1
|
Diamond NB, Simpson S, Baena D, Murray B, Fogel S, Levine B. Sleep selectively and durably enhances memory for the sequence of real-world experiences. Nat Hum Behav 2025; 9:746-757. [PMID: 40069368 DOI: 10.1038/s41562-025-02117-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/16/2025] [Indexed: 04/25/2025]
Abstract
Sleep is thought to play a critical role in the retention of memory for past experiences (episodic memory), reducing the rate of forgetting compared with wakefulness. Yet it remains unclear whether and how sleep actively transforms the way we remember multidimensional real-world experiences, and how such memory transformation unfolds over the days, months and years that follow. In an exception to the law of forgetting, we show that sleep actively and selectively improves the accuracy of memory for a one-time, real-world experience (an art tour)-specifically boosting memory for the order of tour items (sequential associations) versus perceptual details from the tour (featural associations). This above-baseline boost in sequence memory was not evident after a matched period of wakefulness. Moreover, the preferential retention of sequence relative to featural memory observed after a night's sleep grew over time up to 1 year post-encoding. Finally, overnight polysomnography showed that sleep-related memory enhancement was associated with the duration and neurophysiological hallmarks of slow-wave sleep previously linked to sequential neural replay, particularly spindle-slow wave coupling. These results suggest that sleep serves a crucial and selective role in enhancing sequential organization in our memory for past events at the expense of perceptual details, linking sleep-related neural mechanisms to the days-to-years-long transformation of memory for complex real-life experiences.
Collapse
Affiliation(s)
- N B Diamond
- Rotman Research Institute at Baycrest Academy for Research and Education, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - S Simpson
- Rotman Research Institute at Baycrest Academy for Research and Education, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - D Baena
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
- Sleep Research Unit, The Royal's Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - B Murray
- Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - S Fogel
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
- Sleep Research Unit, The Royal's Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - B Levine
- Rotman Research Institute at Baycrest Academy for Research and Education, Toronto, Ontario, Canada.
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.
- Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Bencze D, Marián M, Szőllősi Á, Simor P, Racsmány M. Increase in slow frequency and decrease in alpha and beta power during post-learning rest predict long-term memory success. Cortex 2025; 183:167-182. [PMID: 39662242 DOI: 10.1016/j.cortex.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/26/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Formation of episodic memories is linked to cortico-hippocampal interactions during learning, practice, and post-learning rest, although the role of cortical activity itself in such processes remains elusive. Behaviorally, long-term retention of episodic memories has been shown to be aided by several different practice strategies involving memory reencounters, such as repeated retrieval and repeated study. In a two-session resting state electroencephalography (EEG) experiment, using data from 68 participants, we investigated the electrophysiological predictors of long-term memory success in situations where such reencounters occurred after learning. Participants learned word pairs which were subsequently practiced either by cued recall or repeated studying in a between-subjects design. Participants' cortical activity was recorded before learning (baseline) and after practice during 15-min resting periods. Long-term memory retention after a 7-day period was measured. To assess cortical activity, we analyzed the change in spectral power from the pre-learning baseline to the post-practice resting state recordings. From baseline to post-practice, changes in alpha and beta power were negatively, while slow frequency power change was positively associated with long-term memory performance, regardless of practice strategy. These results are in line with previous observations pointing to the role of specific frequency bands in memory formation and extend them to situations where memory reencounters occur after learning. Our results also highlight that the effectiveness of practice by repeated testing seems to be independent from the beneficial neural mechanisms mirrored by EEG frequency power changes.
Collapse
Affiliation(s)
- Dorottya Bencze
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Institute of Psychology, University of Szeged, Szeged, Hungary
| | - Miklós Marián
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Institute of Psychology, University of Szeged, Szeged, Hungary.
| | - Ágnes Szőllősi
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Institute of Psychology, University of Szeged, Szeged, Hungary; Cognitive Medicine Research Group, Competence Centre for Neurocybernetics of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, University of Szeged, Szeged, Hungary
| | - Péter Simor
- Institute of Psychology, Eötvös Loránd University, Budapest, Hungary; Institute of Behavioral Sciences, Semmelweis University, Budapest, Hungary
| | - Mihály Racsmány
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Institute of Psychology, University of Szeged, Szeged, Hungary; Cognitive Medicine Research Group, Competence Centre for Neurocybernetics of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, University of Szeged, Szeged, Hungary
| |
Collapse
|
3
|
Crowley R, Alderman E, Javadi AH, Tamminen J. A systematic and meta-analytic review of the impact of sleep restriction on memory formation. Neurosci Biobehav Rev 2024; 167:105929. [PMID: 39427809 DOI: 10.1016/j.neubiorev.2024.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Modern life causes a quarter of adults and half of teenagers to sleep for less than is recommended (Kocevska et al., 2021). Given well-documented benefits of sleep on memory, we must understand the cognitive costs of short sleep. We analysed 125 sleep restriction effect sizes from 39 reports involving 1234 participants. Restricting sleep (3-6.5 hours) compared to normal sleep (7-11 hours) negatively affects memory formation with a small effect size (Hedges' g = 0.29, 95 % CI = [0.13, 0.44]). We detected no evidence for publication bias. When sleep restriction effect sizes were compared with 185 sleep deprivation effect sizes (Newbury et al., 2021) no statistically significant difference was found, suggesting that missing some sleep has similar consequences for memory as not sleeping at all. When the analysis was restricted to post-encoding, rather than pre-encoding, sleep loss, sleep deprivation was associated with larger memory impairment than restriction. Our findings are best accounted for by the sequential hypothesis which emphasises complementary roles of slow-wave sleep and REM sleep for memory.
Collapse
Affiliation(s)
- Rebecca Crowley
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| | - Eleanor Alderman
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| | | | - Jakke Tamminen
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| |
Collapse
|
4
|
Büchel PK, Klingspohr J, Kehl MS, Staresina BP. Brain and eye movement dynamics track the transition from learning to memory-guided action. Curr Biol 2024; 34:5054-5061.e4. [PMID: 39437781 DOI: 10.1016/j.cub.2024.09.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/16/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Learning never stops. As we navigate life, we continuously acquire and update knowledge to optimize memory-guided action, with a gradual shift from the former to the latter as we master our environment. How are these learning dynamics expressed in the brain and in behavioral patterns? Here, we devised a spatiotemporal image learning task ("Memory Arena") in which participants learn a set of 50 items to criterion across repeated exposure blocks. Critically, brief task-free periods between successive image presentations allowed us to assess multivariate electroencephalogram (EEG) patterns representing the previous and/or upcoming image identity, as well as anticipatory eye movements toward the upcoming image location. As expected, participants eventually met the performance criterion, albeit with different learning rates. During task-free periods, we were able to readily decode representations of both previous and upcoming image identities. Importantly though, decoding strength followed opposing slopes for previous vs. upcoming images across time, with a gradual decline of evidence for the previous image and a gradual increase of evidence for the upcoming image. Moreover, the ratio of upcoming vs. previous image evidence directly followed behavioral learning rates. Finally, eye movement data revealed that participants increasingly used the task-free period to anticipate upcoming image locations, with target-precision slopes paralleling both behavioral performance measures as well as EEG decodability of the upcoming image across time. Together, these results unveil the neural and behavioral dynamics underlying the gradual transition from learning to memory-guided action.
Collapse
Affiliation(s)
- Philipp K Büchel
- Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Hanzeplein, Groningen 9713 GZ, the Netherlands; Department of Experimental Psychology, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK; Department of Epileptology, University Hospital Bonn, Venusberg Campus, Bonn 53127, Germany
| | - Janina Klingspohr
- Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Hanzeplein, Groningen 9713 GZ, the Netherlands; Department of Experimental Psychology, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - Marcel S Kehl
- Department of Experimental Psychology, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Warneford Lane, Oxford OX3 7JX, UK.
| |
Collapse
|
5
|
Schmidig FJ, Ruch S, Henke K. Episodic long-term memory formation during slow-wave sleep. eLife 2024; 12:RP89601. [PMID: 38661727 PMCID: PMC11045222 DOI: 10.7554/elife.89601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words' linguistic processing raised neural complexity. The words' semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.
Collapse
Affiliation(s)
| | - Simon Ruch
- Institute of Psychology, University of BernBernSwitzerland
- Faculty of Psychology, UniDistance SuisseBrigSwitzerland
| | | |
Collapse
|
6
|
Chang M, Hong B, Savel K, Du J, Meade ME, Martin CB, Barense MD. Spatial context scaffolds long-term episodic richness of weaker real-world autobiographical memories in both older and younger adults. Memory 2024; 32:431-448. [PMID: 38557252 DOI: 10.1080/09658211.2024.2334008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Remembering life experiences involves recalling not only what occurred (episodic details), but also where an event took place (spatial context), both of which decline with age. Although spatial context can cue episodic detail recollection, it is unknown whether initially recalling an event alongside greater reinstatement of spatial context protects memory for episodic details in the long term, and whether this is affected by age. Here, we analysed 1079 personally-experienced, real-world events from 29 older adults and 12 younger adults. Events were recalled first on average 6 weeks after they occurred and then again on average 24 weeks after they occurred. We developed a novel scoring protocol to quantify spatial contextual details and used the established Autobiographical Interview to quantify episodic details. We found improved recall of episodic details after a delay if those details had initially been recalled situated in greater spatial context. Notably, for both older and younger adults, this preservation was observed for memories initially recalled with low, but not high, numbers of episodic details, suggesting that spatial context aided episodic retrieval for memories that required more support. This work supports the notion that spatial context scaffolds detail-rich event recollection and inspires memory interventions that leverage this spatial scaffold.
Collapse
Affiliation(s)
- Miranda Chang
- Department of Psychology, University of Toronto, Toronto, Canada
- Department of Psychology, Simon Fraser University, Burnaby, Canada
| | - Bryan Hong
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Katarina Savel
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Jialin Du
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Melissa E Meade
- Department of Psychology, Huron University College, London, Canada
| | - Chris B Martin
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Morgan D Barense
- Department of Psychology, University of Toronto, Toronto, Canada
- Rotman Research Institute, Baycrest Hospital, Toronto, Canada
| |
Collapse
|
7
|
Schimke EAE, Copland DA, Gomersall SR, Angwin AJ. To sleep or not to sleep? No effect of sleep on contextual word learning in younger adults. Q J Exp Psychol (Hove) 2024; 77:789-802. [PMID: 37212629 PMCID: PMC10960315 DOI: 10.1177/17470218231179459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
This study investigated the effect of sleep on novel word learning through reading context. Seventy-four healthy young adults attended two testing sessions, with either overnight sleep (sleep group) or daytime wakefulness (wake group) occurring between the sessions. At the initial learning session, participants identified the hidden meanings of novel words embedded within sentence contexts and were subsequently tested on their recognition of the novel word meanings. A recognition test was also conducted at the delayed session. The analyses revealed comparable recognition of novel word meanings for the sleep and wake group at both the initial and the delayed session, indicating that there was no benefit of sleep compared with wakefulness for novel word learning through context. Overall, this study highlights the critical influence of encoding method on sleep-dependent learning, where not all forms of word learning appear to benefit from sleep for consolidation.
Collapse
Affiliation(s)
- Emma AE Schimke
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - David A Copland
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
- Queensland Aphasia Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Sjaan R Gomersall
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Anthony J Angwin
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Schechtman E. When memories get complex, sleep comes to their rescue. Proc Natl Acad Sci U S A 2024; 121:e2402178121. [PMID: 38466857 PMCID: PMC10962965 DOI: 10.1073/pnas.2402178121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Affiliation(s)
- Eitan Schechtman
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA92697
- Center for Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA92697
| |
Collapse
|
9
|
Lutz ND, Martínez-Albert E, Friedrich H, Born J, Besedovsky L. Sleep shapes the associative structure underlying pattern completion in multielement event memory. Proc Natl Acad Sci U S A 2024; 121:e2314423121. [PMID: 38377208 PMCID: PMC10907255 DOI: 10.1073/pnas.2314423121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/28/2023] [Indexed: 02/22/2024] Open
Abstract
Sleep supports the consolidation of episodic memory. It is, however, a matter of ongoing debate how this effect is established, because, so far, it has been demonstrated almost exclusively for simple associations, which lack the complex associative structure of real-life events, typically comprising multiple elements with different association strengths. Because of this associative structure interlinking the individual elements, a partial cue (e.g., a single element) can recover an entire multielement event. This process, referred to as pattern completion, is a fundamental property of episodic memory. Yet, it is currently unknown how sleep affects the associative structure within multielement events and subsequent processes of pattern completion. Here, we investigated the effects of post-encoding sleep, compared with a period of nocturnal wakefulness (followed by a recovery night), on multielement associative structures in healthy humans using a verbal associative learning task including strongly, weakly, and not directly encoded associations. We demonstrate that sleep selectively benefits memory for weakly associated elements as well as for associations that were not directly encoded but not for strongly associated elements within a multielement event structure. Crucially, these effects were accompanied by a beneficial effect of sleep on the ability to recall multiple elements of an event based on a single common cue. In addition, retrieval performance was predicted by sleep spindle activity during post-encoding sleep. Together, these results indicate that sleep plays a fundamental role in shaping associative structures, thereby supporting pattern completion in complex multielement events.
Collapse
Affiliation(s)
- Nicolas D. Lutz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen72076, Germany
- Institute of Medical Psychology, LMU Munich, Munich80336, Germany
| | - Estefanía Martínez-Albert
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen72076, Germany
- Institute of Medical Psychology, LMU Munich, Munich80336, Germany
| | - Hannah Friedrich
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen72076, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen72076, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen72076, Germany
- German Center for Diabetes Research, Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen, Tübingen72076, Germany
| | - Luciana Besedovsky
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen72076, Germany
- Institute of Medical Psychology, LMU Munich, Munich80336, Germany
| |
Collapse
|
10
|
Abel M, Nickl AT, Reßle A, Unger C, Bäuml KHT. The role of sleep for memory consolidation: does sleep protect memories from retroactive interference? Psychon Bull Rev 2023; 30:2296-2304. [PMID: 37382811 PMCID: PMC10728269 DOI: 10.3758/s13423-023-02264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 06/30/2023]
Abstract
Numerous studies suggest that sleep benefits memory. A major theoretical question in this area is however if sleep does so by passively shielding memories from interference that arises during wakefulness or by actively stabilizing and strengthening memories. A key finding by Ellenbogen et al. Current Biology, 16, 1290-1294 (2006a) indicates that sleep can protect memories from retroactive interference, which suggests that sleep plays more than a passive role for memory consolidation. Sample size in this study was however small and subsequent reports in the literature provided mixed results. We therefore conducted an online study via Zoom to replicate Ellenbogen et al. Current Biology, 16, 1290-1294 (2006a). Subjects were asked to study paired associates. After a 12-h delay that included either nocturnal sleep or daytime wakefulness, half of all subjects were asked to study an additional list to elicit retroactive interference. All participants were then asked to complete a memory test for the studied list(s). The results were fully consistent with those reported by Ellenbogen et al. Current Biology, 16, 1290-1294 (2006a). We discuss this successful replication against the background of the mixed literature, with a focus on the possibly critical role of study-design features, like the use of high learning criteria that resulted in performance being at ceiling, or a confound between interference and the length of the retention interval. A collaborative replication effort may be needed to reach a straightfoward answer to the question if sleep protects memories from interference (and under what conditions).
Collapse
Affiliation(s)
- Magdalena Abel
- Department of Experimental Psychology, Regensburg University, Regensburg, Germany.
| | - Anna T Nickl
- Department of Experimental Psychology, Regensburg University, Regensburg, Germany
| | - Anna Reßle
- Department of Experimental Psychology, Regensburg University, Regensburg, Germany
| | - Carmen Unger
- Department of Experimental Psychology, Regensburg University, Regensburg, Germany
| | - Karl-Heinz T Bäuml
- Department of Experimental Psychology, Regensburg University, Regensburg, Germany
| |
Collapse
|
11
|
Foldes T, Santamaria L, Lewis P. Sleep-related benefits to transitive inference are modulated by encoding strength and joint rank. Learn Mem 2023; 30:201-211. [PMID: 37726142 PMCID: PMC10547378 DOI: 10.1101/lm.053787.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/11/2023] [Indexed: 09/21/2023]
Abstract
Transitive inference is a measure of relational learning that has been shown to improve across sleep. Here, we examine this phenomenon further by studying the impact of encoding strength and joint rank. In experiment 1, participants learned adjacent premise pairs and were then tested on inferential problems derived from those pairs. In line with prior work, we found improved transitive inference performance after retention across a night of sleep compared with wake alone. Experiment 2 extended these findings using a within-subject design and found superior transitive inference performance on a hierarchy, consolidated across 27 h including sleep compared with just 3 h of wake. In both experiments, consolidation-related improvement was enhanced when presleep learning (i.e., encoding strength) was stronger. We also explored the interaction of these effects with the joint rank effect, in which items were scored according to their rank in the hierarchy, with more dominant item pairs having the lowest scores. Interestingly, the consolidation-related benefit was greatest for more dominant inference pairs (i.e., those with low joint rank scores). Overall, our findings provide further support for the improvement of transitive inference across a consolidation period that includes sleep. We additionally show that encoding strength and joint rank strongly modulate this effect.
Collapse
Affiliation(s)
- Tamas Foldes
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, Wales CF24 4HQ, United Kingdom
| | - Lorena Santamaria
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, Wales CF24 4HQ, United Kingdom
| | - Penny Lewis
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, Wales CF24 4HQ, United Kingdom
| |
Collapse
|
12
|
Pacozzi L, Knüsel L, Ruch S, Henke K. Inverse forgetting in unconscious episodic memory. Sci Rep 2022; 12:20595. [PMID: 36446829 PMCID: PMC9709067 DOI: 10.1038/s41598-022-25100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Forming memories of experienced episodes calls upon the episodic memory system. Episodic encoding may proceed with and without awareness of episodes. While up to 60% of consciously encoded episodes are forgotten after 10 h, the fate of unconsciously encoded episodes is unknown. Here we track over 10 h, which are filled with sleep or daytime activities, the retention of unconsciously and consciously experienced episodes. The episodes were displayed in cartoon clips that were presented weakly and strongly masked for conscious and unconscious encoding, respectively. Clip retention was tested for distinct clips directly after encoding, 3 min and 10 h after encoding using a forced-choice test that demands deliberate responses in both consciousness conditions. When encoding was conscious, retrieval accuracy decreased by 25% from 3 min to 10 h, irrespective of sleep or wakefulness. When encoding was unconscious, retrieval accuracy increased from 3 min to 10 h and depended on sleep. Hence, opposite to the classic forgetting curve, unconsciously acquired episodic memories strengthen over time and hinge on sleep on the day of learning to gain influence over human behavior.
Collapse
Affiliation(s)
- Luca Pacozzi
- Institute of Psychology, University of Bern, 3012, Bern, Switzerland.
| | - Leona Knüsel
- Institute of Psychology, University of Bern, 3012, Bern, Switzerland
| | - Simon Ruch
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tuebingen, 72076, Tübingen, Germany
| | - Katharina Henke
- Institute of Psychology, University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
13
|
Sleep deprivation and hippocampal ripple disruption after one-session learning eliminate memory expression the next day. Proc Natl Acad Sci U S A 2022; 119:e2123424119. [PMID: 36279444 PMCID: PMC9636927 DOI: 10.1073/pnas.2123424119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hippocampal ripples are proposed to be the key element in sleep to enable memory consolidation. Here we show that ripple disruption as well sleep deprivation after one-session learning eliminate long-term memory expression and therefore are necessary for successful consolidation. Memory reactivation during non–rapid-eye-movement ripples is thought to communicate new information to a systems-wide network and thus can be a key player mediating the positive effect of sleep on memory consolidation. Causal experiments disrupting ripples have only been performed in multiday training paradigms, which decrease but do not eliminate memory performance, and no comparison with sleep deprivation has been made. To enable such investigations, we developed a one-session learning paradigm in a Plusmaze and show that disruption of either sleep with gentle handling or hippocampal ripples with electrical stimulation impaired long-term memory. Furthermore, we detected hippocampal ripples and parietal high-frequency oscillations after different behaviors, and a bimodal frequency distribution in the cortical events was observed. Faster cortical high-frequency oscillations increased after normal learning, a change not seen in the hippocampal ripple-disruption condition, consistent with these having a role in memory consolidation.
Collapse
|
14
|
Ngo HVV, Staresina BP. Shaping overnight consolidation via slow-oscillation closed-loop targeted memory reactivation. Proc Natl Acad Sci U S A 2022; 119:e2123428119. [PMID: 36279449 PMCID: PMC9636934 DOI: 10.1073/pnas.2123428119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
Sleep constitutes a privileged state for new memories to reactivate and consolidate. Previous work has demonstrated that consolidation can be bolstered experimentally either via delivery of reminder cues (targeted memory reactivation [TMR]) or via noninvasive brain stimulation geared toward enhancing endogenous sleep rhythms. Here, we combined both approaches, controlling the timing of TMR cues with respect to ongoing slow-oscillation (SO) phases. Prior to sleep, participants learned associations between unique words and a set of repeating images (e.g., car) while hearing a prototypical image sound (e.g., engine starting). Memory performance on an immediate test vs. a test the next morning quantified overnight memory consolidation. Importantly, two image sounds were designated as TMR cues, with one cue delivered at SO UP states and the other delivered at SO DOWN states. A novel sound was used as a TMR control condition. Behavioral results revealed a significant reduction of overnight forgetting for words associated with UP-state TMR compared with words associated with DOWN-state TMR. Electrophysiological results showed that UP-state cueing led to enhancement of the ongoing UP state and was followed by greater spindle power than DOWN-state cueing. Moreover, UP-state (and not DOWN-state) cueing led to reinstatement of target image representations. Together, these results unveil the behavioral and mechanistic effects of delivering reminder cues at specific phases of endogenous sleep rhythms and mark an important step for the endeavor to experimentally modulate memories during sleep.
Collapse
Affiliation(s)
- Hong-Viet V. Ngo
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Centre for Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Bernhard P. Staresina
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 9DU, United Kingdom
- School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
15
|
Martini M, Wasmeier JR, Talamini F, Huber SE, Sachse P. Wakeful resting and listening to music contrast their effects on verbal long-term memory in dependence on word concreteness. Cogn Res Princ Implic 2022; 7:80. [PMID: 36057696 PMCID: PMC9440969 DOI: 10.1186/s41235-022-00415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractWakeful resting and listening to music are powerful means to modulate memory. How these activities affect memory when directly compared has not been tested so far. In two experiments, participants encoded and immediately recalled two word lists followed by either 6 min wakefully resting or 6 min listening to music. The results of Experiment 1 show that both post-encoding conditions have a similar effect on memory after 1 day. In Experiment 2, we explored the possibility that less concrete words, i.e. lower in imageability than in Experiment 1, are differently affected by the two post-encoding conditions. The results of Experiment 2 show that, when words are less concrete, more words are retained after 1 day when encoding is followed by wakeful resting rather than listening to music. These findings indicate that the effects of wakeful resting and listening to music on memory consolidation are moderated by the concreteness of the encoded material.
Collapse
|
16
|
Ashton JE, Staresina BP, Cairney SA. Sleep bolsters schematically incongruent memories. PLoS One 2022; 17:e0269439. [PMID: 35749391 PMCID: PMC9231735 DOI: 10.1371/journal.pone.0269439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/21/2022] [Indexed: 11/25/2022] Open
Abstract
Our ability to recall memories is improved when sleep follows learning, suggesting that sleep facilitates memory consolidation. A number of factors are thought to influence the impact of sleep on newly learned information, such as whether or not we rehearse that information (e.g. via restudy or retrieval practice), or the extent to which the information is consistent with our pre-existing schematic knowledge. In this pre-registered, online study, we examined the effects of both rehearsal and schematic congruency on overnight consolidation. Participants learned noun-colour pairings (e.g. elephant-red) and rated each pairing as plausible or implausible before completing a baseline memory assessment. Afterwards, participants engaged in a period of restudy or retrieval practice for the pairings, and then entered a 12 h retention interval of overnight sleep or daytime wakefulness. Follow-up assessments were completed immediately after sleep or wake, and again 24 h after learning. Our data indicated that overnight consolidation was amplified for restudied relative to retested noun-colour pairings, but only when sleep occurred soon after learning. Furthermore, whereas plausible (i.e. schematically congruent) pairings were generally better remembered than implausible (i.e. schematically incongruent) pairings, the benefits of sleep were stronger for implausible relative to plausible memories. These findings challenge the notion that schema-conformant memories are preferentially strengthened during post-learning sleep.
Collapse
Affiliation(s)
| | | | - Scott A. Cairney
- Department of Psychology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Petzka M, Chatburn A, Charest I, Balanos GM, Staresina BP. Sleep spindles track cortical learning patterns for memory consolidation. Curr Biol 2022; 32:2349-2356.e4. [PMID: 35561681 DOI: 10.1016/j.cub.2022.04.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/11/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
Memory consolidation-the transformation of labile memory traces into stable long-term representations-is facilitated by post-learning sleep. Computational and biophysical models suggest that sleep spindles may play a key mechanistic role for consolidation, igniting structural changes at cortical sites involved in prior learning. Here, we tested the resulting prediction that spindles are most pronounced over learning-related cortical areas and that the extent of this learning-spindle overlap predicts behavioral measures of memory consolidation. Using high-density scalp electroencephalography (EEG) and polysomnography (PSG) in healthy volunteers, we first identified cortical areas engaged during a temporospatial associative memory task (power decreases in the alpha/beta frequency range, 6-20 Hz). Critically, we found that participant-specific topographies (i.e., spatial distributions) of post-learning sleep spindle amplitude correlated with participant-specific learning topographies. Importantly, the extent to which spindles tracked learning patterns further predicted memory consolidation across participants. Our results provide empirical evidence for a role of post-learning sleep spindles in tracking learning networks, thereby facilitating memory consolidation.
Collapse
Affiliation(s)
- Marit Petzka
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK; Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany
| | - Alex Chatburn
- Cognitive and Systems Neuroscience Research Hub, University of South Australia, Adelaide, SA, Australia
| | - Ian Charest
- Department of Psychology, University of Montreal, Montreal, QC, Canada
| | - George M Balanos
- School of Sport, Exercise and Rehabilitation, University of Birmingham, Birmingham, UK
| | - Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
18
|
Cohn-Sheehy BI, Delarazan AI, Crivelli-Decker JE, Reagh ZM, Mundada NS, Yonelinas AP, Zacks JM, Ranganath C. Narratives bridge the divide between distant events in episodic memory. Mem Cognit 2022; 50:478-494. [PMID: 33904017 PMCID: PMC8546012 DOI: 10.3758/s13421-021-01178-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Many studies suggest that information about past experience, or episodic memory, is divided into discrete units called "events." Yet we can often remember experiences that span multiple events. Events that occur in close succession might simply be linked because of their proximity to one another, but we can also build links between events that occur farther apart in time. Intuitively, some kind of organizing principle should enable temporally distant events to become bridged in memory. We tested the hypothesis that episodic memory exhibits a narrative-level organization, enabling temporally distant events to be better remembered if they form a coherent narrative. Furthermore, we tested whether post-encoding memory consolidation is necessary to integrate temporally distant events. In three experiments, participants learned and subsequently recalled events from fictional stories, in which pairs of temporally distant events involving side characters ("sideplots") either formed one coherent narrative or two unrelated narratives. Across participants, we varied whether recall was assessed immediately after learning, or after a delay: 24 hours, 12 hours between morning and evening ("wake"), or 12 hours between evening and morning ("sleep"). Participants recalled more information about coherent than unrelated narrative events, in most delay conditions, including immediate recall and wake conditions, suggesting that post-encoding consolidation was not necessary to integrate temporally distant events into a larger narrative. Furthermore, post hoc modeling across experiments suggested that narrative coherence facilitated recall over and above any effects of sentence-level semantic similarity. This reliable memory benefit for coherent narrative events supports theoretical accounts which propose that narratives provide a high-level architecture for episodic memory.
Collapse
Affiliation(s)
- Brendan I Cohn-Sheehy
- M.D./Ph.D. Program, University of California, Davis, Sacramento, CA, USA.
- Neuroscience Graduate Group, University of California, Davis, Davis, CA, USA.
- Center for Neuroscience, University of California, Davis, Davis, CA, USA.
| | - Angelique I Delarazan
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Department of Psychological and Brain Sciences, Washington University, 1 Brookings Drive, St. Louis, MO, USA
| | - Jordan E Crivelli-Decker
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Department of Psychology, University of California, Davis, Davis, CA, USA
| | - Zachariah M Reagh
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Department of Psychological and Brain Sciences, Washington University, 1 Brookings Drive, St. Louis, MO, USA
| | - Nidhi S Mundada
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Department of Psychology, University of California, Davis, Davis, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew P Yonelinas
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Department of Psychology, University of California, Davis, Davis, CA, USA
| | - Jeffrey M Zacks
- Department of Psychological and Brain Sciences, Washington University, 1 Brookings Drive, St. Louis, MO, USA
| | - Charan Ranganath
- Neuroscience Graduate Group, University of California, Davis, Davis, CA, USA
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Department of Psychology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
19
|
Baena D, Cantero JL, Atienza M. Stability of neural encoding moderates the contribution of sleep and repeated testing to memory consolidation. Neurobiol Learn Mem 2021; 185:107529. [PMID: 34597816 DOI: 10.1016/j.nlm.2021.107529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
There is evidence suggesting that online consolidation during retrieval-mediated learning interacts with offline consolidation during subsequent sleep to transform memory. Here we investigate whether this interaction persists when retrieval-mediated learning follows post-training sleep and whether the direction of this interaction is conditioned by the quality of encoding resulting from manipulation of the amount of sleep on the previous night. The quality of encoding was determined by computing the degree of similarity between EEG-activity patterns across restudy of face pairs in two groups of young participants, one who slept the last 4 h of the pre-training night, and another who slept 8 h. The offline consolidation was assessed by computing the degree of coupling between slow oscillations (SOs) and spindles (SPs) during post-training sleep, while the online consolidation was evaluated by determining the degree of similarity between EEG-activity patterns recorded during the study phase and during repeated recognition of either the same face pair (i.e., specific similarity) or face pairs sharing sex and profession (i.e., categorical similarity) to evaluate differentiation and generalization, respectively. The study and recognition phases were separated by a night of normal sleep duration. Mixed-effects models revealed that the stability of neural encoding moderated the relationship between sleep- and retrieval-mediated consolidation processes over left frontal regions. For memories showing lower encoding stability, the enhanced SO-SP coupling was associated with increased reinstatement of category-specific encoding-related activity at the expense of content-specific activity, whilst the opposite occurred for memories showing greater encoding stability. Overall, these results suggest that offline consolidation during post-training sleep interacts with online consolidation during retrieval the next day to favor the reorganization of memory contents, by increasing specificity of stronger memories and generalization of the weaker ones.
Collapse
Affiliation(s)
- Daniel Baena
- Laboratory of Functional Neuroscience, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Jose L Cantero
- Laboratory of Functional Neuroscience, Universidad Pablo de Olavide, Seville 41013, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Universidad Pablo de Olavide, Seville 41013, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Spain.
| |
Collapse
|
20
|
Witkowski S, Noh S, Lee V, Grimaldi D, Preston AR, Paller KA. Does memory reactivation during sleep support generalization at the cost of memory specifics? Neurobiol Learn Mem 2021; 182:107442. [PMID: 33892076 PMCID: PMC8187329 DOI: 10.1016/j.nlm.2021.107442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/11/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
Sleep is important for memory, but does it favor consolidation of specific details or extraction of generalized information? Both may occur together when memories are reactivated during sleep, or a loss of certain memory details may facilitate generalization. To examine these issues, we tested memory in participants who viewed landscape paintings by six artists. Paintings were cropped to show only a section of the scene. During a learning phase, each painting section was presented with the artist's name and with a nonverbal sound that had been uniquely associated with that artist. In a test of memory for specifics, participants were shown arrays of six painting sections, all by the same artist. Participants attempted to select the one that was seen in the learning phase. Generalization was tested by asking participants to view new paintings and, for each one, decide which of the six artists created it. After this testing, participants had a 90-minute sleep opportunity with polysomnographic monitoring. When slow-wave sleep was detected, three of the sound cues associated with the artists were repeatedly presented without waking the participants. After sleep, participants were again tested for memory specifics and generalization. Memory reactivation during sleep due to the sound cues led to a relative decline in accuracy on the specifics test, which could indicate the transition to a loss of detail that facilitates generalization, particularly details such as the borders. Generalization performance showed very little change after sleep and was unaffected by the sound cues. Although results tentatively implicate sleep in memory transformation, further research is needed to examine memory change across longer time periods.
Collapse
Affiliation(s)
- Sarah Witkowski
- Department of Psychology, Northwestern University, Evanston, IL, United States.
| | - Sharon Noh
- Department of Psychology, University of Texas at Austin, Austin, TX, United States; Center for Learning and Memory, University of Texas at Austin, Austin, TX, United States
| | - Victoria Lee
- Department of Psychology, Northwestern University, Evanston, IL, United States
| | - Daniela Grimaldi
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Alison R Preston
- Department of Psychology, University of Texas at Austin, Austin, TX, United States; Center for Learning and Memory, University of Texas at Austin, Austin, TX, United States; Department of Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Ken A Paller
- Department of Psychology, Northwestern University, Evanston, IL, United States
| |
Collapse
|
21
|
Schechtman E, Lampe A, Wilson BJ, Kwon E, Anderson MC, Paller KA. Sleep reactivation did not boost suppression-induced forgetting. Sci Rep 2021; 11:1383. [PMID: 33446812 PMCID: PMC7809483 DOI: 10.1038/s41598-020-80671-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/23/2020] [Indexed: 12/31/2022] Open
Abstract
Sleep's role in memory consolidation is widely acknowledged, but its role in weakening memories is still debated. Memory weakening is evolutionary beneficial and makes an integral contribution to cognition. We sought evidence on whether sleep-based memory reactivation can facilitate memory suppression. Participants learned pairs of associable words (e.g., DIET-CREAM) and were then exposed to hint words (e.g., DIET) and instructed to either recall ("think") or suppress ("no-think") the corresponding target words (e.g., CREAM). As expected, suppression impaired retention when tested immediately after a 90-min nap. To test if reactivation could selectively enhance memory suppression during sleep, we unobtrusively presented one of two sounds conveying suppression instructions during sleep, followed by hint words. Results showed that targeted memory reactivation did not enhance suppression-induced forgetting. Although not predicted, post-hoc analyses revealed that sleep cues strengthened memory, but only for suppressed pairs that were weakly encoded before sleep. The results leave open the question of whether memory suppression can be augmented during sleep, but suggest strategies for future studies manipulating memory suppression during sleep. Additionally, our findings support the notion that sleep reactivation is particularly beneficial for weakly encoded information, which may be prioritized for consolidation.
Collapse
Affiliation(s)
- Eitan Schechtman
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA.
| | - Anna Lampe
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Brianna J Wilson
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Eunbi Kwon
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Michael C Anderson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| | - Ken A Paller
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|