1
|
Jiang B, Ding L, Chen K, Huang Q, Han X, Jin Z, Cao LZ, Zhang J, Li Q, Xue C, He Y, Fang B, Pei G, Yan T. Beta oscillation modulations of the orienting attention network effect correlate with dopamine-dependent motor symptoms of Parkinson's disease. Brain Struct Funct 2024; 230:4. [PMID: 39671095 DOI: 10.1007/s00429-024-02863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Attention impairment, a prevalent non-motor symptom in Parkinson's disease (PD), plays a crucial role in movement disorders. PD patients exhibit abnormalities in the attentional network related to alerting, orienting, and executive control. While dopamine medications have well-documented effects on motor function, their impact on attention networks and the underlying neural mechanisms involved in motor functions remain unclear. In this study, we utilized a modified attention network test to investigate the neural correlates underlying attention network effects measured by electroencephalography (EEG) in 29 PD patients, both on and off dopamine medication and examined their association with motor performance. Interestingly, we found that dopamine medication specifically modulated the orienting effect of the attention network. We analyzed event-related potential components, time-frequency oscillations, and brain network connectivity, as determined by the weighted phase lag index, within the orienting effect under different dopamine medication states. We observed that event-related desynchronization in the betalow, event-related synchronization in the betahigh, and functional connectivity of the betalow in the frontal, central, and parietal were regulated by dopamine medication in the orienting effect. We discovered an association between the attention network's orienting effect and motor performance alterations, which may be attributed to enhanced functional connectivity within the betalow-brain network. Enhanced weighted phase lag index of the betalow-brain network in the orienting effect may contribute to dopamine-dependent changes in motor performance. These preliminary findings provide insights into the EEG mechanisms that underlie the impact of the orienting effect in individuals with PD, shedding light on the influence of dopamine medication and its potential role in regulating top-down attention processes. These findings could help in the advancement of substitution strategies and may have the potential to address both motor and cognitive deficits in PD patients.
Collapse
Affiliation(s)
- Bo Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Lei Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Anesthesiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Keke Chen
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Qiwei Huang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xingyu Han
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Zhaohui Jin
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Li-Zhi Cao
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Jianxu Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Qing Li
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Cuiping Xue
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yiliu He
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Boyan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| | - Guangying Pei
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
2
|
Esposito M, Palermo S, Nahi YC, Tamietto M, Celeghin A. Implicit Selective Attention: The Role of the Mesencephalic-basal Ganglia System. Curr Neuropharmacol 2024; 22:1497-1512. [PMID: 37653629 PMCID: PMC11097991 DOI: 10.2174/1570159x21666230831163052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 09/02/2023] Open
Abstract
The ability of the brain to recognize and orient attention to relevant stimuli appearing in the visual field is highlighted by a tuning process, which involves modulating the early visual system by both cortical and subcortical brain areas. Selective attention is coordinated not only by the output of stimulus-based saliency maps but is also influenced by top-down cognitive factors, such as internal states, goals, or previous experiences. The basal ganglia system plays a key role in implicitly modulating the underlying mechanisms of selective attention, favouring the formation and maintenance of implicit sensory-motor memories that are capable of automatically modifying the output of priority maps in sensory-motor structures of the midbrain, such as the superior colliculus. The article presents an overview of the recent literature outlining the crucial contribution of several subcortical structures to the processing of different sources of salient stimuli. In detail, we will focus on how the mesencephalic- basal ganglia closed loops contribute to implicitly addressing and modulating selective attention to prioritized stimuli. We conclude by discussing implicit behavioural responses observed in clinical populations in which awareness is compromised at some level. Implicit (emergent) awareness in clinical conditions that can be accompanied by manifest anosognosic symptomatology (i.e., hemiplegia) or involving abnormal conscious processing of visual information (i.e., unilateral spatial neglect and blindsight) represents interesting neurocognitive "test cases" for inferences about mesencephalicbasal ganglia closed-loops involvement in the formation of implicit sensory-motor memories.
Collapse
Affiliation(s)
- Matteo Esposito
- Department of Psychology, University of Torino, Via Verdi 10, 10124, Turin
| | - Sara Palermo
- Department of Psychology, University of Torino, Via Verdi 10, 10124, Turin
- Neuroradiology Unit, Department of Diagnostic and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Marco Tamietto
- Department of Psychology, University of Torino, Via Verdi 10, 10124, Turin
- Department of Medical and Clinical Psychology, and CoRPS - Center of Research on Psychology in Somatic Diseases, Tilburg University, PO Box 90153, 5000 LE Tilburg, The Netherlands
| | - Alessia Celeghin
- Department of Psychology, University of Torino, Via Verdi 10, 10124, Turin
| |
Collapse
|
3
|
Li X, Cong J, Liu K, Wang P, Sun M, Wei B. Aberrant intrinsic functional brain topology in methamphetamine-dependent individuals after six-months of abstinence. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:19565-19583. [PMID: 38052615 DOI: 10.3934/mbe.2023867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Our aim was to explore the aberrant intrinsic functional topology in methamphetamine-dependent individuals after six months of abstinence using resting-state functional magnetic imaging (rs-fMRI). Eleven methamphetamines (MA) abstainers who have abstained for six months and eleven healthy controls (HC) were recruited for rs-fMRI examination. The graph theory and functional connectivity (FC) analysis were employed to investigate the aberrant intrinsic functional brain topology between the two groups at multiple levels. Compared with the HC group, the characteristic shortest path length ($ {L}_{p} $) showed a significant decrease at the global level, while the global efficiency ($ {E}_{glob} $) and local efficiency ($ {E}_{loc} $) showed an increase considerably. After FDR correction, we found significant group differences in nodal degree and nodal efficiency at the regional level in the ventral attentional network (VAN), dorsal attentional network (DAN), somatosensory network (SMN), visual network (VN) and default mode network (DMN). In addition, the NBS method presented the aberrations in edge-based FC, including frontoparietal network (FPN), subcortical network (SCN), VAN, DAN, SMN, VN and DMN. Moreover, the FC of large-scale functional brain networks revealed a decrease within the VN and SCN and between the networks. These findings suggest that some functions, e.g., visual processing skills, object recognition and memory, may not fully recover after six months of withdrawal. This leads to the possibility of relapse behavior when confronted with MA-related cues, which may contribute to explaining the relapse mechanism. We also provide an imaging basis for revealing the neural mechanism of MA-dependency after six months of abstinence.
Collapse
Affiliation(s)
- Xiang Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Jinyu Cong
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Kunmeng Liu
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Pingping Wang
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Min Sun
- Shandong Detoxification Monitoring and Treatment Institute, Zibo 255311, China
| | - Benzheng Wei
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| |
Collapse
|
4
|
Palermo S, Stanziano M, Nigri A, Civilotti C, Celeghin A. Parkinson's Disease, SARS-CoV-2, and Frailty: Is There a Vicious Cycle Related to Hypovitaminosis D? Brain Sci 2023; 13:brainsci13040528. [PMID: 37190492 DOI: 10.3390/brainsci13040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023] Open
Abstract
The literature has long established the association between aging and frailty, with emerging evidence pointing to a relationship between frailty and SARS-CoV-2 contagion. The possible neurological consequences of SARS-CoV-2 infection, associated with physical and cognitive frailty, could lead to a worsening of Parkinson's disease (PD) in infected patients or-more rarely-to an increase in the Parkinsonian symptomatology. A possible link between those clinical pictures could be identified in vitamin D deficiency, while the whole process would appear to be associated with alterations in the microbiota-intestine-brain axis that fall within the α-Synuclein Origin site and Connectome (SOC) model, and allow for the identification of a body-first PD and a brain-first PD. The model of care for this condition must consider intrinsic and extrinsic variables so that care by a multidisciplinary team can be successfully predicted. A multidimensional screening protocol specifically designed to identify people at risk or in the early stages of the disease should begin with the investigation of indices of frailty and microbiota-intestine-brain axis alterations, with a new focus on cases of hypovitaminosis D.
Collapse
Affiliation(s)
- Sara Palermo
- Department of Psychology, University of Turin, 10124 Turin, Italy
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Mario Stanziano
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Neurosciences Department "Rita Levi Montalcini", University of Turin, 10126 Turin, Italy
| | - Anna Nigri
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | | | - Alessia Celeghin
- Department of Psychology, University of Turin, 10124 Turin, Italy
| |
Collapse
|
5
|
Harrington DL, Shen Q, Wei X, Litvan I, Huang M, Lee RR. Functional topologies of spatial cognition predict cognitive and motor progression in Parkinson’s. Front Aging Neurosci 2022; 14:987225. [PMID: 36299614 PMCID: PMC9589098 DOI: 10.3389/fnagi.2022.987225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background Spatial cognition deteriorates in Parkinson’s disease (PD), but the neural substrates are not understood, despite the risk for future dementia. It is also unclear whether deteriorating spatial cognition relates to changes in other cognitive domains or contributes to motor dysfunction. Objective This study aimed to identify functional connectivity abnormalities in cognitively normal PD (PDCN) in regions that support spatial cognition to determine their relationship to interfacing cognitive functions and motor disability, and to determine if they predict cognitive and motor progression 2 years later in a PDCN subsample. Methods Sixty-three PDCN and 43 controls underwent functional MRI while judging whether pictures, rotated at various angles, depicted the left or right hand. The task activates systems that respond to increases in rotation angle, a proxy for visuospatial difficulty. Angle-modulated functional connectivity was analyzed for frontal cortex, posterior cortex, and basal ganglia regions. Results Two aberrant connectivity patterns were found in PDCN, which were condensed into principal components that characterized the strength and topology of angle-modulated connectivity. One topology related to a marked failure to amplify frontal, posterior, and basal ganglia connectivity with other brain areas as visuospatial demands increased, unlike the control group (control features). Another topology related to functional reorganization whereby regional connectivity was strengthened with brain areas not recruited by the control group (PDCN features). Functional topologies correlated with diverse cognitive domains at baseline, underscoring their influences on spatial cognition. In PDCN, expression of topologies that were control features predicted greater cognitive progression longitudinally, suggesting inefficient communications within circuitry normally recruited to handle spatial demands. Conversely, stronger expression of topologies that were PDCN features predicted less longitudinal cognitive decline, suggesting functional reorganization was compensatory. Parieto-occipital topologies (control features) had different prognostic implications for longitudinal changes in motor disability. Expression of one topology predicted less motor decline, whereas expression of another predicted increased postural instability and gait disturbance (PIGD) feature severity. Concurrently, greater longitudinal decline in spatial cognition predicted greater motor and PIGD feature progression, suggesting deterioration in shared substrates. Conclusion These novel discoveries elucidate functional mechanisms of visuospatial cognition in PDCN, which foreshadow future cognitive and motor disability.
Collapse
Affiliation(s)
- Deborah L. Harrington
- Research Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Deborah L. Harrington,
| | - Qian Shen
- Research Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Xiangyu Wei
- Research Service, VA San Diego Healthcare System, San Diego, CA, United States
- Revelle College, University of California, San Diego, La Jolla, CA, United States
| | - Irene Litvan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Mingxiong Huang
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, United States
| | - Roland R. Lee
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
6
|
Action and emotion perception in Parkinson's disease: A neuroimaging meta-analysis. Neuroimage Clin 2022; 35:103031. [PMID: 35569229 PMCID: PMC9112018 DOI: 10.1016/j.nicl.2022.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/01/2022] [Accepted: 05/02/2022] [Indexed: 11/23/2022]
Abstract
The neural substrates for action and emotion perception deficits in PD are still unclear. We addressed this issue via coordinate-based meta-analyses of previous fMRI data. PD patients exhibit decreased response in the basal ganglia. PD patients exhibit a trend toward decreased response in the parietal areas. PD patients exhibit a trend toward increased activation in the posterior cerebellum.
Patients with Parkinson disease (PD) may show impairments in the social perception. Whether these deficits have been consistently reported, it remains to be clarified which brain alterations subtend them. To this aim, we conducted a neuroimaging meta-analysis to compare the brain activity during social perception in patients with PD versus healthy controls. Our results show that PD patients exhibit a significantly decreased response in the basal ganglia (putamen and pallidum) and a trend toward decreased activity in the mirror system, particularly in the left parietal cortex (inferior parietal lobule and intraparietal sulcus). This reduced activation may be tied to a disruption of cognitive resonance mechanisms and may thus constitute the basis of impaired others’ representations underlying action and emotion perception. We also found increased activation in the posterior cerebellum in PD, although only in a within-group analysis and not in comparison with healthy controls. This cerebellar activation may reflect compensatory mechanisms, an aspect that deserves further investigation. We discuss the clinical implications of our findings for the development of novel social skill training programs for PD patients.
Collapse
|