1
|
Taking Sides: Asymmetries in the Evolution of Human Brain Development in Better Understanding Autism Spectrum Disorder. Symmetry (Basel) 2022. [DOI: 10.3390/sym14122689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Confirmation from structural, functional, and behavioral studies agree and suggest a configuration of atypical lateralization in individuals with autistic spectrum disorders (ASD). It is suggested that patterns of cortical and behavioral atypicality are evident in individuals with ASDs with atypical lateralization being common in individuals with ASDs. The paper endeavors to better understand the relationship between alterations in typical cortical asymmetries and functional lateralization in ASD in evolutionary terms. We have proposed that both early genetic and/or environmental influences can alter the developmental process of cortical lateralization. There invariably is a “chicken or egg” issue that arises whether atypical cortical anatomy associated with abnormal function, or alternatively whether functional atypicality generates abnormal structure.
Collapse
|
2
|
Mouly AM, Bouillot C, Costes N, Zimmer L, Ravel N, Litaudon P. PET Metabolic Imaging of Time-Dependent Reorganization of Olfactory Cued Fear Memory Networks in Rats. Cereb Cortex 2021; 32:2717-2728. [PMID: 34668524 DOI: 10.1093/cercor/bhab376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Memory consolidation involves reorganization at both the synaptic and system levels. The latter involves gradual reorganization of the brain regions that support memory and has been mostly highlighted using hippocampal-dependent tasks. The standard memory consolidation model posits that the hippocampus becomes gradually less important over time in favor of neocortical regions. In contrast, this reorganization of circuits in amygdala-dependent tasks has been less investigated. Moreover, this question has been addressed using primarily lesion or cellular imaging approaches thus precluding the comparison of recent and remote memory networks in the same animals. To overcome this limitation, we used microPET imaging to characterize, in the same animals, the networks activated during the recall of a recent versus remote memory in an olfactory cued fear conditioning paradigm. The data highlighted the drastic difference between the extents of the two networks. Indeed, although the recall of a recent odor fear memory activates a large network of structures spanning from the prefrontal cortex to the cerebellum, significant activations during remote memory retrieval are limited to the piriform cortex. These results strongly support the view that amygdala-dependent memories also undergo system-level reorganization, and that sensory cortical areas might participate in the long-term storage of emotional memories.
Collapse
Affiliation(s)
- Anne-Marie Mouly
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron Cedex 69675, France
| | | | | | - Luc Zimmer
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron Cedex 69675, France.,CERMEP-Life Imaging, Bron Cedex 69677, France.,Hospices Civils de Lyon, Lyon 69002, France
| | - Nadine Ravel
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron Cedex 69675, France
| | - Philippe Litaudon
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron Cedex 69675, France
| |
Collapse
|
3
|
Abstract
While the desire to uncover the neural correlates of consciousness has taken numerous directions, self-face recognition has been a constant in attempts to isolate aspects of self-awareness. The neuroimaging revolution of the 1990s brought about systematic attempts to isolate the underlying neural basis of self-face recognition. These studies, including some of the first fMRI (functional magnetic resonance imaging) examinations, revealed a right-hemisphere bias for self-face recognition in a diverse set of regions including the insula, the dorsal frontal lobe, the temporal parietal junction, and the medial temporal cortex. In this systematic review, we provide confirmation of these data (which are correlational) which were provided by TMS (transcranial magnetic stimulation) and patients in which direct inhibition or ablation of right-hemisphere regions leads to a disruption or absence of self-face recognition. These data are consistent with a number of theories including a right-hemisphere dominance for self-awareness and/or a right-hemisphere specialization for identifying significant social relationships, including to oneself.
Collapse
|
4
|
Activity in the rat olfactory cortex is correlated with behavioral response to odor: a microPET study. Brain Struct Funct 2016; 222:577-586. [PMID: 27194619 DOI: 10.1007/s00429-016-1235-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
Abstract
How olfactory cortical areas interpret odor maps evoked in the olfactory bulb and translate odor information into behavioral responses is still largely unknown. Indeed, rat olfactory cortices encompass an extensive network located in the ventral part of the brain, thus complicating the use of invasive functional methods. In vivo imaging techniques that were previously developed for brain activation studies in humans have been adapted for use in rodents and facilitate the non-invasive mapping of the whole brain. In this study, we report an initial series of experiments designed to demonstrate that microPET is a powerful tool to investigate the neural processes underlying odor-induced behavioral response in a large-scale olfactory neuronal network. After the intravenous injection of [18F]Fluorodeoxyglucose ([18F]FDG), awake rats were placed in a ventilated Plexiglas cage for 50 min, where odorants were delivered every 3 min for a 10-s duration in a random order. Individual behavioral responses to odor were classified into categories ranging from 1 (head movements associated with a short sniffing period in response to a few stimulations) to 4 (a strong reaction, including rearing, exploring and sustained sniffing activity, to several stimulations). After [18F]FDG uptake, rats were anesthetized to perform a PET scan. This experimental session was repeated 2 weeks later using the same animals without odor stimulation to assess the baseline level of activation in each individual. Two voxel-based statistical analyses (SPM 8) were performed: (1) a two-sample paired t test analysis contrasting baseline versus odor scan and (2) a correlation analysis between voxel FDG activity and behavioral score. As expected, the contrast analysis between baseline and odor session revealed activations in various olfactory cortical areas. Significant increases in glucose metabolism were also observed in other sensory cortical areas involved in whisker movement and in several modules of the cerebellum involved in motor and sensory function. Correlation analysis provided new insight into these results. [18F]FDG uptake was correlated with behavioral response in a large part of the anterior piriform cortex and in some lobules of the cerebellum, in agreement with the previous data showing that both piriform cortex and cerebellar activity in humans can be driven by sniffing activity, which was closely related to the high behavioral scores observed in our experiment. The present data demonstrate that microPET imaging offers an original perspective for rat behavioral neuroimaging.
Collapse
|
5
|
Ocklenburg S, Güntürkün O, Hugdahl K, Hirnstein M. Laterality and mental disorders in the postgenomic age – A closer look at schizophrenia and language lateralization. Neurosci Biobehav Rev 2015; 59:100-10. [DOI: 10.1016/j.neubiorev.2015.08.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/08/2015] [Accepted: 08/31/2015] [Indexed: 01/15/2023]
|
6
|
Whishaw IQ. Absence of population asymmetry in the American Quarter Horse (Equus ferus caballus) performing skilled left and right manoeuvres in reining competition. Laterality 2015; 20:604-17. [DOI: 10.1080/1357650x.2015.1023732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
|
8
|
Best C, Lange E, Buchholz HG, Schreckenberger M, Reuss S, Dieterich M. Left hemispheric dominance of vestibular processing indicates lateralization of cortical functions in rats. Brain Struct Funct 2013; 219:2141-58. [PMID: 23979449 DOI: 10.1007/s00429-013-0628-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
Abstract
Lateralization of cortical functions such as speech dominance, handedness and processing of vestibular information are present not only in humans but also in ontogenetic older species, e.g. rats. In human functional imaging studies, the processing of vestibular information was found to be correlated with the hemispherical dominance as determined by the handedness. It is located mainly within the right hemisphere in right handers and within the left hemisphere in left handers. Since dominance of vestibular processing is unknown in animals, our aim was to study the lateralization of cortical processing in a functional imaging study applying small-animal positron emission tomography (microPET) and galvanic vestibular stimulation in an in vivo rat model. The cortical and subcortical network processing vestibular information could be demonstrated and correlated with data from other animal studies. By calculating a lateralization index as well as flipped region of interest analyses, we found that the vestibular processing in rats follows a strong left hemispheric dominance independent from the "handedness" of the animals. These findings support the idea of an early hemispheric specialization of vestibular cortical functions in ontogenetic older species.
Collapse
Affiliation(s)
- Christoph Best
- Department of Neurology, Vestibular Research Unit, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany,
| | | | | | | | | | | |
Collapse
|
9
|
Paes-Branco D, Abreu-Villaça Y, Manhães AC, Filgueiras CC. Unilateral hemispherectomy at adulthood asymmetrically affects motor performance of male Swiss mice. Exp Brain Res 2012; 218:465-76. [PMID: 22367398 DOI: 10.1007/s00221-012-3034-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 02/06/2012] [Indexed: 01/23/2023]
Abstract
Evidence exists indicating that cerebral lateralization is a fundamental feature of all vertebrates. In humans, a series of studies demonstrated that the left hemisphere plays a major role in controlling movement. No such asymmetries have been identified in rodents, in spite of the fact that these animals have been frequently used in studies assessing motor behavior. In this regard, here, we used unilateral hemispherectomy to study the relative importance of each hemisphere in controlling movement. Adult Swiss mice were submitted to right unilateral hemispherectomy (RH), left unilateral hemispherectomy (LH) or sham surgery. Fifteen days after surgery, motor performance was assessed in the accelerating rotarod test and in the foot-fault test (in which performance depends on skilled limb use) and in the elevated body swing test (in which performance depends on trunk movements). The surgical removal of the right hemisphere caused a more pronounced impairment in performance than the removal of the left hemisphere both in the rotarod and in the foot-fault tests. In the rotarod, the RH group presented smaller latencies to fall than both LH and sham groups. In the foot-fault test, while both the sham and the LH groups showed no differences between left and right hind limbs, the RH group showed significantly worse performance with the left hind limb than with the right one. The elevated body swing test revealed a similar impairment in the two hemispherectomized groups. Our data suggest a major role of the right hemisphere in controlling skilled limb movements in mice.
Collapse
Affiliation(s)
- Danielle Paes-Branco
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Avenida Professor Manoel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | | | | | | |
Collapse
|
10
|
Hirnstein M. Dichotic listening and left-right confusion. Brain Cogn 2011; 76:239-44. [PMID: 21398014 DOI: 10.1016/j.bandc.2011.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/09/2011] [Accepted: 02/11/2011] [Indexed: 11/16/2022]
Abstract
The present study examined the relationship between individual differences in dichotic listening (DL) and the susceptibility to left-right confusion (LRC). Thirty-six men and 59 women completed a consonant-vowel DL test, a behavioral LRC task, and an LRC self-rating questionnaire. Significant negative correlations between overall DL accuracy and LRC rates in men (behavioral task) and self-ratings in women, indicated that the more participants struggled with left-right discrimination, the fewer DL syllables they reported correctly. However, there was no relationship between LRC and the typical right ear advantage. Thus, there is a sex- and task-dependent relationship between LRC and overall DL accuracy, but not between LRC and ear asymmetry. It is concluded that (a) atypical ear asymmetries, as in certain clinical populations, cannot be explained by associated deficits in left-right discrimination, and (b) LRC can negatively affect task performance, even when participants do not have to make explicit "left" versus "right" decisions.
Collapse
Affiliation(s)
- Marco Hirnstein
- Department of Psychology, University of Durham, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom.
| |
Collapse
|
11
|
Vallortigara G, Chiandetti C, Sovrano VA. Brain asymmetry (animal). WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2010; 2:146-157. [PMID: 26302006 DOI: 10.1002/wcs.100] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Giorgio Vallortigara
- Center for Mind‐Brain Sciences, University of Trento, Corso Bettini, 31, 30068 Rovereto, Italy
| | - Cinzia Chiandetti
- Center for Mind‐Brain Sciences, University of Trento, Corso Bettini, 31, 30068 Rovereto, Italy
| | - Valeria Anna Sovrano
- Center for Mind‐Brain Sciences, University of Trento, Corso Bettini, 31, 30068 Rovereto, Italy
| |
Collapse
|
12
|
|
13
|
Space representation for eye movements is more contralateral in monkeys than in humans. Proc Natl Acad Sci U S A 2010; 107:7933-8. [PMID: 20385808 DOI: 10.1073/pnas.1002825107] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Contralateral hemispheric representation of sensory inputs (the right visual hemifield in the left hemisphere and vice versa) is a fundamental feature of primate sensorimotor organization, in particular the visuomotor system. However, many higher-order cognitive functions in humans show an asymmetric hemispheric lateralization--e.g., right brain specialization for spatial processing--necessitating a convergence of information from both hemifields. Electrophysiological studies in monkeys and functional imaging in humans have investigated space and action representations at different stages of visuospatial processing, but the transition from contralateral to unified global spatial encoding and the relationship between these encoding schemes and functional lateralization are not fully understood. Moreover, the integration of data across monkeys and humans and elucidation of interspecies homologies is hindered, because divergent findings may reflect actual species differences or arise from discrepancies in techniques and measured signals (electrophysiology vs. imaging). Here, we directly compared spatial cue and memory representations for action planning in monkeys and humans using event-related functional MRI during a working-memory oculomotor task. In monkeys, cue and memory-delay period activity in the frontal, parietal, and temporal regions was strongly contralateral. In putative human functional homologs, the contralaterality was significantly weaker, and the asymmetry between the hemispheres was stronger. These results suggest an inverse relationship between contralaterality and lateralization and elucidate similarities and differences in human and macaque cortical circuits subserving spatial awareness and oculomotor goal-directed actions.
Collapse
|
14
|
Foley JA, Della Sala S. Geographical distribution of Cortex publications. Cortex 2010; 46:410-9. [DOI: 10.1016/j.cortex.2009.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 01/05/2023]
|
15
|
The relationship between growth, brain asymmetry and behavioural lateralization in a cichlid fish. Behav Brain Res 2009; 201:223-8. [DOI: 10.1016/j.bbr.2009.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 02/11/2009] [Accepted: 02/12/2009] [Indexed: 11/18/2022]
|
16
|
Abstract
Hand preferences of primates are discussed as part of the broad perspective of brain lateralization in animals, and compared with paw preferences in non-primates. Previously, it has been suggested that primates are more likely to express a species-typical hand preference on complex tasks, especially in the case of coordinated hand use in using tools. I suggest that population-level hand preferences are manifested when the task demands the obligate use of the processing specialization of one hemisphere, and that this depends on the nature of the task rather than its complexity per se. Depending on the species, simple reaching tasks may not demand the obligate use of a specialized hemisphere and so do not constrain limb/hand use. In such cases, individuals may show hand preferences that are associated with consistent differences in behaviour. The individual's hand preference is associated with the expression of behaviour controlled by the hemisphere contralateral to the preferred hand (fear and reactivity in left-handed individuals versus proactivity in right-handed individuals). Recent findings of differences in brain structure between left- and right-handed primates (e.g. somatosensory cortex in marmosets) have been discussed and related to potential evolutionary advances.
Collapse
Affiliation(s)
- Lesley J Rogers
- Centre for Neuroscience and Animal Behaviour, University of New England, Armidale, New South Wales 2351, Australia.
| |
Collapse
|
17
|
Basile M, Boivin S, Boutin A, Blois-Heulin C, Hausberger M, Lemasson A. Socially dependent auditory laterality in domestic horses (Equus caballus). Anim Cogn 2009; 12:611-9. [PMID: 19283416 DOI: 10.1007/s10071-009-0220-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 02/13/2009] [Accepted: 02/13/2009] [Indexed: 11/26/2022]
Abstract
Laterality is now known to be an ubiquitous phenomenon among the vertebrates. Particularly, laterality of auditory processing has been demonstrated in a variety of species, especially songbirds and primates. Such a hemispheric specialization has been shown to depend on factors such as sound structure, species specificity and types of stimuli. Much less is known on the possible influence of social familiarity although a few studies suggest such an influence. Here we tested the influence of the degree of familiarity on the laterality of the auditory response in the domestic horse. This species is known for its social system and shows visible reactions to sounds, with one or two ears moving towards a sound source. By comparing such responses to the playback of different conspecific whinnies (group member, neighbor and stranger), we could demonstrate a clear left hemisphere (LH) preference for familiar neighbor calls while no preference was found for group member and stranger calls. Yet, we found an opposite pattern of ear side preference for neighbor versus stranger calls. These results are, to our knowledge, the first to demonstrate auditory laterality in an ungulate species. They open further lines of thought on the influence of the social "value" of calls and the listener's arousal on auditory processing and laterality.
Collapse
Affiliation(s)
- Muriel Basile
- Université de Rennes I, EthoS, Ethologie animale et humaine-UMR 6552-CNRS Station Biologique de Paimpont, 35380, Paimpont, France.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Ten percent of people are left handed, but a higher frequency has been associated with certain craniofacial malformations, such as cleft lip and unilateral coronal synostosis. The purpose of this study was to determine the frequency of left-handedness in patients with hemifacial microsomia (HFM). Patients with HFM were identified in our craniofacial database. Normal controls were recruited by local pediatricians. Data gathered included age, sex, and handedness (determined by writing and/or drawing); the orbit, mandible, ear, nerve, and soft tissue (OMENS)-plus score and side of involvement were tabulated for patients with HFM. Hand preference was compared between the groups using chi analysis; possible correlations were analyzed between handedness and age, sex, the OMENS score, extracraniofacial findings, and side of involvement. One hundred seventy-eight patients with HFM were identified; 92 (51%) were excluded. Of the 86 included, 48% were boys (n = 47) and the mean age at inquiry was 13.5 years. Predominant side of involvement was right in 49% (n = 42) and left in 38% (n = 33). Eleven patients (13%) had severe involvement of both sides. Expanded-spectrum HFM was documented in 41% of patients. Ninety-six children were in the control group; 44% were boys (n = 42), and the mean age was 10 years. The difference in age between the groups was significant (P < 0.05), but sex differences were not. Patients with HFM were more likely to be left handed for writing compared with the control group (26% vs. 11%; P < 0.05). The frequency was higher, 36%, in those with bilateral involvement (P > 0.05). There was no correlation with predominant side or OMENS score. This study confirms that this disorder affects cerebral lateralization.
Collapse
|
19
|
Reddon AR, Hurd PL. Individual differences in cerebral lateralization are associated with shy–bold variation in the convict cichlid. Anim Behav 2009. [DOI: 10.1016/j.anbehav.2008.09.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|