1
|
Caccialupi G, Schmidt TT, Nierhaus T, Wesolek S, Esmeyer M, Blankenburg F. Decoding Parametric Grip-Force Anticipation From fMRI Data. Hum Brain Mapp 2025; 46:e70154. [PMID: 39936353 PMCID: PMC11815324 DOI: 10.1002/hbm.70154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/26/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
Previous functional magnetic resonance imaging (fMRI) studies have shown that activity in premotor and parietal brain-regions covaries with the intensity of upcoming grip-force. However, it remains unclear how information about the intended grip-force intensity is initially represented and subsequently transformed into a motor code before motor execution. In this fMRI study, we used multivoxel pattern analysis (MVPA) to decode where and when information about grip-force intensities is parametrically coded in the brain. Human participants performed a delayed grip-force task in which one of four cued levels of grip-force intensity had to be maintained in working memory (WM) during a 9-s delay-period preceding motor execution. Using time-resolved MVPA with a searchlight approach and support vector regression, we tested which brain regions exhibit multivariate WM codes of anticipated grip-force intensities. During the early delay period, we observed above-chance decoding in the ventromedial prefrontal cortex (vmPFC). During the late delay period, we found a network of action-specific brain regions, including the bilateral intraparietal sulcus (IPS), left dorsal premotor cortex (l-PMd), and supplementary motor areas. Additionally, cross-regression decoding was employed to test for temporal generalization of activation patterns between early and late delay periods with those during cue presentation and motor execution. Cross-regression decoding indicated temporal generalization to the cue period in the vmPFC and to motor-execution in the l-IPS and l-PMd. Together, these findings suggest that the WM representation of grip-force intensities undergoes a transformation where the vmPFC encodes information about the intended grip-force, which is subsequently converted into a motor code in the l-IPS and l-PMd before execution.
Collapse
Affiliation(s)
- Guido Caccialupi
- Neurocomputation and Neuroimaging Unit (NNU), Freie Universität BerlinBerlinGermany
- Berlin School of Mind and Brain, Humboldt Universität zu BerlinBerlinGermany
| | - Timo Torsten Schmidt
- Neurocomputation and Neuroimaging Unit (NNU), Freie Universität BerlinBerlinGermany
| | - Till Nierhaus
- Neurocomputation and Neuroimaging Unit (NNU), Freie Universität BerlinBerlinGermany
| | - Sara Wesolek
- Neurocomputation and Neuroimaging Unit (NNU), Freie Universität BerlinBerlinGermany
| | - Marlon Esmeyer
- Neurocomputation and Neuroimaging Unit (NNU), Freie Universität BerlinBerlinGermany
- Berlin School of Mind and Brain, Humboldt Universität zu BerlinBerlinGermany
| | - Felix Blankenburg
- Neurocomputation and Neuroimaging Unit (NNU), Freie Universität BerlinBerlinGermany
- Berlin School of Mind and Brain, Humboldt Universität zu BerlinBerlinGermany
| |
Collapse
|
2
|
Ariani G, Shahbazi M, Diedrichsen J. Cortical Areas for Planning Sequences before and during Movement. J Neurosci 2025; 45:e1300242024. [PMID: 39542728 PMCID: PMC11735648 DOI: 10.1523/jneurosci.1300-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Production of rapid movement sequences relies on preparation before (preplanning) and during (online planning) movement. Here, we compared these processes and asked whether they recruit different cortical areas. Human participants performed three single-finger and three multifinger sequences in a delayed-movement paradigm while undergoing a 7 T functional MRI. During preparation, primary motor (M1) and somatosensory (S1) areas showed preactivation of the first movement, even without increases in overall activation. During production, the temporal summation of activity patterns corresponding to constituent fingers explained activity in these areas (M1 and S1). In contrast, the dorsal premotor cortex (PMd) and anterior superior parietal lobule (aSPL) showed substantial activation during the preparation (preplanning) of multifinger compared with single-finger sequences. These regions (PMd and aSPL) were also more active during production of multifinger sequences, suggesting that pre- and online planning may recruit the same regions. However, we observed small but robust differences between the two contrasts, suggesting distinct contributions to pre- and online planning. Multivariate analysis revealed sequence-specific representations in both PMd and aSPL, which remained stable across both preparation and production phases. Our analyses show that these areas maintain a sequence-specific representation before and during sequence production, likely guiding the execution-related areas in the production of rapid movement sequences.
Collapse
Affiliation(s)
- Giacomo Ariani
- Western Institute for Neuroscience, Western University, London, Ontario N6A3K7, Canada
- Departments of Computer Science, Western University, London, Ontario N6A3K7, Canada
| | - Mahdiyar Shahbazi
- Western Institute for Neuroscience, Western University, London, Ontario N6A3K7, Canada
| | - Jörn Diedrichsen
- Western Institute for Neuroscience, Western University, London, Ontario N6A3K7, Canada
- Departments of Computer Science, Western University, London, Ontario N6A3K7, Canada
- Statistical and Actuarial Sciences, Western University, London, Ontario N6A3K7, Canada
| |
Collapse
|
3
|
Caceres AH, Barany DA, Dundon NM, Smith J, Marneweck M. Neural Encoding of Direction and Distance across Reference Frames in Visually Guided Reaching. eNeuro 2024; 11:ENEURO.0405-24.2024. [PMID: 39557568 PMCID: PMC11617137 DOI: 10.1523/eneuro.0405-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024] Open
Abstract
Goal-directed actions require transforming sensory information into motor plans defined across multiple parameters and reference frames. Substantial evidence supports the encoding of target direction in gaze- and body-centered coordinates within parietal and premotor regions. However, how the brain encodes the equally critical parameter of target distance remains less understood. Here, using Bayesian pattern component modeling of fMRI data during a delayed reach-to-target task, we dissociated the neural encoding of both target direction and the relative distances between target, gaze, and hand at early and late stages of motor planning. This approach revealed independent representations of direction and distance along the human dorsomedial reach pathway. During early planning, most premotor and superior parietal areas encoded a target's distance in single or multiple reference frames and encoded its direction. In contrast, distance encoding was magnified in gaze- and body-centric reference frames during late planning. These results emphasize a flexible and efficient human central nervous system that achieves goals by remapping sensory information related to multiple parameters, such as distance and direction, in the same brain areas.
Collapse
Affiliation(s)
| | - Deborah A Barany
- Department of Kinesiology, University of Georgia, Athens, Georgia 30602
- Department of Interdisciplinary Biomedical Sciences, School of Medicine, University of Georgia, Athens, Georgia 30606
| | - Neil M Dundon
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California 93106
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University of Freiburg, Freiburg 79104, Germany
| | - Jolinda Smith
- Department of Human Physiology, University of Oregon, Eugene, Oregon 97403
| | - Michelle Marneweck
- Department of Human Physiology, University of Oregon, Eugene, Oregon 97403
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
- Phil and Penny Knight Campus for Accelerating Scientific Impact, Eugene, Oregon 97403
| |
Collapse
|
4
|
Quirmbach F, Limanowski J. Visuomotor prediction during action planning in the human frontoparietal cortex and cerebellum. Cereb Cortex 2024; 34:bhae382. [PMID: 39325000 DOI: 10.1093/cercor/bhae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024] Open
Abstract
The concept of forward models in the brain, classically applied to describing on-line motor control, can in principle be extended to action planning, i.e. assuming forward sensory predictions are issued during the mere preparation of movements. To test this idea, we combined a delayed movement task with a virtual reality based manipulation of visuomotor congruence during functional magnetic resonance imaging. Participants executed simple hand movements after a delay. During the delay, two aspects of the upcoming movement could be cued: the movement type and the visuomotor mapping (i.e. congruence of executed hand movements and visual movement feedback by a glove-controlled virtual hand). Frontoparietal areas showed increased delay period activity when preparing pre-specified movements (cued > uncued). The cerebellum showed increased activity during the preparation for incongruent > congruent visuomotor mappings. The left anterior intraparietal sulcus showed an interaction effect, responding most strongly when a pre-specified (cued) movement was prepared under expected visuomotor incongruence. These results suggest that motor planning entails a forward prediction of visual body movement feedback, which can be adjusted in anticipation of nonstandard visuomotor mappings, and which is likely computed by the cerebellum and integrated with state estimates for (planned) control in the anterior intraparietal sulcus.
Collapse
Affiliation(s)
- Felix Quirmbach
- Faculty of Psychology, Technical University of Dresden, Helmholtzstraße 10, 01069 Dresden, Germany
- Center for Tactile Internet with Human-in-the-Loop, Technical University of Dresden, Georg-Schumann-Str. 9, 01187 Dresden, Germany
| | - Jakub Limanowski
- Center for Tactile Internet with Human-in-the-Loop, Technical University of Dresden, Georg-Schumann-Str. 9, 01187 Dresden, Germany
- Institute of Psychology, University of Greifswald, Franz-Mehring-Straße 47, 17489 Greifswald, Germany
| |
Collapse
|
5
|
Tariciotti L, Mattioli L, Viganò L, Gallo M, Gambaretti M, Sciortino T, Gay L, Conti Nibali M, Gallotti A, Cerri G, Bello L, Rossi M. Object-oriented hand dexterity and grasping abilities, from the animal quarters to the neurosurgical OR: a systematic review of the underlying neural correlates in non-human, human primate and recent findings in awake brain surgery. Front Integr Neurosci 2024; 18:1324581. [PMID: 38425673 PMCID: PMC10902498 DOI: 10.3389/fnint.2024.1324581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction The sensorimotor integrations subserving object-oriented manipulative actions have been extensively investigated in non-human primates via direct approaches, as intracortical micro-stimulation (ICMS), cytoarchitectonic analysis and anatomical tracers. However, the understanding of the mechanisms underlying complex motor behaviors is yet to be fully integrated in brain mapping paradigms and the consistency of these findings with intraoperative data obtained during awake neurosurgical procedures for brain tumor removal is still largely unexplored. Accordingly, there is a paucity of systematic studies reviewing the cross-species analogies in neural activities during object-oriented hand motor tasks in primates and investigating the concordance with intraoperative findings during brain mapping. The current systematic review was designed to summarize the cortical and subcortical neural correlates of object-oriented fine hand actions, as revealed by fMRI and PET studies, in non-human and human primates and how those were translated into neurosurgical studies testing dexterous hand-movements during intraoperative brain mapping. Methods A systematic literature review was conducted following the PRISMA guidelines. PubMed, EMBASE and Web of Science databases were searched. Original articles were included if they: (1) investigated cortical activation sites on fMRI and/or PET during grasping task; (2) included humans or non-human primates. A second query was designed on the databases above to collect studies reporting motor, hand manipulation and dexterity tasks for intraoperative brain mapping in patients undergoing awake brain surgery for any condition. Due to the heterogeneity in neurosurgical applications, a qualitative synthesis was deemed more appropriate. Results We provided an updated overview of the current state of the art in translational neuroscience about the extended frontoparietal grasping-praxis network with a specific focus on the comparative functioning in non-human primates, healthy humans and how the latter knowledge has been implemented in the neurosurgical operating room during brain tumor resection. Discussion The anatomical and functional correlates we reviewed confirmed the evolutionary continuum from monkeys to humans, allowing a cautious but practical adoption of such evidence in intraoperative brain mapping protocols. Integrating the previous results in the surgical practice helps preserve complex motor abilities, prevent long-term disability and poor quality of life and allow the maximal safe resection of intrinsic brain tumors.
Collapse
Affiliation(s)
- Leonardo Tariciotti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Luca Mattioli
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Luca Viganò
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Matteo Gallo
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Matteo Gambaretti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Tommaso Sciortino
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Gay
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Conti Nibali
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Alberto Gallotti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Cerri
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Rens G, Figley TD, Gallivan JP, Liu Y, Culham JC. Grasping with a Twist: Dissociating Action Goals from Motor Actions in Human Frontoparietal Circuits. J Neurosci 2023; 43:5831-5847. [PMID: 37474309 PMCID: PMC10423047 DOI: 10.1523/jneurosci.0009-23.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/23/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
In daily life, prehension is typically not the end goal of hand-object interactions but a precursor for manipulation. Nevertheless, functional MRI (fMRI) studies investigating manual manipulation have primarily relied on prehension as the end goal of an action. Here, we used slow event-related fMRI to investigate differences in neural activation patterns between prehension in isolation and prehension for object manipulation. Sixteen (seven males and nine females) participants were instructed either to simply grasp the handle of a rotatable dial (isolated prehension) or to grasp and turn it (prehension for object manipulation). We used representational similarity analysis (RSA) to investigate whether the experimental conditions could be discriminated from each other based on differences in task-related brain activation patterns. We also used temporal multivoxel pattern analysis (tMVPA) to examine the evolution of regional activation patterns over time. Importantly, we were able to differentiate isolated prehension and prehension for manipulation from activation patterns in the early visual cortex, the caudal intraparietal sulcus (cIPS), and the superior parietal lobule (SPL). Our findings indicate that object manipulation extends beyond the putative cortical grasping network (anterior intraparietal sulcus, premotor and motor cortices) to include the superior parietal lobule and early visual cortex.SIGNIFICANCE STATEMENT A simple act such as turning an oven dial requires not only that the CNS encode the initial state (starting dial orientation) of the object but also the appropriate posture to grasp it to achieve the desired end state (final dial orientation) and the motor commands to achieve that state. Using advanced temporal neuroimaging analysis techniques, we reveal how such actions unfold over time and how they differ between object manipulation (turning a dial) versus grasping alone. We find that a combination of brain areas implicated in visual processing and sensorimotor integration can distinguish between the complex and simple tasks during planning, with neural patterns that approximate those during the actual execution of the action.
Collapse
Affiliation(s)
- Guy Rens
- Department of Psychology, University of Western Ontario, London, Ontario N6A 5C2, Canada
- Laboratorium voor Neuro- en Psychofysiologie, Department of Neurosciences, Katholieke Universiteit Leuven, Leuven 3000, Belgium
- Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven 3000, Belgium
| | - Teresa D Figley
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5C2, Canada
| | - Jason P Gallivan
- Departments of Psychology & Biomedical and Molecular Sciences, Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Yuqi Liu
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057
- Institute of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jody C Culham
- Department of Psychology, University of Western Ontario, London, Ontario N6A 5C2, Canada
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5C2, Canada
| |
Collapse
|
7
|
Gooijers J, Chalavi S, Koster LK, Roebroeck A, Kaas A, Swinnen SP. Representational Similarity Scores of Digits in the Sensorimotor Cortex Are Associated with Behavioral Performance. Cereb Cortex 2022; 32:3848-3863. [PMID: 35029640 DOI: 10.1093/cercor/bhab452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Previous studies aimed to unravel a digit-specific somatotopy in the primary sensorimotor (SM1) cortex. However, it remains unknown whether digit somatotopy is associated with motor preparation and/or motor execution during different types of tasks. We adopted multivariate representational similarity analysis to explore digit activation patterns in response to a finger tapping task (FTT). Sixteen healthy young adults underwent magnetic resonance imaging, and additionally performed an out-of-scanner choice reaction time task (CRTT) to assess digit selection performance. During both the FTT and CRTT, force data of all digits were acquired using force transducers. This allowed us to assess execution-related interference (i.e., digit enslavement; obtained from FTT & CRTT), as well as planning-related interference (i.e., digit selection deficit; obtained from CRTT) and determine their correlation with digit representational similarity scores of SM1. Findings revealed that digit enslavement during FTT was associated with contralateral SM1 representational similarity scores. During the CRTT, digit enslavement of both hands was also associated with representational similarity scores of the contralateral SM1. In addition, right hand digit selection performance was associated with representational similarity scores of left S1. In conclusion, we demonstrate a cortical origin of digit enslavement, and uniquely reveal that digit selection is associated with digit representations in primary somatosensory cortex (S1). Significance statement In current systems neuroscience, it is of critical importance to understand the relationship between brain function and behavioral outcome. With the present work, we contribute significantly to this understanding by uniquely assessing how digit representations in the sensorimotor cortex are associated with planning- and execution-related digit interference during a continuous finger tapping and a choice reaction time task. We observe that digit enslavement (i.e., execution-related interference) finds its origin in contralateral digit representations of SM1, and that deficits in digit selection (i.e., planning-related interference) in the right hand during a choice reaction time task are associated with more overlapping digit representations in left S1. This knowledge sheds new light on the functional contribution of the sensorimotor cortex to everyday motor skills.
Collapse
Affiliation(s)
- J Gooijers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven 3000, Belgium
- LBI-KU Leuven Brain Institute, Leuven 3000, Belgium
| | - S Chalavi
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven 3000, Belgium
- LBI-KU Leuven Brain Institute, Leuven 3000, Belgium
| | - L K Koster
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven 3000, Belgium
| | - A Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht 6229 EV, the Netherlands
| | - A Kaas
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht 6229 EV, the Netherlands
| | - S P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven 3000, Belgium
- LBI-KU Leuven Brain Institute, Leuven 3000, Belgium
| |
Collapse
|
8
|
Ariani G, Pruszynski JA, Diedrichsen J. Motor planning brings human primary somatosensory cortex into action-specific preparatory states. eLife 2022; 11:69517. [PMID: 35018886 PMCID: PMC8786310 DOI: 10.7554/elife.69517] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022] Open
Abstract
Motor planning plays a critical role in producing fast and accurate movement. Yet, the neural processes that occur in human primary motor and somatosensory cortex during planning, and how they relate to those during movement execution, remain poorly understood. Here, we used 7T functional magnetic resonance imaging and a delayed movement paradigm to study single finger movement planning and execution. The inclusion of no-go trials and variable delays allowed us to separate what are typically overlapping planning and execution brain responses. Although our univariate results show widespread deactivation during finger planning, multivariate pattern analysis revealed finger-specific activity patterns in contralateral primary somatosensory cortex (S1), which predicted the planned finger action. Surprisingly, these activity patterns were as informative as those found in contralateral primary motor cortex (M1). Control analyses ruled out the possibility that the detected information was an artifact of subthreshold movements during the preparatory delay. Furthermore, we observed that finger-specific activity patterns during planning were highly correlated to those during execution. These findings reveal that motor planning activates the specific S1 and M1 circuits that are engaged during the execution of a finger press, while activity in both regions is overall suppressed. We propose that preparatory states in S1 may improve movement control through changes in sensory processing or via direct influence of spinal motor neurons.
Collapse
Affiliation(s)
- Giacomo Ariani
- The Brain and Mind Institute, Western University, London, Canada
| | - J Andrew Pruszynski
- Department of Physiology and Pharmacology, Western University, London, Canada
| | - Jörn Diedrichsen
- The Brain and Mind Institute, Western University, London, Canada
| |
Collapse
|
9
|
Guo LL, Oghli YS, Frost A, Niemeier M. Multivariate Analysis of Electrophysiological Signals Reveals the Time Course of Precision Grasps Programs: Evidence for Nonhierarchical Evolution of Grasp Control. J Neurosci 2021; 41:9210-9222. [PMID: 34551938 PMCID: PMC8570828 DOI: 10.1523/jneurosci.0992-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/21/2022] Open
Abstract
Current understanding of the neural processes underlying human grasping suggests that grasp computations involve gradients of higher to lower level representations and, relatedly, visual to motor processes. However, it is unclear whether these processes evolve in a strictly canonical manner from higher to intermediate and to lower levels given that this knowledge importantly relies on functional imaging, which lacks temporal resolution. To examine grasping in fine temporal detail here we used multivariate EEG analysis. We asked participants to grasp objects while controlling the time at which crucial elements of grasp programs were specified. We first specified the orientation with which participants should grasp objects, and only after a delay we instructed participants about which effector to use to grasp, either the right or the left hand. We also asked participants to grasp with both hands because bimanual and left-hand grasping share intermediate-level grasp representations. We observed that grasp programs evolved in a canonical manner from visual representations, which were independent of effectors to motor representations that distinguished between effectors. However, we found that intermediate representations of effectors that partially distinguished between effectors arose after representations that distinguished among all effector types. Our results show that grasp computations do not proceed in a strictly hierarchically canonical fashion, highlighting the importance of the fine temporal resolution of EEG for a comprehensive understanding of human grasp control.SIGNIFICANCE STATEMENT A long-standing assumption of the grasp computations is that grasp representations progress from higher to lower level control in a regular, or canonical, fashion. Here, we combined EEG and multivariate pattern analysis to characterize the temporal dynamics of grasp representations while participants viewed objects and were subsequently cued to execute an unimanual or bimanual grasp. Interrogation of the temporal dynamics revealed that lower level effector representations emerged before intermediate levels of grasp representations, thereby suggesting a partially noncanonical progression from higher to lower and then to intermediate level grasp control.
Collapse
Affiliation(s)
- Lin Lawrence Guo
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Yazan Shamli Oghli
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Adam Frost
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Matthias Niemeier
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Centre for Vision Research, York University, Toronto, Ontario M4N 3M6, Canada
- Vision: Science to Applications, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
10
|
Gale DJ, Flanagan JR, Gallivan JP. Human Somatosensory Cortex Is Modulated during Motor Planning. J Neurosci 2021; 41:5909-5922. [PMID: 34035139 PMCID: PMC8265805 DOI: 10.1523/jneurosci.0342-21.2021] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
Recent data and motor control theory argues that movement planning involves preparing the neural state of primary motor cortex (M1) for forthcoming action execution. Theories related to internal models, feedback control, and predictive coding also emphasize the importance of sensory prediction (and processing) before (and during) the movement itself, explaining why motor-related deficits can arise from damage to primary somatosensory cortex (S1). Motivated by this work, here we examined whether motor planning, in addition to changing the neural state of M1, changes the neural state of S1, preparing it for the sensory feedback that arises during action. We tested this idea in two human functional MRI studies (N = 31, 16 females) involving delayed object manipulation tasks, focusing our analysis on premovement activity patterns in M1 and S1. We found that the motor effector to be used in the upcoming action could be decoded, well before movement, from neural activity in M1 in both studies. Critically, we found that this effector information was also present, well before movement, in S1. In particular, we found that the encoding of effector information in area 3b (S1 proper) was linked to the contralateral hand, similarly to that found in M1, whereas in areas 1 and 2 this encoding was present in both the contralateral and ipsilateral hemispheres. Together, these findings suggest that motor planning not only prepares the motor system for movement but also changes the neural state of the somatosensory system, presumably allowing it to anticipate the sensory information received during movement.SIGNIFICANCE STATEMENT Whereas recent work on motor cortex has emphasized the critical role of movement planning in preparing neural activity for movement generation, it has not investigated the extent to which planning also modulates the activity in the adjacent primary somatosensory cortex. This reflects a key gap in knowledge, given that recent motor control theories emphasize the importance of sensory feedback processing in effective movement generation. Here, we find through a convergence of experiments and analyses, that the planning of object manipulation tasks, in addition to modulating the activity in the motor cortex, changes the state of neural activity in different subfields of the human S1. We suggest that this modulation prepares the S1 for the sensory information it will receive during action execution.
Collapse
Affiliation(s)
- Daniel J Gale
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
11
|
Knights E, Mansfield C, Tonin D, Saada J, Smith FW, Rossit S. Hand-Selective Visual Regions Represent How to Grasp 3D Tools: Brain Decoding during Real Actions. J Neurosci 2021; 41:5263-5273. [PMID: 33972399 PMCID: PMC8211542 DOI: 10.1523/jneurosci.0083-21.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023] Open
Abstract
Most neuroimaging experiments that investigate how tools and their actions are represented in the brain use visual paradigms where tools or hands are displayed as 2D images and no real movements are performed. These studies discovered selective visual responses in occipitotemporal and parietal cortices for viewing pictures of hands or tools, which are assumed to reflect action processing, but this has rarely been directly investigated. Here, we examined the responses of independently visually defined category-selective brain areas when participants grasped 3D tools (N = 20; 9 females). Using real-action fMRI and multivoxel pattern analysis, we found that grasp typicality representations (i.e., whether a tool is grasped appropriately for use) were decodable from hand-selective areas in occipitotemporal and parietal cortices, but not from tool-, object-, or body-selective areas, even if partially overlapping. Importantly, these effects were exclusive for actions with tools, but not for biomechanically matched actions with control nontools. In addition, grasp typicality decoding was significantly higher in hand than tool-selective parietal regions. Notably, grasp typicality representations were automatically evoked even when there was no requirement for tool use and participants were naive to object category (tool vs nontools). Finding a specificity for typical tool grasping in hand-selective, rather than tool-selective, regions challenges the long-standing assumption that activation for viewing tool images reflects sensorimotor processing linked to tool manipulation. Instead, our results show that typicality representations for tool grasping are automatically evoked in visual regions specialized for representing the human hand, the primary tool of the brain for interacting with the world.
Collapse
Affiliation(s)
- Ethan Knights
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - Courtney Mansfield
- School of Psychology, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Diana Tonin
- School of Psychology, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Janak Saada
- Department of Radiology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich NR4 7UY, United Kingdom
| | - Fraser W Smith
- School of Psychology, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Stéphanie Rossit
- School of Psychology, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
12
|
Ariani G, Kordjazi N, Pruszynski JA, Diedrichsen J. The Planning Horizon for Movement Sequences. eNeuro 2021; 8:ENEURO.0085-21.2021. [PMID: 33753410 PMCID: PMC8174040 DOI: 10.1523/eneuro.0085-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 02/08/2023] Open
Abstract
When performing a long chain of actions in rapid sequence, future movements need to be planned concurrently with ongoing action. However, how far ahead we plan, and whether this ability improves with practice, is currently unknown. Here, we designed an experiment in which healthy volunteers produced sequences of 14 finger presses quickly and accurately on a keyboard in response to numerical stimuli. On every trial, participants were only shown a fixed number of stimuli ahead of the current keypress. The size of this viewing window varied between 1 (next digit revealed with the pressing of the current key) and 14 (full view of the sequence). Participants practiced the task for 5 days, and their performance was continuously assessed on random sequences. Our results indicate that participants used the available visual information to plan multiple actions into the future, but that the planning horizon was limited: receiving information about more than three movements ahead did not result in faster sequence production. Over the course of practice, we found larger performance improvements for larger viewing windows and an expansion of the planning horizon. These findings suggest that the ability to plan future responses during ongoing movement constitutes an important aspect of skillful movement. Based on the results, we propose a framework to investigate the neuronal processes underlying simultaneous planning and execution.
Collapse
Affiliation(s)
- Giacomo Ariani
- The Brain and Mind Institute, Western University, London, Ontario N6A 3K7, Canada
- Department of Computer Science, Western University, London, Ontario N6A 3K7, Canada
| | - Neda Kordjazi
- The Brain and Mind Institute, Western University, London, Ontario N6A 3K7, Canada
| | - J Andrew Pruszynski
- The Brain and Mind Institute, Western University, London, Ontario N6A 3K7, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario N6A 3K7, Canada
- Department of Psychology, Western University, London, Ontario N6A 3K7, Canada
- Robarts Research Institute, Western University, London, Ontario N6A 3K7, Canada
| | - Jörn Diedrichsen
- The Brain and Mind Institute, Western University, London, Ontario N6A 3K7, Canada
- Department of Computer Science, Western University, London, Ontario N6A 3K7, Canada
- Department of Statistical and Actuarial Sciences, Western University, London, Ontario N6A 3K7, Canada
| |
Collapse
|
13
|
Gallivan JP, Chapman CS, Gale DJ, Flanagan JR, Culham JC. Selective Modulation of Early Visual Cortical Activity by Movement Intention. Cereb Cortex 2020; 29:4662-4678. [PMID: 30668674 DOI: 10.1093/cercor/bhy345] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/21/2018] [Accepted: 12/22/2018] [Indexed: 12/22/2022] Open
Abstract
The primate visual system contains myriad feedback projections from higher- to lower-order cortical areas, an architecture that has been implicated in the top-down modulation of early visual areas during working memory and attention. Here we tested the hypothesis that these feedback projections also modulate early visual cortical activity during the planning of visually guided actions. We show, across three separate human functional magnetic resonance imaging (fMRI) studies involving object-directed movements, that information related to the motor effector to be used (i.e., limb, eye) and action goal to be performed (i.e., grasp, reach) can be selectively decoded-prior to movement-from the retinotopic representation of the target object(s) in early visual cortex. We also find that during the planning of sequential actions involving objects in two different spatial locations, that motor-related information can be decoded from both locations in retinotopic cortex. Together, these findings indicate that movement planning selectively modulates early visual cortical activity patterns in an effector-specific, target-centric, and task-dependent manner. These findings offer a neural account of how motor-relevant target features are enhanced during action planning and suggest a possible role for early visual cortex in instituting a sensorimotor estimate of the visual consequences of movement.
Collapse
Affiliation(s)
- Jason P Gallivan
- Department of Psychology, Queen's University, Kingston, Ontario, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Craig S Chapman
- Faculty of Physical Education and Recreation, University of Alberta, Alberta, Canada
| | - Daniel J Gale
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - J Randall Flanagan
- Department of Psychology, Queen's University, Kingston, Ontario, Canada.,Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Jody C Culham
- Department of Psychology, University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
14
|
Turella L, Rumiati R, Lingnau A. Hierarchical Action Encoding Within the Human Brain. Cereb Cortex 2020; 30:2924-2938. [DOI: 10.1093/cercor/bhz284] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
Humans are able to interact with objects with extreme flexibility. To achieve this ability, the brain does not only control specific muscular patterns, but it also needs to represent the abstract goal of an action, irrespective of its implementation. It is debated, however, how abstract action goals are implemented in the brain. To address this question, we used multivariate pattern analysis of functional magnetic resonance imaging data. Human participants performed grasping actions (precision grip, whole hand grip) with two different wrist orientations (canonical, rotated), using either the left or right hand. This design permitted to investigate a hierarchical organization consisting of three levels of abstraction: 1) “concrete action” encoding; 2) “effector-dependent goal” encoding (invariant to wrist orientation); and 3) “effector-independent goal” encoding (invariant to effector and wrist orientation). We found that motor cortices hosted joint encoding of concrete actions and of effector-dependent goals, while the parietal lobe housed a convergence of all three representations, comprising action goals within and across effectors. The left lateral occipito-temporal cortex showed effector-independent goal encoding, but no convergence across the three levels of representation. Our results support a hierarchical organization of action encoding, shedding light on the neural substrates supporting the extraordinary flexibility of human hand behavior.
Collapse
Affiliation(s)
- Luca Turella
- Center for Mind/Brain Sciences—CIMeC, University of Trento, Rovereto 38068, Italy
| | - Raffaella Rumiati
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste 34136, Italy
| | - Angelika Lingnau
- Center for Mind/Brain Sciences—CIMeC, University of Trento, Rovereto 38068, Italy
- Department of Cognitive Sciences, University of Trento, Rovereto 38068, Italy
- Institute of Psychology, University of Regensburg, Regensburg 93053, Germany
| |
Collapse
|
15
|
Multivariate Analysis of Electrophysiological Signals Reveals the Temporal Properties of Visuomotor Computations for Precision Grips. J Neurosci 2019; 39:9585-9597. [PMID: 31628180 DOI: 10.1523/jneurosci.0914-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 11/21/2022] Open
Abstract
The frontoparietal networks underlying grasping movements have been extensively studied, especially using fMRI. Accordingly, whereas much is known about their cortical locus much less is known about the temporal dynamics of visuomotor transformations. Here, we show that multivariate EEG analysis allows for detailed insights into the time course of visual and visuomotor computations of precision grasps. Male and female human participants first previewed one of several objects and, upon its reappearance, reached to grasp it with the thumb and index finger along one of its two symmetry axes. Object shape classifiers reached transient accuracies of 70% at ∼105 ms, especially based on scalp sites over visual cortex, dropping to lower levels thereafter. Grasp orientation classifiers relied on a system of occipital-to-frontal electrodes. Their accuracy rose concurrently with shape classification but ramped up more gradually, and the slope of the classification curve predicted individual reaction times. Further, cross-temporal generalization revealed that dynamic shape representation involved early and late neural generators that reactivated one another. In contrast, grasp computations involved a chain of generators attaining a sustained state about 100 ms before movement onset. Our results reveal the progression of visual and visuomotor representations over the course of planning and executing grasp movements.SIGNIFICANCE STATEMENT Grasping an object requires the brain to perform visual-to-motor transformations of the object's properties. Although much of the neuroanatomic basis of visuomotor transformations has been uncovered, little is known about its time course. Here, we orthogonally manipulated object visual characteristics and grasp orientation, and used multivariate EEG analysis to reveal that visual and visuomotor computations follow similar time courses but display different properties and dynamics.
Collapse
|
16
|
Predictive coding of action intentions in dorsal and ventral visual stream is based on visual anticipations, memory-based information and motor preparation. Brain Struct Funct 2019; 224:3291-3308. [PMID: 31673774 DOI: 10.1007/s00429-019-01970-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
Predictions of upcoming movements are based on several types of neural signals that span the visual, somatosensory, motor and cognitive system. Thus far, pre-movement signals have been investigated while participants viewed the object to be acted upon. Here, we studied the contribution of information other than vision to the classification of preparatory signals for action, even in the absence of online visual information. We used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA) to test whether the neural signals evoked by visual, memory-based and somato-motor information can be reliably used to predict upcoming actions in areas of the dorsal and ventral visual stream during the preparatory phase preceding the action, while participants were lying still. Nineteen human participants (nine women) performed one of two actions towards an object with their eyes open or closed. Despite the well-known role of ventral stream areas in visual recognition tasks and the specialization of dorsal stream areas in somato-motor processes, we decoded action intention in areas of both streams based on visual, memory-based and somato-motor signals. Interestingly, we could reliably decode action intention in absence of visual information based on neural activity evoked when visual information was available and vice versa. Our results show a similar visual, memory and somato-motor representation of action planning in dorsal and ventral visual stream areas that allows predicting action intention across domains, regardless of the availability of visual information.
Collapse
|
17
|
Gu J, Zhang H, Liu B, Li X, Wang P, Wang B. An investigation of the neural association between auditory imagery and perception of complex sounds. Brain Struct Funct 2019; 224:2925-2937. [PMID: 31468120 DOI: 10.1007/s00429-019-01948-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/23/2019] [Indexed: 01/24/2023]
Abstract
Neuroimaging studies have demonstrated that mental imagery and perception share similar neural substrates, however, there are still ambiguities according to different auditory imagery content. In addition, there is still a lack of information regarding the underlying neural correlation between the two modalities. In the present study, we adopted functional magnetic resonance imaging to explore the neural representation during imagery and perception of actual sounds in our surroundings. Univariate analysis was used to assess the differences between the modalities of average activation intensity, and stronger imagery activation was found in sensorimotor regions but weaker activation in auditory association cortices. Additionally, multi-voxel pattern analysis with a support vector machine classifier was implemented to decode environmental sounds within- or cross-modality. Significant above-chance accuracies were found in all overlapping regions in the classification of within-modality, while successful cross-modality classification only was found in sensorimotor regions. Both univariate and multivariate analyses found distinct representation between auditory imagery and perception in the overlapping regions, including superior temporal gyrus and inferior frontal sulcus as well as the precentral cortex and pre-supplementary motor area. Our results confirm the overlapping activation regions between auditory imagery and perception reported by previous studies and suggest that activation regions showed dissociable representation pattern in imagery and perception of sound categories.
Collapse
Affiliation(s)
- Jin Gu
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Hairuo Zhang
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Baolin Liu
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Xianglin Li
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Peiyuan Wang
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Bin Wang
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| |
Collapse
|
18
|
Chen CF, Kreutz-Delgado K, Sereno MI, Huang RS. Unraveling the spatiotemporal brain dynamics during a simulated reach-to-eat task. Neuroimage 2019; 185:58-71. [PMID: 30315910 PMCID: PMC6325169 DOI: 10.1016/j.neuroimage.2018.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/11/2018] [Accepted: 10/09/2018] [Indexed: 01/17/2023] Open
Abstract
The reach-to-eat task involves a sequence of action components including looking, reaching, grasping, and feeding. While cortical representations of individual action components have been mapped in human functional magnetic resonance imaging (fMRI) studies, little is known about the continuous spatiotemporal dynamics among these representations during the reach-to-eat task. In a periodic event-related fMRI experiment, subjects were scanned while they reached toward a food image, grasped the virtual food, and brought it to their mouth within each 16-s cycle. Fourier-based analysis of fMRI time series revealed periodic signals and noise distributed across the brain. Independent component analysis was used to remove periodic or aperiodic motion artifacts. Time-frequency analysis was used to analyze the temporal characteristics of periodic signals in each voxel. Circular statistics was then used to estimate mean phase angles of periodic signals and select voxels based on the distribution of phase angles. By sorting mean phase angles across regions, we were able to show the real-time spatiotemporal brain dynamics as continuous traveling waves over the cortical surface. The activation sequence consisted of approximately the following stages: (1) stimulus related activations in occipital and temporal cortices; (2) movement planning related activations in dorsal premotor and superior parietal cortices; (3) reaching related activations in primary sensorimotor cortex and supplementary motor area; (4) grasping related activations in postcentral gyrus and sulcus; (5) feeding related activations in orofacial areas. These results suggest that phase-encoded design and analysis can be used to unravel sequential activations among brain regions during a simulated reach-to-eat task.
Collapse
Affiliation(s)
- Ching-Fu Chen
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Kenneth Kreutz-Delgado
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, 92093, USA; Institute for Neural Computation, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Martin I Sereno
- Department of Psychology and Neuroimaging Center, San Diego State University, San Diego, CA, 92182, USA; Experimental Psychology, University College London, London, WC1H 0AP, UK
| | - Ruey-Song Huang
- Institute for Neural Computation, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|