1
|
Motzkin JC, Kanungo I, D’Esposito M, Shirvalkar P. Network targets for therapeutic brain stimulation: towards personalized therapy for pain. FRONTIERS IN PAIN RESEARCH 2023; 4:1156108. [PMID: 37363755 PMCID: PMC10286871 DOI: 10.3389/fpain.2023.1156108] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Precision neuromodulation of central brain circuits is a promising emerging therapeutic modality for a variety of neuropsychiatric disorders. Reliably identifying in whom, where, and in what context to provide brain stimulation for optimal pain relief are fundamental challenges limiting the widespread implementation of central neuromodulation treatments for chronic pain. Current approaches to brain stimulation target empirically derived regions of interest to the disorder or targets with strong connections to these regions. However, complex, multidimensional experiences like chronic pain are more closely linked to patterns of coordinated activity across distributed large-scale functional networks. Recent advances in precision network neuroscience indicate that these networks are highly variable in their neuroanatomical organization across individuals. Here we review accumulating evidence that variable central representations of pain will likely pose a major barrier to implementation of population-derived analgesic brain stimulation targets. We propose network-level estimates as a more valid, robust, and reliable way to stratify personalized candidate regions. Finally, we review key background, methods, and implications for developing network topology-informed brain stimulation targets for chronic pain.
Collapse
Affiliation(s)
- Julian C. Motzkin
- Departments of Neurology and Anesthesia and Perioperative Care (Pain Management), University of California, San Francisco, San Francisco, CA, United States
| | - Ishan Kanungo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Mark D’Esposito
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Prasad Shirvalkar
- Departments of Neurology and Anesthesia and Perioperative Care (Pain Management), University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
2
|
Alves PN, Forkel SJ, Corbetta M, Thiebaut de Schotten M. The subcortical and neurochemical organization of the ventral and dorsal attention networks. Commun Biol 2022; 5:1343. [PMID: 36477440 PMCID: PMC9729227 DOI: 10.1038/s42003-022-04281-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Attention is a core cognitive function that filters and selects behaviourally relevant information in the environment. The cortical mapping of attentional systems identified two segregated networks that mediate stimulus-driven and goal-driven processes, the Ventral and the Dorsal Attention Networks (VAN, DAN). Deep brain electrophysiological recordings, behavioral data from phylogenetic distant species, and observations from human brain pathologies challenge purely corticocentric models. Here, we used advanced methods of functional alignment applied to resting-state functional connectivity analyses to map the subcortical architecture of the Ventral and Dorsal Attention Networks. Our investigations revealed the involvement of the pulvinar, the superior colliculi, the head of caudate nuclei, and a cluster of brainstem nuclei relevant to both networks. These nuclei are densely connected structural network hubs, as revealed by diffusion-weighted imaging tractography. Their projections establish interrelations with the acetylcholine nicotinic receptor as well as dopamine and serotonin transporters, as demonstrated in a spatial correlation analysis with a normative atlas of neurotransmitter systems. This convergence of functional, structural, and neurochemical evidence provides a comprehensive framework to understand the neural basis of attention across different species and brain diseases.
Collapse
Affiliation(s)
- Pedro Nascimento Alves
- Laboratório de Estudos de Linguagem, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
- Serviço de Neurologia, Departmento de Neurociências e Saúde Mental, Hospital de Santa Maria, CHULN, Lisboa, Portugal.
| | - Stephanie J Forkel
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France
- Donders Institute for Brain Cognition Behaviour, Radboud University, Thomas van Aquinostraat 4, 6525GD, Nijmegen, the Netherlands
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Departments of Neurosurgery, Technical University of Munich School of Medicine, Munich, Germany
| | - Maurizio Corbetta
- Clinica Neurologica, Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, VIMM, Padova, Italy
- Department of Neurology, Radiology, Neuroscience Washington University School of Medicine, St.Louis, MO, USA
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France.
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
3
|
Ince RAA, Kay JW, Schyns PG. Within-participant statistics for cognitive science. Trends Cogn Sci 2022; 26:626-630. [PMID: 35710894 PMCID: PMC9586881 DOI: 10.1016/j.tics.2022.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022]
Abstract
Experimental studies in cognitive science typically focus on the population average effect. An alternative is to test each individual participant and then quantify the proportion of the population that would show the effect: the prevalence, or participant replication probability. We argue that this approach has conceptual and practical advantages.
Collapse
Affiliation(s)
- Robin A A Ince
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK.
| | - Jim W Kay
- Department of Statistics, University of Glasgow, Glasgow, UK
| | - Philippe G Schyns
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
Asymmetry of brain structure and function: 40 years after Sperry's Nobel Prize. Brain Struct Funct 2021; 227:421-424. [PMID: 34779912 DOI: 10.1007/s00429-021-02426-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
White matter variability, cognition, and disorders: a systematic review. Brain Struct Funct 2021; 227:529-544. [PMID: 34731328 PMCID: PMC8844174 DOI: 10.1007/s00429-021-02382-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022]
Abstract
Inter-individual differences can inform treatment procedures and—if accounted for—have the potential to significantly improve patient outcomes. However, when studying brain anatomy, these inter-individual variations are commonly unaccounted for, despite reports of differences in gross anatomical features, cross-sectional, and connectional anatomy. Brain connections are essential to facilitate functional organization and, when severed, cause impairments or complete loss of function. Hence, the study of cerebral white matter may be an ideal compromise to capture inter-individual variability in structure and function. We reviewed the wealth of studies that associate cognitive functions and clinical symptoms with individual tracts using diffusion tractography. Our systematic review indicates that tractography has proven to be a sensitive method in neurology, psychiatry, and healthy populations to identify variability and its functional correlates. However, the literature may be biased, as the most commonly studied tracts are not necessarily those with the highest sensitivity to cognitive functions and pathologies. Additionally, the hemisphere of the studied tract is often unreported, thus neglecting functional laterality and asymmetries. Finally, we demonstrate that tracts, as we define them, are not correlated with one, but multiple cognitive domains or pathologies. While our systematic review identified some methodological caveats, it also suggests that tract–function correlations might still be a promising tool in identifying biomarkers for precision medicine. They can characterize variations in brain anatomy, differences in functional organization, and predicts resilience and recovery in patients.
Collapse
|
6
|
Ince RA, Paton AT, Kay JW, Schyns PG. Bayesian inference of population prevalence. eLife 2021; 10:62461. [PMID: 34612811 PMCID: PMC8494477 DOI: 10.7554/elife.62461] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Within neuroscience, psychology, and neuroimaging, the most frequently used statistical approach is null hypothesis significance testing (NHST) of the population mean. An alternative approach is to perform NHST within individual participants and then infer, from the proportion of participants showing an effect, the prevalence of that effect in the population. We propose a novel Bayesian method to estimate such population prevalence that offers several advantages over population mean NHST. This method provides a population-level inference that is currently missing from study designs with small participant numbers, such as in traditional psychophysics and in precision imaging. Bayesian prevalence delivers a quantitative population estimate with associated uncertainty instead of reducing an experiment to a binary inference. Bayesian prevalence is widely applicable to a broad range of studies in neuroscience, psychology, and neuroimaging. Its emphasis on detecting effects within individual participants can also help address replicability issues in these fields.
Collapse
Affiliation(s)
- Robin Aa Ince
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Angus T Paton
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Jim W Kay
- Department of Statistics, University of Glasgow, Glasgow, United Kingdom
| | - Philippe G Schyns
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
7
|
Ioannucci S, George N, Friedrich P, Cerliani L, Thiebaut de Schotten M. White matter correlates of hemi-face dominance in happy and sad expression. Brain Struct Funct 2020; 225:1379-1388. [PMID: 32055980 PMCID: PMC7116479 DOI: 10.1007/s00429-020-02040-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/29/2020] [Indexed: 12/18/2022]
Abstract
The neural underpinnings of human emotional expression are thought to be unevenly distributed among the two brain hemispheres. However, little is known on the anatomy supporting this claim, particularly in the cerebral white matter. Here, we explored the relationship between hemi-face dominance in emotional expression and cerebral white matter asymmetries in 33 healthy participants. Measures of emotional expression were derived from pictures of the participant's faces in a 'happy smiling' and a 'sad frowning' conditions. Chimeric faces were constructed by mirroring right and left hemi-faces, as done in previous studies, resulting in a left mirrored and right mirrored chimeric face per picture. To gain measures of hemi-face dominance per participant, a jury of 20 additional participants rated which chimeric face shows the higher intensity of emotional expressivity, by marking a 155 mm line between the two versions. Measures of the asymmetry of the uncinate, the cingulum and the three branches of superior longitudinal fasciculi were derived from diffusion-weighted imaging tractography dissections. Group effect analyses indicated that the degree of asymmetry in emotional expression was not as prominent as reported in the literature and showed a large inter-individual variability. The degree of asymmetry in emotional expression was, however, significantly associated with the asymmetries in connective properties of the fronto-temporal and fronto-parietal tracts, specifically the uncinate fasciculus and the first branch of the superior longitudinal fasciculus. Therefore, this result raises novel hypotheses on the relationship of specific white matter tracts and emotional expression, especially their role in mood disorders.
Collapse
Affiliation(s)
- Stefano Ioannucci
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France.
- Department of Neuroscience, University of Padova, Padua, Italy.
- Institut de Neurosciences Cognitives Et Integratives D'Aquitaine-UMR 5287, CNRS, University of Bordeaux, Bordeaux, France.
| | - Nathalie George
- Institut du Cerveau Et de La Moelle Epinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Experimental Neurosurgery Team and CENIR, Centre MEG-EEG, 75013, Paris, France
| | - Patrick Friedrich
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
- Groupe D'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Leonardo Cerliani
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
- Faculty of Social and Behavioural Sciences, Universiteit Van Amsterdam, Amsterdam, The Netherlands
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France.
- Groupe D'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France.
| |
Collapse
|
8
|
Alves PN, Foulon C, Karolis V, Bzdok D, Margulies DS, Volle E, Thiebaut de Schotten M. An improved neuroanatomical model of the default-mode network reconciles previous neuroimaging and neuropathological findings. Commun Biol 2019; 2:370. [PMID: 31633061 PMCID: PMC6787009 DOI: 10.1038/s42003-019-0611-3] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022] Open
Abstract
The brain is constituted of multiple networks of functionally correlated brain areas, out of which the default-mode network (DMN) is the largest. Most existing research into the DMN has taken a corticocentric approach. Despite its resemblance with the unitary model of the limbic system, the contribution of subcortical structures to the DMN may be underappreciated. Here, we propose a more comprehensive neuroanatomical model of the DMN including subcortical structures such as the basal forebrain, cholinergic nuclei, anterior and mediodorsal thalamic nuclei. Additionally, tractography of diffusion-weighted imaging was employed to explore the structural connectivity, which revealed that the thalamus and basal forebrain are of central importance for the functioning of the DMN. The contribution of these neurochemically diverse brain nuclei reconciles previous neuroimaging with neuropathological findings in diseased brains and offers the potential for identifying a conserved homologue of the DMN in other mammalian species.
Collapse
Affiliation(s)
- Pedro Nascimento Alves
- Brain Connectivity and Behaviour Laboratory, BCBlab, Sorbonne Universities, Paris, France
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225 Paris, France
- Department of Neurosciences and Mental Health, Neurology, Hospital de Santa Maria, CHULN, Lisbon, Portugal
- Language Research Laboratory, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - Chris Foulon
- Brain Connectivity and Behaviour Laboratory, BCBlab, Sorbonne Universities, Paris, France
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225 Paris, France
- Computational Neuroimaging Laboratory, Department of Diagnostic Medicine, The University of Texas at Austin Dell Medical School, Austin, TX USA
| | - Vyacheslav Karolis
- Brain Connectivity and Behaviour Laboratory, BCBlab, Sorbonne Universities, Paris, France
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225 Paris, France
- FMRIB centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Danilo Bzdok
- INRIA, Parietal Team, Saclay, France
- Neurospin, CEA, Gif-sur-Yvette, France
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Daniel S. Margulies
- Brain Connectivity and Behaviour Laboratory, BCBlab, Sorbonne Universities, Paris, France
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225 Paris, France
| | - Emmanuelle Volle
- Brain Connectivity and Behaviour Laboratory, BCBlab, Sorbonne Universities, Paris, France
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225 Paris, France
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, BCBlab, Sorbonne Universities, Paris, France
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225 Paris, France
- Centre de Neuroimagerie de Recherche CENIR, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| |
Collapse
|
9
|
|
10
|
One size fits all does not apply to brain lateralisation: Comment on "Phenotypes in hemispheric functional segregation? Perspectives and challenges" by Guy Vingerhoets. Phys Life Rev 2019; 30:30-33. [PMID: 31377201 DOI: 10.1016/j.plrev.2019.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 11/20/2022]
|
11
|
Assaf Y, Johansen-Berg H, Thiebaut de Schotten M. The role of diffusion MRI in neuroscience. NMR IN BIOMEDICINE 2019; 32:e3762. [PMID: 28696013 DOI: 10.1002/nbm.3762] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 04/25/2017] [Accepted: 05/17/2017] [Indexed: 05/05/2023]
Abstract
Diffusion-weighted imaging has pushed the boundaries of neuroscience by allowing us to examine the white matter microstructure of the living human brain. By doing so, it has provided answers to fundamental neuroscientific questions, launching a new field of research that had been largely inaccessible. We briefly summarize key questions that have historically been raised in neuroscience concerning the brain's white matter. We then expand on the benefits of diffusion-weighted imaging and its contribution to the fields of brain anatomy, functional models and plasticity. In doing so, this review highlights the invaluable contribution of diffusion-weighted imaging in neuroscience, presents its limitations and proposes new challenges for future generations who may wish to exploit this powerful technology to gain novel insights.
Collapse
Affiliation(s)
- Yaniv Assaf
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Heidi Johansen-Berg
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Group, Frontlab, Brain and Spine Institute, Paris, France
- Sorbonne Universités, UPMC Université Paris 06, Inserm, CNRS, Institut du cerveau et la moelle (ICM) - Hôpital Pitié-Salpêtrière, Boulevard de l'hôpital, Paris, France
- Centre de Neuroimagerie de Recherche CENIR, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| |
Collapse
|
12
|
Thiebaut de Schotten M, Foulon C. The rise of a new associationist school for lesion-symptom mapping. Brain 2019; 141:2-4. [PMID: 29325046 DOI: 10.1093/brain/awx332] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Brain and Spine Institute, Paris, France.,Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Chris Foulon
- Brain Connectivity and Behaviour Laboratory, Brain and Spine Institute, Paris, France.,Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France
| |
Collapse
|
13
|
Fischer-Baum S, Kook JH, Lee Y, Ramos-Nuñez A, Vannucci M. Individual Differences in the Neural and Cognitive Mechanisms of Single Word Reading. Front Hum Neurosci 2018; 12:271. [PMID: 30026691 PMCID: PMC6041384 DOI: 10.3389/fnhum.2018.00271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/11/2018] [Indexed: 11/22/2022] Open
Abstract
Written language is a human invention that our brains did not evolve for. Yet, most research has focused on finding a single theory of reading, identifying the common set of cognitive and neural processes shared across individuals, neglecting individual differences. In contrast, we investigated variation in single word reading. Using a novel statistical method for analyzing heterogeneity in multi-subject task-based functional magnetic resonance imaging (fMRI), we clustered readers based on their brain's response to written stimuli. Separate behavioral testing and neuroimaging analysis shows that these clusters differed in the role of the sublexical pathway in processing written language, but not in reading skill. Taken together, these results suggest that individuals vary in the cognitive and neural mechanisms involved in word reading. In general, neurocognitive theories need to account not only for what tends to be true of the population, but also the types of variation that exist, even within a neurotypical population.
Collapse
Affiliation(s)
| | - Jeong Hwan Kook
- Department of Statistics, Rice University, Houston, TX, United States
| | - Yoseph Lee
- Department of Psychology, Rice University, Houston, TX, United States
| | - Aurora Ramos-Nuñez
- Department of Psychology, Rice University, Houston, TX, United States
- Department of Social Sciences, Coastal College of Georgia, Brunswick, GA, United States
| | - Marina Vannucci
- Department of Statistics, Rice University, Houston, TX, United States
| |
Collapse
|
14
|
Abstract
Translation in cognitive neuroscience remains beyond the horizon, brought no closer by supposed major advances in our understanding of the brain. Unless our explanatory models descend to the individual level-a cardinal requirement for any intervention-their real-world applications will always be limited. Drawing on an analysis of the informational properties of the brain, here we argue that adequate individualisation needs models of far greater dimensionality than has been usual in the field. This necessity arises from the widely distributed causality of neural systems, a consequence of the fundamentally adaptive nature of their developmental and physiological mechanisms. We discuss how recent advances in high-performance computing, combined with collections of large-scale data, enable the high-dimensional modelling we argue is critical to successful translation, and urge its adoption if the ultimate goal of impact on the lives of patients is to be achieved.
Collapse
Affiliation(s)
- Parashkev Nachev
- Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Geraint Rees
- Institute of Neurology, University College London, London, WC1N 3BG, UK
- Institute of Cognitive Neuroscience, University College London, London, WC1N 3AR, UK
- Faculty of Life Sciences, University College London, London, WC1E 6BT, UK
- Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK
| | - Richard Frackowiak
- Institute of Neurology, University College London, London, WC1N 3BG, UK
- Ecole Polytechnique Federale de Lausanne - Faculty of Life Sciences, Blue Brain Project, Geneva, Switzerland
| |
Collapse
|
15
|
Abstract
A longstanding controversy concerns the functional organization of high-level vision, and the extent to which the recognition of different classes of visual stimuli engages a single system or multiple independent systems. We examine this in the context of congenital prosopagnosia (CP), a neurodevelopmental disorder in which individuals, without a history of brain damage, are impaired at face recognition. This paper reviews all CP cases from 1976 to 2016, and explores the evidence for the association or dissociation of face and object recognition. Of the 238 CP cases with data permitting a satisfactory evaluation, 80.3% evinced an association between impaired face and object recognition whereas 19.7% evinced a dissociation. We evaluate the strength of the evidence and correlate the face and object recognition behaviour. We consider the implications for theories of functional organization of the visual system, and offer suggestions for further adjudication of the relationship between face and object recognition.
Collapse
Affiliation(s)
- Jacob Geskin
- a Department of Psychology and Center for the Neural Basis of Cognition , Carnegie Mellon University , Pittsburgh , PA , USA
| | - Marlene Behrmann
- a Department of Psychology and Center for the Neural Basis of Cognition , Carnegie Mellon University , Pittsburgh , PA , USA
| |
Collapse
|