1
|
Michel GF, Babik I, Nelson EL, Ferre CL, Campbell JM, Marcinowski EC. Development of handedness and other lateralized functions during infancy and early childhood. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:181-194. [PMID: 40074396 DOI: 10.1016/b978-0-443-15646-5.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Using a historical or "development from" approach to study the development of hand-use preferences in infants and children, we show how various sensorimotor experiential events shape the cascade from initial to subsequent hand-use preferences. That cascade represents, creates, and shapes the lateralized asymmetry of neural circuits in the cerebral hemispheres. The control of the preferred hand requires neural circuits in the contralateral hemisphere that are capable of processing the organization of finely timed, sequentially organized movements and detecting haptic information derived from high-frequency transitions in the stimulus. We propose that the lateralized differences in these neural circuits underlie processes contributing to the development of other forms of hemispheric specialization of function. We show how the development of hand-use preferences contributes to the development of language skills, tool use, spatial skills, and other cognitive abilities during infancy and early childhood. Such evidence supports the proposal of Michael Corballis that the phylogeny of human language emerged during the evolution of hominins from the co-option of those neural circuits employed in the expression of manual skills involved in tool use, tool manufacture, and communication. Finally, we summarize evidence from children with cerebral palsy, which shows that their difficulties with sensorimotor processing, visuomotor coordination, anticipatory motor planning, and other cognitive abilities may stem from disturbances in the development of their hand-use preferences and hence the functional specialization of their hemispheres.
Collapse
Affiliation(s)
- George F Michel
- Department of Psychology, University of North Carolina Greensboro, Greensboro, NC, United States.
| | - Iryna Babik
- Department of Psychological Science, Boise State University, Boise, ID, United States
| | - Eliza L Nelson
- Department of Psychology, Florida International University, Miami, FL, United States
| | - Claudio L Ferre
- Department of Occupational Therapy, College of Health & Rehabilitation Sciences, Boston University, Boston, MA, United States
| | - Julie M Campbell
- Department of Psychology, Illinois State University, Normal, IL, United States
| | - Emily C Marcinowski
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
2
|
Babik I, Cunha AB, Srinivasan S. Biological and environmental factors may affect children's executive function through motor and sensorimotor development: Preterm birth and cerebral palsy. Infant Behav Dev 2023; 73:101881. [PMID: 37643499 DOI: 10.1016/j.infbeh.2023.101881] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Disruptive biological and environmental factors may undermine the development of children's motor and sensorimotor skills. Since the development of cognitive skills, including executive function, is grounded in early motor and sensorimotor experiences, early delays or impairments in motor and sensorimotor processing often trigger dynamic developmental cascades that lead to suboptimal executive function outcomes. The purpose of this perspective paper is to link early differences in motor/sensorimotor processing to the development of executive function in children born preterm or with cerebral palsy. Uncovering such links in clinical populations would improve our understanding of developmental pathways and key motor and sensorimotor skills that are antecedent and foundational for the development of executive function. This knowledge will allow the refinement of early interventions targeting motor and sensorimotor skills with the goal of proactively improving executive function outcomes in at-risk populations.
Collapse
Affiliation(s)
- Iryna Babik
- Department of Psychological Science, Boise State University, Boise, ID, USA.
| | - Andrea B Cunha
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sudha Srinivasan
- Physical Therapy Program, Department of Kinesiology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
3
|
Jaatela J, Aydogan DB, Nurmi T, Vallinoja J, Mäenpää H, Piitulainen H. Limb-specific thalamocortical tracts are impaired differently in hemiplegic and diplegic subtypes of cerebral palsy. Cereb Cortex 2023; 33:10245-10257. [PMID: 37595205 PMCID: PMC10545439 DOI: 10.1093/cercor/bhad279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 08/20/2023] Open
Abstract
Thalamocortical pathways are considered crucial in the sensorimotor functioning of children with cerebral palsy (CP). However, previous research has been limited by non-specific tractography seeding and the lack of comparison between different CP subtypes. We compared limb-specific thalamocortical tracts between children with hemiplegic (HP, N = 15) or diplegic (DP, N = 10) CP and typically developed peers (N = 19). The cortical seed-points for the upper and lower extremities were selected (i) manually based on anatomical landmarks or (ii) using functional magnetic resonance imaging (fMRI) activations following proprioceptive-limb stimulation. Correlations were investigated between tract structure (mean diffusivity, MD; fractional anisotropy, FA; apparent fiber density, AFD) and sensorimotor performance (hand skill and postural stability). Compared to controls, our results revealed increased MD in both upper and lower limb thalamocortical tracts in the non-dominant hemisphere in HP and bilaterally in DP subgroup. MD was strongly lateralized in participants with hemiplegia, while AFD seemed lateralized only in controls. fMRI-based tractography results were comparable. The correlation analysis indicated an association between the white matter structure and sensorimotor performance. These findings suggest distinct impairment of functionally relevant thalamocortical pathways in HP and DP subtypes. Thus, the organization of thalamocortical white matter tracts may offer valuable guidance for targeted, life-long rehabilitation in children with CP.
Collapse
Affiliation(s)
- Julia Jaatela
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, FI-02150 Espoo, Finland
| | - Dogu Baran Aydogan
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, FI-02150 Espoo, Finland
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Timo Nurmi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, FI-02150 Espoo, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Jaakko Vallinoja
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, FI-02150 Espoo, Finland
| | - Helena Mäenpää
- Pediatric Neurology, New Children’s Hospital, Helsinki University Hospital, FI-00029 Helsinki, Finland
| | - Harri Piitulainen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, FI-02150 Espoo, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland
- Pediatric Neurology, New Children’s Hospital, Helsinki University Hospital, FI-00029 Helsinki, Finland
- Aalto NeuroImaging, Aalto University, FI-02150 Espoo, Finland
| |
Collapse
|
4
|
Ocklenburg S, Borawski J, Mundorf A, Riedel K, Lischke A. Handedness and anxiety: a review. Laterality 2023; 28:336-356. [PMID: 37605527 DOI: 10.1080/1357650x.2023.2250074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Handedness is a core phenotype in clinical laterality research and several different disorders such as schizophrenia and autism spectrum disorders have been linked to a higher prevalence of non-right-handedness. Moreover, subclinical personality traits like schizotypy have been linked to a higher prevalence of non-right-handedness. The association with handedness is poorly understood for generalized anxiety disorder and specific phobias, as well as for state and trait anxiety and fear of specific stimuli in nonclinical samples. Therefore, we performed a narrative review of studies investigating handedness in anxiety disorders patients and studies that compared anxiety scores between different handedness groups. Unlike schizophrenia and autism spectrum disorders, there seems to be no strong association between anxiety disorders and handedness in adult patients, except for specific phobias. Studies often had small sample sizes and therefore a high risk to report spurious findings. Similar findings were reported in most non-clinical studies. Importantly, familial handedness affects phobia risk and antenatal maternal anxiety increased the probability of mixed-handedness. This suggests that a transgenerational, developmental perspective is essential to better understand the complex interrelations between handedness and anxiety. Familial and especially maternal handedness and anxiety disorders should be integrated into future studies on handedness and anxiety whenever possible.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
- ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Hamburg, Germany
- Institute of Cognitive Neuroscience, Biopsychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Jette Borawski
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
| | - Annakarina Mundorf
- ISM Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Kerrin Riedel
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
| | - Alexander Lischke
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
- ICPP Institute for Clinical Psychology and Psychotherapy, Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
5
|
Marchi V, Rizzi R, Nevalainen P, Melani F, Lori S, Antonelli C, Vanhatalo S, Guzzetta A. Asymmetry in sleep spindles and motor outcome in infants with unilateral brain injury. Dev Med Child Neurol 2022; 64:1375-1382. [PMID: 35445398 PMCID: PMC9790667 DOI: 10.1111/dmcn.15244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/30/2022]
Abstract
AIM To determine whether interhemispheric difference in sleep spindles in infants with perinatal unilateral brain injury could link to a pathological network reorganization that underpins the development of unilateral cerebral palsy (CP). METHOD This was a multicentre retrospective study of 40 infants (19 females, 21 males) with unilateral brain injury. Sleep spindles were detected and quantified with an automated algorithm from electroencephalograph records performed at 2 months to 5 months of age. The clinical outcomes after 18 months were compared to spindle power asymmetry (SPA) between hemispheres in different brain regions. RESULTS We found a significantly increased SPA in infants who later developed unilateral CP (n=13, with the most robust interhemispheric difference seen in the central spindles. The best individual-level prediction of unilateral CP was seen in the centro-occipital spindles with an overall accuracy of 93%. An empiric cut-off level for SPA at 0.65 gave a positive predictive value of 100% and a negative predictive value of 93% for later development of unilateral CP. INTERPRETATION Our data suggest that automated analysis of interhemispheric SPA provides a potential biomarker of unilateral CP at a very early age. This holds promise for guiding the early diagnostic process in infants with a perinatally identified brain injury. WHAT THIS PAPER ADDS Unilateral perinatal brain injury may affect the development of electroencephalogram (EEG) sleep spindles. Interhemispheric asymmetry in sleep spindles can be quantified with automated EEG analysis. Spindle power asymmetry can be a potential biomarker of unilateral cerebral palsy.
Collapse
Affiliation(s)
- Viviana Marchi
- Department of Developmental NeuroscienceIRCCS Stella Maris FoundationPisaItaly
| | - Riccardo Rizzi
- Department of Developmental NeuroscienceIRCCS Stella Maris FoundationPisaItaly
- Department of Neuroscience, PsychologyDrug Research and Child Health NEUROFARBA, University of FlorenceFlorenceItaly
| | - Päivi Nevalainen
- Department of Clinical NeurophysiologyChildren's Hospital, HUS Diagnostic Center, Clinical Neurosciences, Helsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - Federico Melani
- Neuroscience Department, Children's Hospital MeyerUniversity of FlorenceFlorence
| | - Silvia Lori
- Neurophysiology Unit, Neuro‐Musculo‐Skeletal DepartmentUniversity Hospital CareggiFlorenceItaly
| | - Camilla Antonelli
- Department of Developmental NeuroscienceIRCCS Stella Maris FoundationPisaItaly
- Department of Neuroscience, PsychologyDrug Research and Child Health NEUROFARBA, University of FlorenceFlorenceItaly
| | - Sampsa Vanhatalo
- Department of Clinical Neurophysiology, BABA CenterChildren's Hospital, Neuroscience Center, HiLIFE, Helsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - Andrea Guzzetta
- Department of Developmental NeuroscienceIRCCS Stella Maris FoundationPisaItaly
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| |
Collapse
|
6
|
Hamaoui J, Stefaniak N, Segond H. The influence of vestibular system and fetal presentation on handedness, cognitive and motor development: A comparison between cephalic and breech presentation. Dev Sci 2022; 26:e13317. [PMID: 36029182 DOI: 10.1111/desc.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
Abstract
Genetics are undoubtedly implicated in the ontogenesis of laterality. Nonetheless, environmental factors, such as the intrauterine environment, may also play a role in the development of functional and behavioral lateralization. The aim of this study was to test the Left-Otolithic Dominance Theory (LODT; Previc, 1991) by investigating a hypothetical developmental pattern where it is assumed that a breech presentation, which is putatively associated with a dysfunctional and weakly lateralized vestibular system, can lead to weak handedness and atypical development associated with language and motor difficulties. We used the ALSPAC cohort of children from 7 to 10 years of age to conduct our investigation. Our results failed to show an association between the vestibular system and fetal presentation, nor any influence of the latter on hand preference, hand performance, or language and motor development. Bayesian statistical analyses supported these findings. Contrary to our LODT-derived hypotheses, this study offers evidence that fetal presentation does not influence the vestibular system's lateralization and seems to be a poor indicator for handedness. Nonetheless, we found that another non-genetic factor, prematurity, could lead to atypical development of handedness. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jad Hamaoui
- Laboratoire de Psychologie des Cognitions (UR 4440), Université de Strasbourg, France
| | - Nicolas Stefaniak
- Laboratoire Cognition Santé Société (UR 6291), Université de Reims Champagne-Ardenne, France
| | - Hervé Segond
- Laboratoire de Psychologie des Cognitions (UR 4440), Université de Strasbourg, France
| |
Collapse
|
7
|
Bazo NS, Marcori AJ, Monteiro PHM, Okazaki VHA. Cultural and environmental aspects influence lateral preferences. INTERNATIONAL JOURNAL OF PSYCHOLOGY 2022; 57:753-759. [PMID: 35675920 DOI: 10.1002/ijop.12863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 05/18/2022] [Indexed: 11/09/2022]
Abstract
Transcultural approaches comparing the distribution of lateral preference between countries focused primarily on handedness. However, other laterality dimensions may also be susceptible to cultural variations. The present study compared lateral preference in five dimensions (hand, foot, trunk, hearing, and visual) of young adults from Brazil and Mozambique. Two hundred and two undergraduate students participated in the study, of which 101 were Brazilian (21.7 ± 1.66 years old) and 101 Mozambican (25.6 ± 6.2 years old). The participants' lateral preference direction and degree were assessed using the global lateral preference inventory. Most Brazilians were classified in the moderate preference category, while Mozambicans had a higher frequency of individuals with strong preferences. Hence, Mozambicans presented a higher lateralization degree for all dimensions. A subsequent analysis considering only preference direction (right, left or indifferent), and not degree, did not show the same outcomes, revealing similarities in preference distribution between the two groups. This finding highlights the necessity to incorporate preference degrees in future analysis to not overlook potential differences. We also conclude lateral preference investigations with transcultural approaches should analyse beyond handedness, as other dimensions can also be modulated by cultural characteristics.
Collapse
Affiliation(s)
- Norberto Soca Bazo
- Physical Education Department, Londrina State University, Londrina, Brazil.,Sport and Physical Education Department, Licungo University - Beira's Extension, Mozambique
| | | | | | | |
Collapse
|
8
|
From Hemispheric Asymmetry through Sensorimotor Experiences to Cognitive Outcomes in Children with Cerebral Palsy. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent neuroimaging studies allowed us to explore abnormal brain structures and interhemispheric connectivity in children with cerebral palsy (CP). Behavioral researchers have long reported that children with CP exhibit suboptimal performance in different cognitive domains (e.g., receptive and expressive language skills, reading, mental imagery, spatial processing, subitizing, math, and executive functions). However, there has been very limited cross-domain research involving these two areas of scientific inquiry. To stimulate such research, this perspective paper proposes some possible neurological mechanisms involved in the cognitive delays and impairments in children with CP. Additionally, the paper examines the ways motor and sensorimotor experience during the development of these neural substrates could enable more optimal development for children with CP. Understanding these developmental mechanisms could guide more effective interventions to promote the development of both sensorimotor and cognitive skills in children with CP.
Collapse
|
9
|
Nastou E, Ocklenburg S, Hoogman M, Papadatou-Pastou M. Handedness in ADHD: Meta-Analyses. Neuropsychol Rev 2022; 32:877-892. [PMID: 35064524 DOI: 10.1007/s11065-021-09530-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/11/2021] [Indexed: 01/02/2023]
Abstract
Meta-analyses have shown that several neurodevelopmental and psychiatric disorders, such as autism spectrum disorder and schizophrenia, are associated with a higher prevalence of atypical (left-, non-right-, or mixed-) handedness. One neurodevelopmental disorder for which this association is unclear is attention deficit hyperactivity disorder (ADHD). Here, some empirical studies have found evidence for a higher prevalence of atypical handedness in individuals with ADHD compared to neurotypical individuals. However, other studies failed to establish such an association. Therefore, meta-analytic integration is critical to estimate whether or not there is an association between handedness and ADHD. We report the results of three meta-analyses (left-, mixed-, and non-right-handedness) comparing handedness in individuals with ADHD to controls (typically developing individuals). The results show evidence of a trend towards elevated levels of atypical handedness when it comes to differences in left- and mixed-handedness (p = 0.09 and p = 0.07, respectively), but do show clear evidence of elevated levels of non-right-handedness between individuals with ADHD and controls (p = 0.02). These findings are discussed in the context of the hypothesis that ADHD is a disorder in which mostly right-hemispheric brain networks are affected. Since right-handedness represents a dominance of the left motor cortex for fine motor behavior, such as writing, as well as a left-hemispheric dominance for language functions, and about 90% of individuals are right-handers, this hypothesis might explain why there is not stronger evidence for an association of left-handedness with ADHD. We suggest that the mechanisms involved in the pathogenesis of ADHD might show an overlap with the mechanisms involved in handedness strength, but not handedness direction.
Collapse
Affiliation(s)
- Evgenia Nastou
- Department of Primary Education, National and Kapodistrian University of Athens, 13A Navarinou Street, 10680, Athens, Greece
| | | | | | - Marietta Papadatou-Pastou
- Department of Primary Education, National and Kapodistrian University of Athens, 13A Navarinou Street, 10680, Athens, Greece. .,Biomedical Research Foundation, Academy of Athens, Athens, Greece.
| |
Collapse
|
10
|
Handedness Development: A Model for Investigating the Development of Hemispheric Specialization and Interhemispheric Coordination. Symmetry (Basel) 2021. [DOI: 10.3390/sym13060992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The author presents his perspective on the character of science, development, and handedness and relates these to his investigations of the early development of handedness. After presenting some ideas on what hemispheric specialization of function might mean for neural processing and how handedness should be assessed, the neuroscience of control of the arms/hands and interhemispheric communication and coordination are examined for how developmental processes can affect these mechanisms. The author’s work on the development of early handedness is reviewed and placed within a context of cascading events in which different forms of handedness emerge from earlier forms but not in a deterministic manner. This approach supports a continuous rather than categorical distribution of handedness and accounts for the predominance of right-handedness while maintaining a minority of left-handedness. Finally, the relation of the development of handedness to the development of several language and cognitive skills is examined.
Collapse
|
11
|
Abstract
By examining the development of lateralization in the sensory and motor systems of the human fetus and chick embryo, this paper debates which lateralized functions develop first and what interactions may occur between the different sensory and motor systems during development. It also discusses some known influences of inputs from the environment on the development of lateralization, particularly the effects of light exposure on the development of visual and motor lateralization in chicks. The effects of light on the human fetus are related in this context. Using the chick embryo as a model to elucidate the genetic and environmental factors involved in development of lateralization, some understanding has been gained about how these lateralized functions emerge. At the same time, the value of carrying out much more research on the development of the various types of lateralization has become apparent.
Collapse
|