1
|
Ward J, Simner J, Simpson I, Rae C, del Rio M, Eccles JA, Racey C. Synesthesia is linked to large and extensive differences in brain structure and function as determined by whole-brain biomarkers derived from the HCP (Human Connectome Project) cortical parcellation approach. Cereb Cortex 2024; 34:bhae446. [PMID: 39548352 PMCID: PMC11567774 DOI: 10.1093/cercor/bhae446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
There is considerable interest in understanding the developmental origins and health implications of individual differences in brain structure and function. In this pre-registered study we demonstrate that a hidden subgroup within the general population-people with synesthesia (e.g. who "hear" colors)-show a distinctive behavioral phenotype and wide-ranging differences in brain structure and function. We assess the performance of 13 different brain-based biomarkers (structural and functional MRI) for classifying synesthetes against general population samples, using machine learning models. The features in these models were derived from subject-specific parcellations of the cortex using the Human Connectome Project approach. All biomarkers performed above chance with intracortical myelin being a particularly strong predictor that has not been implicated in synesthesia before. Resting state data show widespread changes in the functional connectome (including less hub-based connectivity). These brain-based individual differences within the neurotypical population can be as large as those that differentiate neurotypical from clinical brain states.
Collapse
Affiliation(s)
- Jamie Ward
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, BN1 9QH, United Kingdom
| | - Julia Simner
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, BN1 9QH, United Kingdom
| | - Ivor Simpson
- School of Engineering and Informatics, University of Sussex, Brighton, BN1 9QH, United Kingdom
| | - Charlotte Rae
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, BN1 9QH, United Kingdom
| | - Magda del Rio
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, BN1 9QH, United Kingdom
| | - Jessica A Eccles
- Department of Clinical Neuroscience, Brighton and Sussex Medical School (BSMS), Brighton, BN1 9QH, United Kingdom
- Neurodevelopmental Service, Sussex Partnership NHS Foundation Trust, Worthing, BN13 3EP, United Kingdom
| | - Chris Racey
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, BN1 9QH, United Kingdom
| |
Collapse
|
2
|
Eckardt N, Sinke C, Bleich S, Lichtinghagen R, Zedler M. Investigation of the relationship between neuroplasticity and grapheme-color synesthesia. Front Neurosci 2024; 18:1434309. [PMID: 39224579 PMCID: PMC11366591 DOI: 10.3389/fnins.2024.1434309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Grapheme-color synesthesia is a normal and healthy variation of human perception. It is characterized by the association of letters or numbers with color perceptions. The etiology of synesthesia is not yet fully understood. Theories include hyperconnectivity in the brain, cross-activation of adjacent or functionally proximate sensory areas of the brain, or various models of lack of inhibitory function in the brain. The growth factor brain-derived neurotrophic (BDNF) plays an important role in the development of neurons, neuronal pathways, and synapses, as well as in the protection of existing neurons in both the central and peripheral nervous systems. ELISA methods were used to compare BDNF serum concentrations between healthy test subjects with and without grapheme-color synesthesia to establish a connection between concentration and the occurrence of synesthesia. The results showed that grapheme-color synesthetes had an increased BDNF serum level compared to the matched control group. Increased levels of BDNF can enhance the brain's ability to adapt to changing environmental conditions, injuries, or experiences, resulting in positive effects. It is discussed whether the integration of sensory information is associated with or results from increased neuroplasticity. The parallels between neurodegeneration and brain regeneration lead to the conclusion that synesthesia, in the sense of an advanced state of consciousness, is in some cases a more differentiated development of the brain rather than a relic of early childhood.
Collapse
Affiliation(s)
- Nadine Eckardt
- Department for Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Christopher Sinke
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Division of Clinical Psychology & Sexual Medicine, Hannover Medical School, Hanover, Germany
| | - Stefan Bleich
- Department for Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Ralf Lichtinghagen
- Institute of Clinical Chemistry, Hannover Medical School, Hanover, Germany
| | - Markus Zedler
- Department for Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| |
Collapse
|
3
|
Ward J. When small effect sizes become huge: Synaesthesia is linked to very large differences in cognition. Perception 2024; 53:208-210. [PMID: 38055992 PMCID: PMC10858618 DOI: 10.1177/03010066231218911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
The replication crisis has taught us to expect small-to-medium effects in psychological research. But this is based on effect sizes calculated over single variables. Mahalanobis D, the multivariate equivalent of Cohen's d, can enable very large group differences to emerge from a collection of small-to-medium effects (here, reanalysing multivariate datasets from synaesthetes and controls). The use of multivariate effect sizes is not a slight of hand but may instead be a truer reflection of the degree of psychological differences between people that has been largely underappreciated.
Collapse
|
4
|
Racey C, Kampoureli C, Bowen-Hill O, Bauer M, Simpson I, Rae C, Del Rio M, Simner J, Ward J. An Open Science MRI Database of over 100 Synaesthetic Brains and Accompanying Deep Phenotypic Information. Sci Data 2023; 10:766. [PMID: 37925503 PMCID: PMC10625562 DOI: 10.1038/s41597-023-02664-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
We provide a neuroimaging database consisting of 102 synaesthetic brains using state-of-the-art 3 T MRI protocols from the Human Connectome Project (HCP) which is freely available to researchers. This database consists of structural (T1- and T2-weighted) images together with approximately 24 minutes of resting state data per participant. These protocols are designed to be inter-operable and reproducible so that others can add to the dataset or directly compare it against other normative or special samples. In addition, we provide a 'deep phenotype' of our sample which includes detailed information about each participant's synaesthesia together with associated clinical and cognitive measures. This behavioural dataset, which also includes data from (N = 109) non-synaesthetes, is of importance in its own right and is openly available.
Collapse
Affiliation(s)
- Chris Racey
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Christina Kampoureli
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Oscar Bowen-Hill
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Mathilde Bauer
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Ivor Simpson
- School of Engineering and Informatics, University of Sussex, Brighton, UK
| | - Charlotte Rae
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Magda Del Rio
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Julia Simner
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Jamie Ward
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK.
| |
Collapse
|
5
|
Abstract
INTRODUCTION This study determines whether there is a familial aggregation between synaesthesia and two neuropsychiatric conditions (autism and schizophrenia). METHOD We examined the prevalence of autism and schizophrenia among synaesthetes and non-synaesthetic controls, and among their first-degree relatives. RESULTS As predicted, autism occurred at elevated levels among synaesthetes and-we document for the first time-amongst their relatives. This was not found for schizophrenia, where a link may be expected, or in a control condition (type 1 diabetes) where we had no a priori reason to assume a link. Synaesthetes, compared to controls, were also more likely to have other synaesthetes in their family. People with three or more types of synaesthesia were more likely (compared to synaesthetes with fewer types) to have synaesthetic relatives and to report autism in themselves. People with two or more types of synaesthesia (compared to synaesthetes with only one type) were more likely to report familial autism. CONCLUSIONS The results suggest a shared genetic predisposition between synaesthesia and autism, and more extreme synaesthetes may tend to hail from more neurodiverse families.
Collapse
Affiliation(s)
- Max Nugent
- School of Psychology University of Sussex, Brighton, UK
| | - Jamie Ward
- School of Psychology University of Sussex, Brighton, UK
| |
Collapse
|
6
|
Abstract
It is unclear whether synesthesia is one condition or many, and this has implications for whether theories should postulate a single cause or multiple independent causes. Study 1 analyses data from a large sample of self-referred synesthetes (N = 2,925), who answered a questionnaire about N = 164 potential types of synesthesia. Clustering and factor analysis methods identified around seven coherent groupings of synesthesia, as well as showing that some common types of synesthesia do not fall into any grouping at all (mirror-touch, hearing-motion, tickertape). There was a residual positive correlation between clusters (they tend to associate rather than compete). Moreover, we observed a "snowball effect" whereby the chances of having a given cluster of synesthesia go up in proportion to the number of other clusters a person has (again suggesting non-independence). Clusters tended to be distinguished by shared concurrent experiences rather than shared triggering stimuli (inducers). We speculate that modulatory feedback pathways from the concurrent to inducers may play a key role in the emergence of synesthesia. Study 2 assessed the external validity of these clusters by showing that they predict performance on other measures known to be linked to synesthesia.
Collapse
|
7
|
Ward J. Synaesthesia as a model system for understanding variation in the human mind and brain. Cogn Neuropsychol 2021; 38:259-278. [PMID: 34266374 DOI: 10.1080/02643294.2021.1950133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The aim of this article is to reposition synaesthesia as model system for understanding variation in the construction of the human mind and brain. People with synaesthesia inhabit a remarkable mental world in which numbers can be coloured, words can have tastes, and music is a visual spectacle. Key questions remain unanswered about why it exists, and how the study of synaesthesia might inform theories of the human mind. This article argues we need to rethink synaesthesia as not just representing exceptional experiences, but as a product of an unusual neurodevelopmental cascade from genes to brain to cognition of which synaesthesia is only one outcome. Specifically, differences in the brains of synaesthetes support a distinctive way of thinking (enhanced memory, imagery etc.) and may also predispose towards particular clinical vulnerabilities. In effect, synaesthesia can act as a paradigmatic example of a neuropsychological approach to individual differences.
Collapse
Affiliation(s)
- Jamie Ward
- School of Psychology, University of Sussex, Brighton, UK
| |
Collapse
|
8
|
van Leeuwen TM, Neufeld J, Hughes J, Ward J. Synaesthesia and autism: Different developmental outcomes from overlapping mechanisms? Cogn Neuropsychol 2020; 37:433-449. [PMID: 32845799 DOI: 10.1080/02643294.2020.1808455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Synaesthesia, a mixing of the senses, is more common in individuals with autism. Here, we review the evidence for the association between synaesthesia and autism with regard to their genetic background, brain connectivity, perception, cognitive mechanisms and their contribution to exceptional talents. Currently, the overlap between synaesthesia and autism is established most convincingly at the level of alterations in sensory sensitivity and perception, with synaesthetes showing autism-like profiles of sensory sensitivity and a bias towards details in perception. Shared features may include a predominance of local over global connectivity in the brain. When autism and synaesthesia co-occur in the same individual, the chance of developing heightened cognitive and memory abilities is increased. We discuss how the same theoretical models could potentially explain both conditions. Given the evidence, we believe the phenotypical overlap between autism and synaesthesia has been established clearly enough to invite future research to confirm overlapping mechanisms.
Collapse
Affiliation(s)
- Tessa M van Leeuwen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - James Hughes
- School of Psychology, University of Sussex, Brighton, UK
| | - Jamie Ward
- School of Psychology, University of Sussex, Brighton, UK
| |
Collapse
|
9
|
Rezlescu C, Danaila I, Miron A, Amariei C. More time for science: Using Testable to create and share behavioral experiments faster, recruit better participants, and engage students in hands-on research. PROGRESS IN BRAIN RESEARCH 2020; 253:243-262. [DOI: 10.1016/bs.pbr.2020.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|