1
|
Li A, Chen C, Feng Y, Hu R, Feng X, Yang J, Lin X, Mei L. Functional divisions of the left anterior and posterior temporoparietal junction for phonological and semantic processing in Chinese character reading. Neuroimage 2025; 311:121201. [PMID: 40216211 DOI: 10.1016/j.neuroimage.2025.121201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/27/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025] Open
Abstract
Previous studies have shown that the left temporoparietal junction (TPJ) plays a critical role in word reading. Nevertheless, there is still controversy surrounding the phonological and semantic functions of the left TPJ. The parietal unified connectivity-biased computation (PUCC) model posits that the function of the left TPJ depends on both the neurocomputation of this local area and its long-range connectivity. To clarify the specific roles of different TPJ subregions in phonological and semantic processing of Chinese characters, the present study used connectivity-based clustering to identify seven subdivisions within the left TPJ, and conducted comprehensive analyses including functional and structural connectivity, univariate and multivariate analyses (i.e., representational similarity analysis, RSA) on multimodal imaging data (task-state fMRI, resting-state fMRI, and diffusion-weighted imaging [DWI]). Functional and structural connectivity analyses revealed that the left anterior TPJ had stronger connections with the phonological network, while the left posterior TPJ had stronger connections with the semantic network. RSA revealed that the left anterior and posterior TPJ represented phonological and semantic information of Chinese characters, respectively. More importantly, the phonological and semantic representations of the left TPJ were respectively correlated with its functional connectivity to the phonological and semantic networks. Altogether, our results provide a more elaborate perspective on the functional dissociation of the left anterior and posterior TPJ in phonological and semantic processing of Chinese characters, and support the PUCC model.
Collapse
Affiliation(s)
- Aqian Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - Yuan Feng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Rui Hu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Xiaoxue Feng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Jingyu Yang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Xingying Lin
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
2
|
Barton JJS, Albonico A, Starrfelt R. The lateralization of reading. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:301-325. [PMID: 40074404 DOI: 10.1016/b978-0-443-15646-5.00012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Reports in the 1890s described reading disorders from left hemisphere damage. Subsequent work converging from a variety of research approaches have confirmed a strong dependence of reading on the left ventral occipitotemporal cortex, though there is also evidence for some reading capacity of the right hemisphere. The development of this leftward bias parallels reading acquisition in children and adults and is blunted in developmental dyslexia. Several structural and functional hypotheses have been advanced to explain why reading lateralizes to the left. In the second half of this review we explore the extension of these findings to other forms of reading. Most reading studies used the alphabetic scripts of Europe but there are many writing systems. Comparisons with logographic scripts such as Chinese and kanji have revealed subtle differences. Also, while we often think of reading as the extraction of verbal language from written text, it can be broadened to other types of information extraction from symbols. Reading can occur with visual stimuli that are not written text, as with sign language in the deaf and lip-reading, and with non-visual stimuli that are textual, as with Braille. Musical notation and number reading are other text-based visual forms of reading that do not involve words. Overall, most studies show that the left ventral occipitotemporal cortex is involved in processing these diverse types of reading, with variable contributions from the right hemisphere.
Collapse
Affiliation(s)
- Jason J S Barton
- Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Andrea Albonico
- Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of the Fraser Valley, Abbotsford, BC, Canada
| | - Randi Starrfelt
- Department of Psychology, Center for Visual Cognition, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
3
|
Harrington RM, Kristinsson S, Wilmskoetter J, Busby N, den Ouden D, Rorden C, Fridriksson J, Bonilha L. Dissociating reading and auditory comprehension in persons with aphasia. Brain Commun 2024; 6:fcae102. [PMID: 38585671 PMCID: PMC10998352 DOI: 10.1093/braincomms/fcae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/10/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Language comprehension is often affected in individuals with post-stroke aphasia. However, deficits in auditory comprehension are not fully correlated with deficits in reading comprehension and the mechanisms underlying this dissociation remain unclear. This distinction is important for understanding language mechanisms, predicting long-term impairments and future development of treatment interventions. Using comprehensive auditory and reading measures from a large cohort of individuals with aphasia, we evaluated the relationship between aphasia type and reading comprehension impairments, the relationship between auditory versus reading comprehension deficits and the crucial neuroanatomy supporting the dissociation between post-stroke reading and auditory deficits. Scores from the Western Aphasia Battery-Revised from 70 participants with aphasia after a left-hemisphere stroke were utilized to evaluate both reading and auditory comprehension of linguistically equivalent stimuli. Repeated-measures and univariate ANOVA were used to assess the relationship between auditory comprehension and aphasia types and correlations were employed to test the relationship between reading and auditory comprehension deficits. Lesion-symptom mapping was used to determine the dissociation of crucial brain structures supporting reading comprehension deficits controlling for auditory deficits and vice versa. Participants with Broca's or global aphasia had the worst performance on reading comprehension. Auditory comprehension explained 26% of the variance in reading comprehension for sentence completion and 44% for following sequential commands. Controlling for auditory comprehension, worse reading comprehension performance was independently associated with damage to the inferior temporal gyrus, fusiform gyrus, posterior inferior temporal gyrus, inferior occipital gyrus, lingual gyrus and posterior thalamic radiation. Auditory and reading comprehension are only partly correlated in aphasia. Reading is an integral part of daily life and directly associated with quality of life and functional outcomes. This study demonstrated that reading performance is directly related to lesioned areas in the boundaries between visual association regions and ventral stream language areas. This behavioural and neuroanatomical dissociation provides information about the neurobiology of language and mechanisms for potential future treatment interventions.
Collapse
Affiliation(s)
- Rachael M Harrington
- Department of Communication Sciences and Disorders and Center for Research on the Challenges of Acquiring Language and Literacy, Georgia State University, Atlanta, GA 30310, USA
| | - Sigfus Kristinsson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Janina Wilmskoetter
- Department of Health and Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC 29464, USA
| | - Natalie Busby
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Dirk den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Leonardo Bonilha
- School of Medicine Columbia, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
4
|
Sperber C, Gallucci L, Umarova R. The low dimensionality of post-stroke cognitive deficits: it's the lesion anatomy! Brain 2023; 146:2443-2452. [PMID: 36408903 DOI: 10.1093/brain/awac443] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 10/06/2023] Open
Abstract
For years, dissociation studies on neurological single-case patients with brain lesions were the dominant method to infer fundamental cognitive functions in neuropsychology. In contrast, the association between deficits was considered to be of less epistemological value. Still, associational computational methods for dimensionality reduction-such as principal component analysis or factor analysis-became popular for the identification of fundamental cognitive functions and to understand human cognitive brain architecture from post-stroke neuropsychological profiles. In the present in silico study with lesion imaging of 300 stroke patients, we investigated the dimensionality of artificial simulated neuropsychological profiles that exclusively contained independent fundamental cognitive functions without any underlying low-dimensional cognitive architecture. Still, the anatomy of stroke lesions alone was sufficient to create a dependence between variables that allowed a low-dimensional description of the data with principal component analysis. All criteria that we used to estimate the dimensionality of data, including the Kaiser criterion, were strongly affected by lesion anatomy, while the Joliffe criterion provided the least affected estimates. The dimensionality of profiles was reduced by 62-70% for the Kaiser criterion, up to the degree that is commonly found in neuropsychological studies on actual cognitive measures. The interpretability of such low-dimensional factors as deficits of fundamental cognitive functions and their provided insights into human cognitive architecture thus seem to be severely limited, and the heavy focus of current cognitive neuroscience on group studies and associations calls for improvements. We suggest that qualitative criteria and dissociation patterns could be used to refine estimates for the dimensionality of the cognitive architecture behind post-stroke deficits. Further, given the strong impact of lesion anatomy on the associational structure of data, we see the need for further optimization of interpretation strategies of computational factors in post-stroke lesion studies of cognitive deficits.
Collapse
Affiliation(s)
- Christoph Sperber
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Laura Gallucci
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Roza Umarova
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Ng S, Moritz-Gasser S, Lemaitre AL, Duffau H, Herbet G. White matter disconnectivity fingerprints causally linked to dissociated forms of alexia. Commun Biol 2021; 4:1413. [PMID: 34931059 PMCID: PMC8688436 DOI: 10.1038/s42003-021-02943-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022] Open
Abstract
For over 150 years, the study of patients with acquired alexia has fueled research aimed at disentangling the neural system critical for reading. An unreached goal, however, relates to the determination of the fiber pathways that root the different visual and linguistic processes needed for accurate word reading. In a unique series of neurosurgical patients with a tumor close to the visual word form area, we combine direct electrostimulation and population-based streamline tractography to map the disconnectivity fingerprints characterizing dissociated forms of alexia. Comprehensive analyses of disconnectivity matrices establish similarities and dissimilarities in the disconnection patterns associated with pure, phonological and lexical-semantic alexia. While disconnections of the inferior longitudinal and posterior arcuate fasciculi are common to all alexia subtypes, disconnections of the long arcuate and vertical occipital fasciculi are specific to phonological and pure alexia, respectively. These findings provide a strong anatomical background for cognitive and neurocomputational models of reading.
Collapse
Affiliation(s)
- Sam Ng
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France. .,Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| | - Sylvie Moritz-Gasser
- grid.414130.30000 0001 2151 3479Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France ,grid.461890.20000 0004 0383 2080Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France ,grid.121334.60000 0001 2097 0141Department of Speech-Language Pathology, University of Montpellier, Montpellier, France
| | - Anne-Laure Lemaitre
- grid.414130.30000 0001 2151 3479Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France ,grid.461890.20000 0004 0383 2080Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Hugues Duffau
- grid.414130.30000 0001 2151 3479Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France ,grid.461890.20000 0004 0383 2080Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Guillaume Herbet
- grid.414130.30000 0001 2151 3479Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France ,grid.461890.20000 0004 0383 2080Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France ,grid.121334.60000 0001 2097 0141Department of Speech-Language Pathology, University of Montpellier, Montpellier, France
| |
Collapse
|
6
|
Dickens JV, DeMarco AT, van der Stelt CM, Snider SF, Lacey EH, Medaglia JD, Friedman RB, Turkeltaub PE. Two types of phonological reading impairment in stroke aphasia. Brain Commun 2021; 3:fcab194. [PMID: 34522884 PMCID: PMC8432944 DOI: 10.1093/braincomms/fcab194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 11/12/2022] Open
Abstract
Alexia is common in the context of aphasia. It is widely agreed that damage to phonological and semantic systems not specific to reading causes co-morbid alexia and aphasia. Studies of alexia to date have only examined phonology and semantics as singular processes or axes of impairment, typically in the context of stereotyped alexia syndromes. However, phonology, in particular, is known to rely on subprocesses, including sensory-phonological processing, motor-phonological processing, and sensory-motor integration. Moreover, many people with stroke aphasia demonstrate mild or mixed patterns of reading impairment that do not fit neatly with one syndrome. This cross-sectional study tested whether the hallmark symptom of phonological reading impairment, the lexicality effect, emerges from damage to a specific subprocess of phonology in stroke patients not selected for alexia syndromes. Participants were 30 subjects with left-hemispheric stroke and 37 age- and education-matched controls. A logistic mixed-effects model tested whether post-stroke impairments in sensory phonology, motor phonology, or sensory-motor integration modulated the effect of item lexicality on patient accuracy in reading aloud. Support vector regression voxel-based lesion-symptom mapping localized brain regions necessary for reading and non-orthographic phonological processing. Additionally, a novel support vector regression structural connectome-symptom mapping method identified the contribution of both lesioned and spared but disconnected, brain regions to reading accuracy and non-orthographic phonological processing. Specifically, we derived whole-brain structural connectomes using constrained spherical deconvolution-based probabilistic tractography and identified lesioned connections based on comparisons between patients and controls. Logistic mixed-effects regression revealed that only greater motor-phonological impairment related to lower accuracy reading aloud pseudowords versus words. Impaired sensory-motor integration was related to lower overall accuracy in reading aloud. No relationship was identified between sensory-phonological impairment and reading accuracy. Voxel-based and structural connectome lesion-symptom mapping revealed that lesioned and disconnected left ventral precentral gyrus related to both greater motor-phonological impairment and lower sublexical reading accuracy. In contrast, lesioned and disconnected left temporoparietal cortex is related to both impaired sensory-motor integration and reduced overall reading accuracy. These results clarify that at least two dissociable phonological processes contribute to the pattern of reading impairment in aphasia. First, impaired sensory-motor integration, caused by lesions disrupting the left temporoparietal cortex and its structural connections, non-selectively reduces accuracy in reading aloud. Second, impaired motor-phonological processing, caused at least partially by lesions disrupting left ventral premotor cortex and structural connections, selectively reduces sublexical reading accuracy. These results motivate a revised cognitive model of reading aloud that incorporates a sensory-motor phonological circuit.
Collapse
Affiliation(s)
- Jonathan Vivian Dickens
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Andrew T DeMarco
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC 20007, USA.,Department of Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Candace M van der Stelt
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Sarah F Snider
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Elizabeth H Lacey
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC 20007, USA
| | - John D Medaglia
- Drexel University, Philadelphia, PA 19104, USA.,University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rhonda B Friedman
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Peter E Turkeltaub
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC 20007, USA.,Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC 20007, USA.,Department of Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC 20007, USA.,Research Division, MedStar National Rehabilitation Hospital, Washington, DC 20001, USA
| |
Collapse
|
7
|
Stefaniak JD, Lambon Ralph MA, De Dios Perez B, Griffiths TD, Grube M. Auditory beat perception is related to speech output fluency in post-stroke aphasia. Sci Rep 2021; 11:3168. [PMID: 33542379 PMCID: PMC7862238 DOI: 10.1038/s41598-021-82809-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/25/2021] [Indexed: 11/08/2022] Open
Abstract
Aphasia affects at least one third of stroke survivors, and there is increasing awareness that more fundamental deficits in auditory processing might contribute to impaired language performance in such individuals. We performed a comprehensive battery of psychoacoustic tasks assessing the perception of tone pairs and sequences across the domains of pitch, rhythm and timbre in 17 individuals with post-stroke aphasia and 17 controls. At the level of individual differences we demonstrated a correlation between metrical pattern (beat) perception and speech output fluency with strong effect (Spearman's rho = 0.72). This dissociated from more basic auditory timing perception, which did not correlate with output fluency. This was also specific in terms of the language and cognitive measures, amongst which phonological, semantic and executive function did not correlate with beat detection. We interpret the data in terms of a requirement for the analysis of the metrical structure of sound to construct fluent output, with both being a function of higher-order "temporal scaffolding". The beat perception task herein allows measurement of timing analysis without any need to account for motor output deficit, and could be a potential clinical tool to examine this. This work suggests strategies to improve fluency after stroke by training in metrical pattern perception.
Collapse
Affiliation(s)
- James D Stefaniak
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK.
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | | | - Blanca De Dios Perez
- Division of Psychiatry and Applied Psychology, University of Nottingham, Nottingham, UK
| | - Timothy D Griffiths
- Newcastle University Medical School, Framlington Place, Newcastle-upon-Tyne, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Manon Grube
- Newcastle University Medical School, Framlington Place, Newcastle-upon-Tyne, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Abstract
Alexia refers to a reading disorder caused by some form of acquired brain pathology, most commonly a stroke or tumor, in a previously literate subject. In neuropsychology, a distinction is made between central alexia (commonly seen in aphasia) and peripheral alexia (a perceptual or attentional deficit). The prototypical peripheral alexia is alexia without agraphia (pure alexia), where patients can write but are impaired in reading words and letters. Pure alexia is associated with damage to the left ventral occipitotemporal cortex (vOT) or its connections. Hemianopic alexia is associated with less extensive occipital damage and is caused by a visual field defect, which creates problems reading longer words and passages of text. Reading impairment can also arise due to attentional deficits, most commonly following right hemisphere or bilateral lesions. Studying patients with alexia, along with functional imaging studies of normal readers, has improved our understanding of the neurobiological processes involved in reading. A key question is whether an area in the left ventral occipitotemporal cortex is specialized for or selectively involved in word processing, or whether reading relies on tuning of more general purpose perceptual areas. Reading deficits may also be observed in dementia and traumatic brain injury, but often with less consistent deficit patterns than in patients with focal lesions.
Collapse
Affiliation(s)
- Randi Starrfelt
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark.
| | - Zoe Woodhead
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Grant JG, Siegel LS, D'Angiulli A. From Schools to Scans: A Neuroeducational Approach to Comorbid Math and Reading Disabilities. Front Public Health 2020; 8:469. [PMID: 33194932 PMCID: PMC7642246 DOI: 10.3389/fpubh.2020.00469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 07/24/2020] [Indexed: 11/13/2022] Open
Abstract
We bridge two analogous concepts of comorbidity, dyslexia-dyscalculia and reading-mathematical disabilities, in neuroscience and education, respectively. We assessed the cognitive profiles of 360 individuals (mean age 25.79 ± 13.65) with disability in reading alone (RD group), mathematics alone (MD group) and both (comorbidity: MDRD group), with tests widely used in both psychoeducational and neuropsychological batteries. As expected, the MDRD group exhibited reading deficits like those shown by the RD group. The former group also exhibited deficits in quantitative reasoning like those shown by the MD group. However, other deficits related to verbal working memory and semantic memory were exclusive to the MDRD group. These findings were independent of gender, age, or socioeconomic and demographic factors. Through a systematic exhaustive review of clinical neuroimaging literature, we mapped the resulting cognitive profiles to correspondingly plausible neuroanatomical substrates of dyslexia and dyscalculia. In our resulting "probing" model, the complex set of domain-specific and domain-general impairments shown in the comorbidity of reading and mathematical disabilities are hypothesized as being related to atypical development of the left angular gyrus. The present neuroeducational approach bridges a long-standing transdisciplinary divide and contributes a step further toward improved early prediction, teaching and interventions for children and adults with combined reading and math disabilities.
Collapse
Affiliation(s)
- Jeremy G Grant
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Linda S Siegel
- Department of Educational and Counselling Psychology, and Special Education, The University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
10
|
Borghesani V, Hinkley LBN, Ranasinghe KG, Thompson MMC, Shwe W, Mizuiri D, Lauricella M, Europa E, Honma S, Miller Z, Miller B, Vossel K, Henry MML, Houde JF, Gorno-Tempini ML, Nagarajan SS. Taking the sublexical route: brain dynamics of reading in the semantic variant of primary progressive aphasia. Brain 2020; 143:2545-2560. [PMID: 32789455 PMCID: PMC7447517 DOI: 10.1093/brain/awaa212] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/05/2020] [Accepted: 05/21/2020] [Indexed: 01/29/2023] Open
Abstract
Reading aloud requires mapping an orthographic form to a phonological one. The mapping process relies on sublexical statistical regularities (e.g. 'oo' to |uː|) or on learned lexical associations between a specific visual form and a series of sounds (e.g. yacht to/jɑt/). Computational, neuroimaging, and neuropsychological evidence suggest that sublexical, phonological and lexico-semantic processes rely on partially distinct neural substrates: a dorsal (occipito-parietal) and a ventral (occipito-temporal) route, respectively. Here, we investigated the spatiotemporal features of orthography-to-phonology mapping, capitalizing on the time resolution of magnetoencephalography and the unique clinical model offered by patients with semantic variant of primary progressive aphasia (svPPA). Behaviourally, patients with svPPA manifest marked lexico-semantic impairments including difficulties in reading words with exceptional orthographic to phonological correspondence (irregular words). Moreover, they present with focal neurodegeneration in the anterior temporal lobe, affecting primarily the ventral, occipito-temporal, lexical route. Therefore, this clinical population allows for testing of specific hypotheses on the neural implementation of the dual-route model for reading, such as whether damage to one route can be compensated by over-reliance on the other. To this end, we reconstructed and analysed time-resolved whole-brain activity in 12 svPPA patients and 12 healthy age-matched control subjects while reading irregular words (e.g. yacht) and pseudowords (e.g. pook). Consistent with previous findings that the dorsal route is involved in sublexical, phonological processes, in control participants we observed enhanced neural activity over dorsal occipito-parietal cortices for pseudowords, when compared to irregular words. This activation was manifested in the beta-band (12-30 Hz), ramping up slowly over 500 ms after stimulus onset and peaking at ∼800 ms, around response selection and production. Consistent with our prediction, svPPA patients did not exhibit this temporal pattern of neural activity observed in controls this contrast. Furthermore, a direct comparison of neural activity between patients and controls revealed a dorsal spatiotemporal cluster during irregular word reading. These findings suggest that the sublexical/phonological route is involved in processing both irregular and pseudowords in svPPA. Together these results provide further evidence supporting a dual-route model for reading aloud mediated by the interplay between lexico-semantic and sublexical/phonological neurocognitive systems. When the ventral route is damaged, as in the case of neurodegeneration affecting the anterior temporal lobe, partial compensation appears to be possible by over-recruitment of the slower, serial attention-dependent, dorsal one.
Collapse
Affiliation(s)
- Valentina Borghesani
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - Leighton B N Hinkley
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA
| | - Kamalini G Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - Megan M C Thompson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, San Francisco, USA
| | - Wendy Shwe
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - Danielle Mizuiri
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA
| | - Michael Lauricella
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - Eduardo Europa
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - Susanna Honma
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA
| | - Zachary Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - Bruce Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - Keith Vossel
- Department of Neurology, University of Minnesota, Minneapolis, USA
| | - Maya M L Henry
- Department of Communication Sciences and Disorders, University of Texas at Austin, USA
| | - John F Houde
- Department of Otolaryngology, University of California San Francisco, USA
| | - Maria L Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
- Department of Neurology, Dyslexia Center, University of California, San Francisco, CA, USA
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA
- Department of Otolaryngology, University of California San Francisco, USA
| |
Collapse
|
11
|
Sperber C, Nolingberg C, Karnath HO. Post-stroke cognitive deficits rarely come alone: Handling co-morbidity in lesion-behaviour mapping. Hum Brain Mapp 2020; 41:1387-1399. [PMID: 31782852 PMCID: PMC7267998 DOI: 10.1002/hbm.24885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Post‐stroke behavioural symptoms often correlate and systematically co‐occur with each other, either because they share cognitive processes, or because their neural correlates are often damaged together. Thus, neuropsychological symptoms often share variance. Many previous lesion‐behaviour mapping studies aimed to methodologically consider this shared variance between neuropsychological variables. A first group of studies controlled the behavioural target variable for the variance explained by one or multiple other variables to obtain a more precise mapping of the target variable. A second group of studies focused on the shared variance of multiple variables itself with the aim to map neural correlates of cognitive processes that are shared between the original variables. In the present study, we tested the validity of these methods by using real lesion data and both real and simulated data sets. We show that the variance that is shared between post‐stroke behavioural variables is ambiguous, and that mapping procedures that consider this variance are prone to biases and artefacts. We discuss under which conditions such procedures could still be used and what alternative approaches exist.
Collapse
Affiliation(s)
- Christoph Sperber
- Centre of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Chloé Nolingberg
- Centre of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hans-Otto Karnath
- Centre of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Localization of Phonological and Semantic Contributions to Reading. J Neurosci 2019; 39:5361-5368. [PMID: 31061085 DOI: 10.1523/jneurosci.2707-18.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 04/08/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
Reading involves the rapid extraction of sound and meaning from print through a cooperative division of labor between phonological and lexical-semantic processes. Whereas lesion studies of patients with stereotyped acquired reading deficits contributed to the notion of a dissociation between phonological and lexical-semantic reading, the neuroanatomical basis for effects of lexicality (word vs pseudoword), orthographic regularity (regular vs irregular spelling-sound correspondences), and concreteness (concrete vs abstract meaning) on reading is underspecified, particularly outside the context of strong behavioral dissociations. Support vector regression lesion-symptom mapping (LSM) of 73 left hemisphere stroke survivors (male and female human subjects) not preselected for stereotyped dissociations revealed the differential contributions of specific cortical regions to reading pseudowords (ventral precentral gyrus), regular words (planum temporale, supramarginal gyrus, ventral precentral and postcentral gyrus, and insula), and concrete words (pars orbitalis and pars triangularis). Consistent with the primary systems view of reading being parasitic on language-general circuitry, our multivariate LSM analyses revealed that phonological decoding depends on perisylvian areas subserving sound-motor integration and that semantic effects on reading depend on frontal cortex subserving control over concrete semantic representations that aid phonological access from print. As the first study to localize the differential cortical contributions to reading pseudowords, regular words, and concrete words in stroke survivors with variable reading abilities, our results provide important information on the neurobiological basis of reading and highlight the insights attainable through multivariate, process-based approaches to alexia.SIGNIFICANCE STATEMENT Whereas fMRI evidence for neuroanatomical dissociations between phonological and lexical-semantic reading is abundant, evidence from modern lesion studies establishing the differential contributions of specific brain regions to specific reading processes is lacking. Our application of multivariate lesion-symptom mapping revealed that effects of lexicality, orthographic regularity, and concreteness on reading differentially depend on areas subserving auditory-motor integration and semantic control. Phonological decoding of print relies on a dorsal perisylvian network supporting auditory and articulatory representations, with unfamiliar words relying especially on articulatory mapping. In tandem with this dorsal decoding system, anterior inferior frontal gyrus may coordinate control over concrete semantic representations that support mapping of print to sound, which is a novel potential mechanism for semantic influences on reading.
Collapse
|