we correlate host genomic heterozygosity and gut microbiome phylogenetic diversity across a community of reptiles in southwestern New Mexico to test hypotheses about the behaviour of host genes that drive microbiome assembly. We find that microbiome communities are phylogenetically under-dispersed relative to random expectations, and that host heterozygosity is not correlated with microbiome diversity. Our analyses reinforce results from functional genomic work that identify conserved host immune and nonimmune genes as key players in microbiome assembly, rather than gene families that rely on heterozygosity for their function.
Collapse
Affiliation(s)
- Iris A. Holmes
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Cornell Institute of Host Microbe Interactions and Disease and Department of Microbiology, Cornell University, Ithaca, NY 14853 USA
| | - Michael C. Grundler
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
17
|
Kobayashi D, Watarai T, Ozawa M, Kanda Y, Saika F, Kiguchi N, Takeuchi A, Ikawa M, Matsuzaki S, Katakai T. Tas2R signaling enhances mouse neutrophil migration via a ROCK-dependent pathway. Front Immunol 2022; 13:973880. [PMID: 36059440 PMCID: PMC9436316 DOI: 10.3389/fimmu.2022.973880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Type-2 bitter taste receptors (Tas2Rs) are a large family of G protein-coupled receptors that are expressed in the oral cavity and serve to detect substances with bitter tastes in foods and medicines. Recent evidence suggests that Tas2Rs are also expressed extraorally, including in immune cells. However, the role of Tas2Rs in immune cells remains controversial. Here, we demonstrate that Tas2R126, Tas2R135, and Tas2R143 are expressed in mouse neutrophils, but not in other immune cells such as macrophages or T and B lymphocytes. Treatment of bone marrow-derived neutrophils from wild-type mice with the Tas2R126/143 agonists arbutin and d-salicin led to enhanced C-X-C motif chemokine ligand 2 (CXCL2)-stimulated migration in vitro, but this response was not observed in neutrophils from Tas2r126/135/143-deficient mice. Enhancement of CXCL2-stimulated migration by Tas2R agonists was accompanied by increased phosphorylation of myosin light chain 2 (MLC2) and was blocked by pretreatment of neutrophils with inhibitors of Rho-associated coiled-coil-containing protein kinase (ROCK), but not by inhibitors of the small GTPase RhoA. Taken together, these results demonstrate that mouse neutrophils express functional Tas2R126/143 and suggest a role for Tas2R126/143–ROCK–MLC2-dependent signaling in the regulation of neutrophil migration.
Collapse
Affiliation(s)
- Daichi Kobayashi
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
- *Correspondence: Daichi Kobayashi, ; ; Tomoya Katakai,
| | - Tomoya Watarai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Madoka Ozawa
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasuhiro Kanda
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fumihiro Saika
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Arata Takeuchi
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
- Department of Radiological Sciences, Faculty of Medical Science Technology, Morinomiya University of Medical Sciences, Osaka, Japan
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Suita, Japan
| | - Tomoya Katakai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- *Correspondence: Daichi Kobayashi, ; ; Tomoya Katakai,
| |
Collapse
|
18
|
Dubovski N, Fierro F, Margulis E, Ben Shoshan-Galeczki Y, Peri L, Niv MY. Taste GPCRs and their ligands. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:177-193. [PMID: 36357077 DOI: 10.1016/bs.pmbts.2022.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Taste GPCRs are expressed in taste buds on the tongue and play a key role in food choice and consumption. They are also expressed extra-orally, with various physiological roles that are currently under study. Unraveling the roles of these receptors relies on the knowledge of their ligands. Combining sensory, cell-based and computational approaches enabled the discovery of numerous agonists and several antagonists. Here we provide a short overview of taste receptor families, main recent methods for ligands discovery, and current sources of information about known ligands. The future directions that are likely to impact the taste GPCR field include focus on ligand interactions with naturally occurring polymorphisms, as well as harnessing the power of CryoEM and of multiple signaling readout techniques.
Collapse
Affiliation(s)
- Nitzan Dubovski
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Fabrizio Fierro
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Eitan Margulis
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yaron Ben Shoshan-Galeczki
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lior Peri
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
19
|
Cilia Stimulatory and Antibacterial Activities of T2R Bitter Taste Receptor Agonist Diphenhydramine: Insights into Repurposing Bitter Drugs for Nasal Infections. Pharmaceuticals (Basel) 2022; 15:ph15040452. [PMID: 35455449 PMCID: PMC9025516 DOI: 10.3390/ph15040452] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 02/06/2023] Open
Abstract
T2R bitter taste receptors in airway motile cilia increase ciliary beat frequency (CBF) and nitric oxide (NO) production. Polymorphisms in some T2Rs are linked to disease outcomes in chronic rhinosinusitis (CRS) and cystic fibrosis (CF). We examined the expression of cilia T2Rs during the differentiation of human nasal epithelial cells grown at air–liquid interface (ALI). The T2R expression increased with differentiation but did not vary between CF and non-CF cultures. Treatment with Pseudomonas aeruginosa flagellin decreased the expression of diphenhydramine-responsive T2R14 and 40, among others. Diphenhydramine increased both NO production, measured by fluorescent dye DAF-FM, and CBF, measured via high-speed imaging. Increases in CBF were disrupted after flagellin treatment. Diphenhydramine impaired the growth of lab and clinical strains of P. aeruginosa, a major pathogen in CF and CF-related CRS. Diphenhydramine impaired biofilm formation of P. aeruginosa, measured via crystal violet staining, as well as the surface attachment of P. aeruginosa to CF airway epithelial cells, measured using colony-forming unit counting. Because the T2R agonist diphenhydramine increases NO production and CBF while also decreasing bacterial growth and biofilm production, diphenhydramine-derived compounds may have potential clinical usefulness in CF-related CRS as a topical therapy. However, utilizing T2R agonists as therapeutics within the context of P. aeruginosa infection may require co-treatment with anti-inflammatories to enhance T2R expression.
Collapse
|
20
|
Effect of Welsh Onion on Taste Components and Sensory Characteristics of Porcine Bone Soup. Foods 2021; 10:foods10122968. [PMID: 34945519 PMCID: PMC8701721 DOI: 10.3390/foods10122968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 02/02/2023] Open
Abstract
To investigate the effect of welsh onion on taste components and sensory characteristics in porcine bone soup, the stewing condition was as follows: the material–liquid ratio (m/V) was 1:1, the stewing time was 5.0 h, and the ratio of welsh onion was 2.5%. Then, the content of taste components was measured. The content of free amino acids in porcine bone soup with welsh onion (PWS) was higher than the sum of welsh onion soup (WS) and porcine bone soup (PS); particularly, the umami amino acids increased by 35.73% compared with PS. Significant increases in four organic acids (lactic acid, pyroglutamic acid, citric acid and ascorbic acid), two 5′-nucleotides (5′-AMP and 5′-GMP) and three mineral elements (K, Ca and Mg) were observed in PWS. Compared with PS, the equivalent umami concentration (EUC) value was increased from 79.09 to 106.47 mg MSG/100 g in PWS, which was due to the high content of umami amino acids and the synergistic effect with 5′-nucleotides. The results of the sensory analysis indicated a certain enhancement of umami taste in PWS, and the sweet and salty tastes were also increased with the addition of welsh onion. The correlation analysis was consistent with the variation of the components tested above.
Collapse
|
21
|
Bayer S, Mayer AI, Borgonovo G, Morini G, Di Pizio A, Bassoli A. Chemoinformatics View on Bitter Taste Receptor Agonists in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13916-13924. [PMID: 34762411 PMCID: PMC8630789 DOI: 10.1021/acs.jafc.1c05057] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Food compounds with a bitter taste have a role in human health, both for their capability to influence food choice and preferences and for their possible systemic effect due to the modulation of extra-oral bitter taste receptors (TAS2Rs). Investigating the interaction of bitter food compounds with TAS2Rs is a key step to unravel their complex effects on health and to pave the way to rationally design new additives for food formulation or drugs. Here, we propose a collection of food bitter compounds, for which in vitro activity data against TAS2Rs are available. The patterns of TAS2R subtype-specific agonists were analyzed using scaffold decomposition and chemical space analysis, providing a detailed characterization of the associations between food bitter tastants and TAS2Rs.
Collapse
Affiliation(s)
- Sebastian Bayer
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner Str. 34, D-85354 Freising, Germany
- Faculty
of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Ariane Isabell Mayer
- Department
of Food, Environmental and Nutritional Sciences-DeFENS, University of Milan, via Celoria 2, 20147 Milano, Italy
| | - Gigliola Borgonovo
- Department
of Food, Environmental and Nutritional Sciences-DeFENS, University of Milan, via Celoria 2, 20147 Milano, Italy
| | - Gabriella Morini
- University
of Gastronomic Sciences, piazza Vittorio Emanuele 9, 12042 Pollenzo, (Bra, CN), Italy
| | - Antonella Di Pizio
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner Str. 34, D-85354 Freising, Germany
- . Phone: +49(0)8161716516
| | - Angela Bassoli
- Department
of Food, Environmental and Nutritional Sciences-DeFENS, University of Milan, via Celoria 2, 20147 Milano, Italy
- . Phone: +39(0)250316815
| |
Collapse
|
22
|
Martens K, Steelant B, Bullens DMA. Taste Receptors: The Gatekeepers of the Airway Epithelium. Cells 2021; 10:cells10112889. [PMID: 34831117 PMCID: PMC8616034 DOI: 10.3390/cells10112889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Taste receptors are well known for their role in the sensation of taste. Surprisingly, the expression and involvement of taste receptors in chemosensory processes outside the tongue have been recently identified in many organs including the airways. Currently, a clear understanding of the airway-specific function of these receptors and the endogenous activating/inhibitory ligands is lagging. The focus of this review is on recent physiological and clinical data describing the taste receptors in the airways and their activation by secreted bacterial compounds. Taste receptors in the airways are potentially involved in three different immune pathways (i.e., the production of nitric oxide and antimicrobial peptides secretion, modulation of ciliary beat frequency, and bronchial smooth muscle cell relaxation). Moreover, genetic polymorphisms in these receptors may alter the patients’ susceptibility to certain types of respiratory infections as well as to differential outcomes in patients with chronic inflammatory airway diseases such as chronic rhinosinusitis and asthma. A better understanding of the function of taste receptors in the airways may lead to the development of a novel class of therapeutic molecules that can stimulate airway mucosal immune responses and could treat patients with chronic airway diseases.
Collapse
Affiliation(s)
- Katleen Martens
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (K.M.); (B.S.)
- Department of Bioscience Engineering, University of Antwerp, 2020 Antwerp, Belgium
| | - Brecht Steelant
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (K.M.); (B.S.)
| | - Dominique M. A. Bullens
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (K.M.); (B.S.)
- Clinical Division of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
23
|
Schneider C. Tuft cell integration of luminal states and interaction modules in tissues. Pflugers Arch 2021; 473:1713-1722. [PMID: 34635955 PMCID: PMC8528756 DOI: 10.1007/s00424-021-02630-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/07/2023]
Abstract
Chemosensory processes are integral to the physiology of most organisms. This function is typically performed by specialized cells that are able to detect input signals and to convert them to an output dedicated to a particular group of target cells. Tuft cells are cholinergic chemosensory epithelial cells capable of producing immunologically relevant effector molecules. They are scattered throughout endoderm-derived hollow organs and function as sensors of luminal stimuli, which has been best studied in mucosal barrier epithelia. Given their epithelial origin and broad distribution, and based on their interplay with immune pathways, tuft cells can be considered a prototypical example of how complex multicellular organisms engage innate immune mechanisms to modulate and optimize organ physiology. In this review, I provide a concise overview of tuft cells and discuss how these cells influence organ adaptation to dynamic luminal conditions.
Collapse
Affiliation(s)
- Christoph Schneider
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
24
|
Morini G, Winnig M, Vennegeerts T, Borgonovo G, Bassoli A. Vanillin Activates Human Bitter Taste Receptors TAS2R14, TAS2R20, and TAS2R39. Front Nutr 2021; 8:683627. [PMID: 34307435 PMCID: PMC8298857 DOI: 10.3389/fnut.2021.683627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Vanilla is widely used in food preparation worldwide for its sensory properties, mainly related to its fragrance, being vanillin the major compound present in the processed vanilla. Vanillin is also known to elicit bitterness as a secondary sensory sensation, but the molecular mechanism of its bitterness has never been reported. Assay buffers of vanillin were tested in vitro on all known 25 human bitter taste receptors TAS2Rs. Three receptors, TAS2R14, TAS2R20, and TAS2R39, were activated, showing that these receptors are mediating the bitterness of vanillin. The result could be useful to improve the overall sensory profile of this broadly used food ingredient, but even more could represent the starting point for further studies to investigate the potential of vanillin in sensory nutrition and other pharmaceutical applications.
Collapse
Affiliation(s)
| | - Marcel Winnig
- IMAX Discovery GmbH, Dortmund, Germany.,Axxam S.p.A. Bresso, Italy
| | - Timo Vennegeerts
- IMAX Discovery GmbH, Dortmund, Germany.,Axxam S.p.A. Bresso, Italy
| | - Gigliola Borgonovo
- DeFENS - Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Angela Bassoli
- DeFENS - Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| |
Collapse
|