1
|
Zhu Z, Tang D, Qin L, Qian Z, Zhuang J, Liu Y. Differential modulation of sensorimotor network between temporal interference and high-definition direct current stimulation. J Neural Eng 2025; 22:036035. [PMID: 40354819 DOI: 10.1088/1741-2552/add770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 05/12/2025] [Indexed: 05/14/2025]
Abstract
Objective.Temporal interference stimulation's (TISs) efficacy in modulating brain networks remains unexplored. We aimed to evaluate the differential impact of TIS and high-definition transcranial direct current stimulation (HD-tDCS) on resting-state functional connectivity (FC) and the topological properties of brain networks, particularly the sensorimotor network (SMN).Approach.In a randomized, double-blind, crossover study, 40 healthy adults underwent both TIS and HD-tDCS targeting the left primary motor cortex (M1). Resting-state functional magnetic resonance imaging data were collected before, during, and after stimulation. Brain networks were constructed using the Dosenbach atlas and the Yeo seven-network parcellation, with a focus on 29 regions of interests within the SMN. Network analysis included FC calculations using Pearson correlations and graph-theoretical measures of global and local efficiency. A two-way repeated measures analysis of variance was used to assess the effects of stimulation on network connectivity properties.Main results.(1) Both stimulation methods enhanced SMN connectivity, with TIS demonstrating greater efficacy than HD-tDCS (FC increase: 31.25% vs 22.58%). (2) TIS significantly improved SMN global and local efficiencies by 15.44% and 18.85%, respectively, while HD-tDCS increased these measures by 11.97% and 12.5%, respectively (allp< 0.05). (3) While both methods enhanced within-network connections of the SMN, TIS additionally strengthened the connections within the visual network, dorsal attention network (DAN), and frontoparietal network, as well as multiple between-network connections. In contrast, HD-tDCS only improved connections between SMN-DAN and SMN-default mode network.Significance.Both TIS and HD-tDCS enhanced SMN FC, with TIS demonstrating superior efficacy. Under specific parameter configurations, TIS exhibited broader effects, improving both network efficiency and extensive within- and between-network connections, whereas HD-tDCS had a limited impact on the selection of network connections. These findings establish TIS as a potentially more effective neuromodulation technique for enhancing brain network properties compared to HD-tDCS.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- School of Kinesiology, Shenzhen University, Shenzhen, People's Republic of China
| | - Dongsheng Tang
- School of Kinesiology, Shenzhen University, Shenzhen, People's Republic of China
| | - Lang Qin
- School of Kinesiology, Shenzhen University, Shenzhen, People's Republic of China
| | - Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, People's Republic of China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Jie Zhuang
- School of Psychology, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Yu Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Qi Y, Wang Y, Li X, Fang W, Du X. Characteristics of positive and negative networks in working memory task of basketball athletes. PSYCHOLOGY OF SPORT AND EXERCISE 2025; 80:102880. [PMID: 40383284 DOI: 10.1016/j.psychsport.2025.102880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/29/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Working memory (WM) plays a vital role in athletic performance in open-skill sports like basketball. However, sport-induced WM adaptation is complex, and the underlying neural mechanisms remain poorly characterized. Using an N-back task with fMRI, this study investigated the brain function of 55 basketball athletes and 55 gender- and age-matched healthy controls during the WM tasks. The results revealed that basketball athletes showed increased activation in the task-positive network (TPN), reduced inhibitory activation in the default mode network (DMN), and cerebellar-mediated new dynamic between the two networks. These neural adaptations aligned with accelerated response speed at the cost of reduced 2-back accuracy, reflecting a speed-accuracy trade-off optimized for sport-specific demands. Future research should explore interventions targeting DMN regulation alongside TPN engagement to optimize cognitive performance in athletes. By bridging sports neuroscience and cognitive training paradigms, this study offers new insights into how sports training sculpts the brain's functional architecture.
Collapse
Affiliation(s)
- Yapeng Qi
- School of Psychology, Shanghai University of Sport, Shanghai, 200438, China
| | - Yihan Wang
- School of Psychology, Shanghai University of Sport, Shanghai, 200438, China
| | - Xinwei Li
- School of Athletic Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Wenxuan Fang
- School of Athletic Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Xiaoxia Du
- School of Psychology, Shanghai University of Sport, Shanghai, 200438, China; Key Laboratory of Motor Cognitive Assessment and Regulation, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
3
|
Ren Y, Xue K, Xu H, Hao L, Zhao Q, Chi T, Yang H, Zhao X, Tian D, Zhai H, Lu J. Altered functional connectivity within and between resting-state networks in ulcerative colitis. Brain Imaging Behav 2025:10.1007/s11682-025-01001-0. [PMID: 40169477 DOI: 10.1007/s11682-025-01001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2025] [Indexed: 04/03/2025]
Abstract
Patients with ulcerative colitis (UC) often exhibit affective disorders, such as depression and anxiety. The underlying neurological mechanisms of these symptoms, however, remain poorly understood. This study aimed to explore alterations in functional connectivity (FC) both within and between resting-state networks (RSNs) in individuals with ulcerative colitis. Twelve meaningful RSNs were identified from 22 ulcerative colitis patients and 23 healthy controls using independent component analysis of functional magnetic resonance imaging data. Correlation analyses were performed between clinical indices, neuropsychological assessments and neuroimaging data. Compared with healthy controls, UC patients showed increased intranetwork FC, mainly located in the right temporal pole, orbitofrontal cortex, and left superior temporal and Rolandic opercular cortices within the auditory network. Increased intranetwork FC in the Rolandic opercular cortex was also observed in UC patients during remission phase, while no significant alterations were detected in patients with active-phase UC. In addition, UC patients exhibited increased connectivity between the dorsal attention and the left frontoparietal network, as well as between the anterior default mode network and the posterior default mode network, with distinct patterns of internetwork connectivity observed across different clinical phases. No significant correlations were found between altered brain regions and psychological scales in UC patients. These findings imply that UC patients may undergo functional network alterations, affecting both intranetwork connectivity within RSNs and internetwork connectivity between RSNs.
Collapse
Affiliation(s)
- Yanjun Ren
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Kaizhong Xue
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Huijuan Xu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Lijie Hao
- Department of Gastroenterology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
| | - Quchuan Zhao
- Department of Gastroenterology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
| | - Tianyu Chi
- Department of Gastroenterology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
| | - Hongwei Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Xiaojing Zhao
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Defeng Tian
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Huihong Zhai
- Department of Gastroenterology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.
| |
Collapse
|
4
|
Jewell DT, Schmuckler MA. Momentary clumsiness and attention: Everyday interactions (and risks) in the world. Acta Psychol (Amst) 2025; 254:104866. [PMID: 40054080 DOI: 10.1016/j.actpsy.2025.104866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/18/2025] Open
Abstract
Typically, explorations into risk-taking involve the conscious undertaking of actions that are potentially harmful. Rarely considered in such risk-taking contexts, however, are everyday, innocuous behaviors that nevertheless have the potential to cause some level of harm to actors; such behaviors could be considered as lying on a continuum of risky activity. The current study explored individual and developmental differences in one such category of behavior, entitled "momentary clumsiness". Momentary clumsiness refers to a tendency to perform movements involving non-optimal motor control, such as knocking over a glass of liquid or tripping while walking up stairs. This project explored the link between such behaviors and attentional factors. Specifically, twenty participants in three age groups (7- and 8-year-olds, 11- and 12-year-olds, and young adults) completed the experiment in 2 testing sessions. Momentary clumsiness was assessed by a 2-week daily phone interview, and was correlated with Stroop performance. The incidence of momentary clumsiness remained steady with age and was not related to motor ability or anthropometric measures. A high incidence of momentary clumsy behaviors was associated with a narrow focus of attention, and specifically, the tendency to ignore irrelevant and distracting stimuli. These findings are interpreted with respect to the relation between action and attentional focus, and provide a basis for extending our conceptualizations of injury proneness and risk-taking into a continuum of behaviors, varying in their degree of riskiness.
Collapse
Affiliation(s)
- Derryn T Jewell
- Department of Psychology, University of Toronto Scarborough, Canada
| | - Mark A Schmuckler
- Department of Psychology, University of Toronto Scarborough, Canada.
| |
Collapse
|
5
|
Wang Z, Yan H, Su K, Wu R, Wang L, Bi H, Wu J. Effects of acupuncture at limb Acupoints-Guangming (GB37) on UDVA, CS, and EEG microstate in myopia. Front Neurosci 2024; 18:1492529. [PMID: 39640293 PMCID: PMC11618237 DOI: 10.3389/fnins.2024.1492529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Acupuncture is beneficial in improving visual function for myopi periocular acupoints Taiyang can improve contrast sensitivity (CS). In this study, we aim to further investigate the impact of acupuncture at the limbs acupoints-Guangming(GB37) acupoint on visual function, and the neural mechanism of acupuncture at the GB37 acupoint improving visual function through electroencephalography (EEG) microstate. Methods A total of 22 myopia were recruited. Uncorrected distance visual acuity (UDVA) and CS of myopic patients were tested before and after acupuncture, and EEG data were recorded throughout the entire acupuncture procedure. Results Our study found that compared with pre-acupuncture, the UDVA and CS of both eyes at each spatial frequency were improved; compared with the resting state of pre-acupuncture, the duration, occurrence and contribution of microstate A were significantly increased, while those of microstate D were decreased during the post-acupuncture state. The duration of microstate A was positively correlated with the CS. There was no correlation between UDVA and EEG microstates. Discussion Acupuncture at GB37 can improve the UDVA and CS in myopic patients, which may be related to microstate A.
Collapse
Affiliation(s)
- Zhongqing Wang
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Jinan High-tech East District Hospital, Jinan, China
| | - Hao Yan
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kangna Su
- Shanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Ruixin Wu
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lihan Wang
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Shandong Institute of Eye Disease Prevention and Treatment, Shandong Provincial Key Laboratory of Integrative Medicine for Eye Diseases, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Institute of Children Health and Myopia Prevention and Control, Jinan, China
| | - Hongsheng Bi
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Shandong Institute of Eye Disease Prevention and Treatment, Shandong Provincial Key Laboratory of Integrative Medicine for Eye Diseases, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Institute of Children Health and Myopia Prevention and Control, Jinan, China
| | - Jianfeng Wu
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Shandong Institute of Eye Disease Prevention and Treatment, Shandong Provincial Key Laboratory of Integrative Medicine for Eye Diseases, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Institute of Children Health and Myopia Prevention and Control, Jinan, China
| |
Collapse
|
6
|
Wei X, Zhou R, Zheng S, Zhang Y, Feng X, Lü J. Network-based transcranial direct current stimulation enhances attention function in healthy young adults: a preliminary study. Front Hum Neurosci 2024; 18:1421230. [PMID: 39175659 PMCID: PMC11338793 DOI: 10.3389/fnhum.2024.1421230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
Purpose Attention, a complex cognitive process, is linked to the functional activities of the brain's dorsal attention network (DAN) and default network (DN). This study aimed to investigate the feasibility, safety, and blinding efficacy of a transcranial direct current stimulation (tDCS) paradigm designed to increase the excitability of the DAN while inhibiting the DN (DAN+/DN-tDCS) on attention function in healthy young adults. Methods In this randomized controlled experiment, participants were assigned to either the DAN+/DN-tDCS group or the sham group. A single intervention session was conducted at a total intensity of 4 mA for 20 min. Participants completed the Attention Network Test (ANT) immediately before and after stimulation. Blinding efficacy and adverse effects were assessed post-stimulation. Results Forty participants completed the study, with 20 in each group. Paired-sample t-test showed a significant post-stimulation improvement in executive effect performance (t = 2.245; p = 0.037) in the DAN+/DN-tDCS group. The sham group did not exhibit any significant differences in ANT performance. Participants identified the stimulation type with 52.50% accuracy, indicating no difference in blinding efficacy between groups (p = 0.241). Mild-to-moderate adverse effects, such as stinging, itching, and skin reddening, were reported in the DAN+/DN-tDCS group (p < 0.05). Conclusion DAN+/DN-tDCS enhanced attention function in healthy young individuals, particularly in improving executive effect performance. This study presents novel strategies for enhancing attentional performance and encourages further investigation into the mechanisms and outcomes of these interventions across diverse populations.
Collapse
Affiliation(s)
- Xiaoyu Wei
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Rong Zhou
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Suwang Zheng
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yufeng Zhang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xiaofan Feng
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jiaojiao Lü
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
7
|
Wang Y, Shu Y, Cai G, Guo Y, Gao J, Chen Y, Lv L, Zeng X. Altered static and dynamic functional network connectivity in primary angle-closure glaucoma patients. Sci Rep 2024; 14:11682. [PMID: 38778225 PMCID: PMC11111766 DOI: 10.1038/s41598-024-62635-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
To explore altered patterns of static and dynamic functional brain network connectivity (sFNC and dFNC) in Primary angle-closure glaucoma (PACG) patients. Clinically confirmed 34 PACG patients and 33 age- and gender-matched healthy controls (HCs) underwent evaluation using T1 anatomical and functional MRI on a 3 T scanner. Independent component analysis, sliding window, and the K-means clustering method were employed to investigate the functional network connectivity (FNC) and temporal metrics based on eight resting-state networks. Differences in FNC and temporal metrics were identified and subsequently correlated with clinical variables. For sFNC, compared with HCs, PACG patients showed three decreased interactions, including SMN-AN, SMN-VN and VN-AN pairs. For dFNC, we derived four highly structured states of FC that occurred repeatedly between individual scans and subjects, and the results are highly congruent with sFNC. In addition, PACG patients had a decreased fraction of time in state 3 and negatively correlated with IOP (p < 0.05). PACG patients exhibit abnormalities in both sFNC and dFNC. The high degree of overlap between static and dynamic results suggests the stability of functional connectivity networks in PACG patients, which provide a new perspective to understand the neuropathological mechanisms of optic nerve damage in PACG patients.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yongqiang Shu
- Positron Emission Tomography (PET) Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guoqian Cai
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu Guo
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Junwei Gao
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ye Chen
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lianjiang Lv
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xianjun Zeng
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
8
|
Wang W, Li H, Wang Y, Liu L, Qian Q. Changes in effective connectivity during the visual-motor integration tasks: a preliminary f-NIRS study. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:4. [PMID: 38468270 DOI: 10.1186/s12993-024-00232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Visual-motor integration (VMI) is an essential skill in daily life. The present study aimed to use functional near-infrared spectroscopy (fNIRS) technology to explore the effective connectivity (EC) changes among brain regions during VMI activities of varying difficulty levels. METHODS A total of 17 healthy participants were recruited for the study. Continuous Performance Test (CPT), Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A), and Beery VMI test were used to evaluate attention performance, executive function, and VMI performance. Granger causality analysis was performed for the VMI task data to obtain the EC matrix for all participants. One-way ANOVA analysis was used to identify VMI load-dependent EC values among different task difficulty levels from brain network and channel perspectives, and partial correlation analysis was used to explore the relationship between VMI load-dependent EC values and behavioral performance. RESULTS We found that the EC values of dorsal attention network (DAN) → default mode network (DMN), DAN → ventral attention network (VAN), DAN → frontoparietal network (FPN), and DAN → somatomotor network (SMN) in the complex condition were higher than those in the simple and moderate conditions. Further channel analyses indicated that the EC values of the right superior parietal lobule (SPL) → right superior frontal gyrus (SFG), right middle occipital gyrus (MOG) → left SFG, and right MOG → right postcentral gyrus (PCG) in the complex condition were higher than those in the simple and moderate conditions. Subsequent partial correlation analysis revealed that the EC values from DAN to DMN, VAN, and SMN were positively correlated with executive function and VMI performance. Furthermore, the EC values of right MOG → left SFG and right MOG → right PCG were positively correlated with attention performance. CONCLUSIONS The DAN is actively involved during the VMI task and thus may play a critical role in VMI processes, in which two key brain regions (right SPL, right MOG) may contribute to the EC changes in response to increasing VMI load. Meanwhile, bilateral SFG and right PCG may also be closely related to the VMI performance.
Collapse
Affiliation(s)
- Wenchen Wang
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Haimei Li
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yufeng Wang
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lu Liu
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Qiujin Qian
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
9
|
Wu J, Ma L, Luo D, Jin Z, Wang L, Wang L, Li T, Zhang J, Liu T, Lv D, Yan T, Fang B. Functional and structural gradients reveal atypical hierarchical organization of Parkinson's disease. Hum Brain Mapp 2024; 45:e26647. [PMID: 38488448 PMCID: PMC10941507 DOI: 10.1002/hbm.26647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 03/18/2024] Open
Abstract
Parkinson's disease (PD) patients exhibit deficits in primary sensorimotor and higher-order executive functions. The gradient reflects the functional spectrum in sensorimotor-associated areas of the brain. We aimed to determine whether the gradient is disrupted in PD patients and how this disruption is associated with treatment outcome. Seventy-six patients (mean age, 59.2 ± 12.4 years [standard deviation], 44 women) and 34 controls participants (mean age, 58.1 ± 10.0 years [standard deviation], 19 women) were evaluated. We explored functional and structural gradients in PD patients and control participants. Patients were followed during 2 weeks of multidisciplinary intensive rehabilitation therapy (MIRT). The Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) was administered to patients before and after treatment. We investigated PD-related alterations in the principal functional and structural gradients. We further used a support vector machine (SVM) and correlation analysis to assess the classification ability and treatment outcomes related to PD gradient alterations, respectively. The gradients showed significant differences between patients and control participants, mainly in somatosensory and visual networks involved in primary function, and higher-level association networks (dorsal attentional network (DAN) and default mode network (DMN)) related to motor control and execution. On the basis of the combined functional and structural gradient features of these networks, the SVM achieved an accuracy of 91.2% in discriminating patients from control participants. Treatment reduced the gradient difference. The altered gradient exhibited a significant correlation with motor improvement and was mainly distributed across the visual network, DAN and DMN. This study revealed damage to gradients in the brain characterized by sensorimotor and executive control deficits in PD patients. The application of gradient features to neurological disorders could lead to the development of potential diagnostic and treatment markers for PD.
Collapse
Affiliation(s)
- Jinglong Wu
- School of Mechatronical Engineering, Beijing Institute of TechnologyBeijingChina
| | - Lihua Ma
- School of Mechatronical Engineering, Beijing Institute of TechnologyBeijingChina
| | - Di Luo
- School of Mechatronical Engineering, Beijing Institute of TechnologyBeijingChina
| | - Zhaohui Jin
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical UniversityBeijingChina
| | - Li Wang
- School of Life Science, Beijing Institute of TechnologyBeijingChina
| | - Luyao Wang
- School of Life Science, Shanghai UniversityShanghaiChina
| | - Ting Li
- School of Life Science, Beijing Institute of TechnologyBeijingChina
| | - Jian Zhang
- School of Mechatronical Engineering, Beijing Institute of TechnologyBeijingChina
| | - Tiantian Liu
- School of Life Science, Beijing Institute of TechnologyBeijingChina
| | - Diyang Lv
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical UniversityBeijingChina
| | - Tianyi Yan
- School of Life Science, Beijing Institute of TechnologyBeijingChina
| | - Boyan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
10
|
Zhang X, Feng Y, Chen Z, Long J. Altered functional connectivity in the hippocampal and striatal systems after motor sequence learning consolidation in medial temporal lobe epilepsy individuals. J Neurophysiol 2024; 131:294-303. [PMID: 38230870 DOI: 10.1152/jn.00376.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 01/18/2024] Open
Abstract
Both the hippocampal and striatal systems participate in motor sequence learning (MSL) in healthy subjects, and the prominent role of the hippocampal system in sleep-related consolidation has been demonstrated. However, some pathological states may change the functional dominance between these two systems in MSL consolidation. To better understand the functional performance within these two systems under the pathological condition of hippocampal impairment, we compared the functional differences after consolidation between patients with left medial temporal lobe epilepsy (LmTLE) and healthy control subjects (HCs). We assessed participants' performance on the finger-tapping task (FTT) during acquisition (on day 1) and after consolidation during sleep (on day 2). All participants underwent an MRI scan (T1 and resting state) before each FTT. We found that the LmTLE group showed performance deficits in offline consolidation compared to the HC group. The LmTLE group exhibited structural changes, such as decreased gray matter volume (GMV) in the left hippocampus and increased GMV in the right putamen (striatum). Our results also revealed that whereas the main effect of consolidation was observed in the hippocampus-related functional connection in the HC group, it was only evident in the striatum-related functional loop in the LmTLE group. Our findings indicated that LmTLE patients may rely more on the striatal system for offline consolidation because of structural impairments in the hippocampus. Additionally, this compensatory mechanism may not fully substitute for the role of the impaired hippocampus itself.NEW & NOTEWORTHY Motor sequence learning (MSL) relies on both the hippocampal and striatal systems, but whether functional performance is altered after MSL consolidation when the hippocampus is impaired remains unknown. Our results indicated that whereas the main effect of consolidation was observed in the hippocampus-related functional connection in the healthy control (HC) group, it was only evident in the striatum-related functional loop in the left medial temporal lobe epilepsy (LmTLE) group.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yanyun Feng
- Department of Radiology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Zhuoming Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jinyi Long
- College of Information Science and Technology, Jinan University, Guangzhou, Guangdong, China
- Pazhou Lab, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Yang 杨炀 Y, Li 李君君 J, Zhao 赵恺 K, Tam F, Graham SJ, Xu 徐敏 M, Zhou 周可 K. Lateralized Functional Connectivity of the Sensorimotor Cortex and its Variations During Complex Visuomotor Tasks. J Neurosci 2024; 44:e0723232023. [PMID: 38050101 PMCID: PMC10860583 DOI: 10.1523/jneurosci.0723-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023] Open
Abstract
Previous studies have shown that the left hemisphere dominates motor function, often observed through homotopic activation measurements. Using a functional connectivity approach, this study investigated the lateralization of the sensorimotor cortex during handwriting and drawing, two complex visuomotor tasks with varying contextual demands. We found that both left- and right-lateralized connectivity in the primary motor cortex (M1), dorsal premotor cortex (PMd), somatosensory cortex, and visual regions were evident in adults (males and females), primarily in an interhemispheric integrative fashion. Critically, these lateralization tendencies remained highly invariant across task contexts, representing a task-invariant neural architecture for encoding fundamental motor programs consistently implemented in different task contexts. Additionally, the PMd exhibited a slight variation in lateralization degree between task contexts, reflecting the ability of the high-order motor system to adapt to varying task demands. However, connectivity-based lateralization of the sensorimotor cortex was not detected in 10-year-old children (males and females), suggesting that the maturation of connectivity-based lateralization requires prolonged development. In summary, this study demonstrates both task-invariant and task-sensitive connectivity lateralization in sensorimotor cortices that support the resilience and adaptability of skilled visuomotor performance. These findings align with the hierarchical organization of the motor system and underscore the significance of the functional connectivity-based approach in studying functional lateralization.
Collapse
Affiliation(s)
- Yang Yang 杨炀
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjun Li 李君君
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhao 赵恺
- Institute of Brain Trauma and Neurology, Pingjin Hospital, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin 300300, China
| | - Fred Tam
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Min Xu 徐敏
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Ke Zhou 周可
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
12
|
Iandolo R, Avci E, Bommarito G, Sandvig I, Rohweder G, Sandvig A. Characterizing upper extremity fine motor function in the presence of white matter hyperintensities: A 7 T MRI cross-sectional study in older adults. Neuroimage Clin 2024; 41:103569. [PMID: 38281363 PMCID: PMC10839532 DOI: 10.1016/j.nicl.2024.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND White matter hyperintensities (WMH) are a prevalent radiographic finding in the aging brain studies. Research on WMH association with motor impairment is mostly focused on the lower-extremity function and further investigation on the upper-extremity is needed. How different degrees of WMH burden impact the network of activation recruited during upper limb motor performance could provide further insight on the complex mechanisms of WMH pathophysiology and its interaction with aging and neurological disease processes. METHODS 40 healthy elderly subjects without a neurological/psychiatric diagnosis were included in the study (16F, mean age 69.3 years). All subjects underwent ultra-high field 7 T MRI including structural and finger tapping task-fMRI. First, we quantified the WMH lesion load and its spatial distribution. Secondly, we performed a data-driven stratification of the subjects according to their periventricular and deep WMH burdens. Thirdly, we investigated the distribution of neural recruitment and the corresponding activity assessed through BOLD signal changes among different brain regions for groups of subjects. We clustered the degree of WMH based on location, numbers, and volume into three categories; ranging from mild, moderate, and severe. Finally, we explored how the spatial distribution of WMH, and activity elicited during task-fMRI relate to motor function, measured with the 9-Hole Peg Test. RESULTS Within our population, we found three subgroups of subjects, partitioned according to their periventricular and deep WMH lesion load. We found decreased activity in several frontal and cingulate cortex areas in subjects with a severe WMH burden. No statistically significant associations were found when performing the brain-behavior statistical analysis for structural or functional data. CONCLUSION WMH burden has an effect on brain activity during fine motor control and the activity changes are associated with varying degrees of the total burden and distributions of WMH lesions. Collectively, our results shed new light on the potential impact of WMH on motor function in the context of aging and neurodegeneration.
Collapse
Affiliation(s)
- Riccardo Iandolo
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Esin Avci
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Giulia Bommarito
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Gitta Rohweder
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Stroke Unit, Department of Medicine, St Olav's University Hospital, Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olav's University Hospital, Trondheim, Norway; Department of Clinical Neurosciences, Division of Neuro, Head and Neck, Umeå University Hospital, Umeå, Sweden; Department of Community Medicine and Rehabilitation, Umeå University Hospital, Umeå, Sweden.
| |
Collapse
|
13
|
Breault MS, Sacré P, Fitzgerald ZB, Gale JT, Cullen KE, González-Martínez JA, Sarma SV. Internal states as a source of subject-dependent movement variability are represented by large-scale brain networks. Nat Commun 2023; 14:7837. [PMID: 38030611 PMCID: PMC10687170 DOI: 10.1038/s41467-023-43257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Humans' ability to adapt and learn relies on reflecting on past performance. These experiences form latent representations called internal states that induce movement variability that improves how we interact with our environment. Our study uncovered temporal dynamics and neural substrates of two states from ten subjects implanted with intracranial depth electrodes while they performed a goal-directed motor task with physical perturbations. We identified two internal states using state-space models: one tracking past errors and the other past perturbations. These states influenced reaction times and speed errors, revealing how subjects strategize from trial history. Using local field potentials from over 100 brain regions, we found large-scale brain networks such as the dorsal attention and default mode network modulate visuospatial attention based on recent performance and environmental feedback. Notably, these networks were more prominent in higher-performing subjects, emphasizing their role in improving motor performance by regulating movement variability through internal states.
Collapse
Affiliation(s)
- Macauley Smith Breault
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Pierre Sacré
- Department of Electrical Engineering and Computer Science, School of Engineering, University of Liège, Liège, Belgium
| | - Zachary B Fitzgerald
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Sridevi V Sarma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
14
|
Wilson A, Stevens WD, Sergio L, Wojtowicz M. Altered Brain Functional Connectivity in Female Athletes Over the Course of a Season of Collision or Contact Sports. Neurotrauma Rep 2022; 3:377-387. [PMID: 36204391 PMCID: PMC9531888 DOI: 10.1089/neur.2022.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
University athletes are exposed to numerous impacts to the body and head, though the potential cumulative effects of such hits remain elusive. This study examined resting-state functional connectivity (rsFC) of brain networks in female varsity athletes over the course of a season. Nineteen female university athletes involved in collision (N = 12) and contact (N = 7) sports underwent functional magnetic resonance imaging scans at both pre- and post-season. A group-level independent component analysis (ICA) was used to investigate differences in rsFC over the course of a season and differences between contact and collision sport athletes. Decreased rsFC was observed over the course of the season between the default mode network (DMN) and regions in the frontal, parietal, and occipital lobe (p false discovery rate, ≤0.05) driven by differences in the contact group. There was also a main effect of group in the dorsal attention network (DAN) driven by differences between contact and collision groups at pre-season. Differences identified over the course of a season of play indicate largely decreased rsFC within the DMN, and level of contact was associated with differences in rsFC of the DAN. The association between exposure to repetitive head impacts (RHIs) and observed changes in network rsFC supplements the growing literature suggesting that even non-concussed athletes may be at risk for changes in brain functioning. However, the complexity of examining the direct effects of RHIs highlights the need to consider multiple factors, including mental health and sport-specific training and expertise, that may potentially be associated with neural changes.
Collapse
Affiliation(s)
- Alyssia Wilson
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - W. Dale Stevens
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - Lauren Sergio
- School of Kinesiology, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
15
|
Wang J, Liu X, Wang X, Hu Y, Zeng Q, Lin Z, Xiong N, Feng Y. Alterations of white matter tracts and topological properties of structural networks in hemifacial spasm. NMR IN BIOMEDICINE 2022; 35:e4756. [PMID: 35488376 DOI: 10.1002/nbm.4756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Hemifacial spasm (HFS) is characterized by involuntary and paroxysmal muscle contractions on the hemiface. It is generally believed that HFS is caused by neurovascular compression at the root exit zone of the facial nerve. In recent years, the structural alterations of brains with HFS have aroused growing concern. However, little attention has been directed towards the possible involvement of specific white matter (WM) tracts and the topological properties of structural networks in HFS. In the present study, diffusion magnetic resonance imaging tractography was utilized to construct structural networks and perform tractometric analysis. The diffusion tensor imaging scalar parameters along with the WM tracts, and the topological parameters of global networks and subnetworks, were assessed in 62 HFS patients and 57 demographically matched healthy controls (HCs). Moreover, we investigated the correlation of these parameters with disease-clinical-level (DCL) and disease-duration-time (DDT) of HFS patients. Compared with HCs, HFS patients had additional hub regions including the amygdala, ventromedial putamen, lateral occipital cortex, and rostral cuneus gyrus. Furthermore, HFS patients showed significant alternations with specific topological properties in some structural subnetworks, including the limbic, default mode, dorsal attention, somato-motor, and control networks, as well as diffusion properties in some WM tracts, including the superior longitudinal fasciculus, cingulum bundle, thalamo-frontal, and corpus callosum. These subnetworks and tracts were associated with the regulation of emotion, motor function, vision, and attention. Notably, we also found that the parameters with subnetworks and tracts exhibited correlations with DCL and DDT. In addition to corroborating previous findings in HFS, this study demonstrates the changed microstructures in specific locations along with the fiber tracts and changed topological properties in structural subnetworks.
Collapse
Affiliation(s)
- Jingqiang Wang
- Institution of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, China
| | - Xinyi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuhuan Hu
- Institution of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Qingrun Zeng
- Institution of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhicheng Lin
- Mclean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanjing Feng
- Institution of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
16
|
Liu Z, Li J, Bi HY, Xu M, Yang Y. Disruption of Functional Brain Networks Underlies the Handwriting Deficit in Children With Developmental Dyslexia. Front Neurosci 2022; 16:919440. [PMID: 35924227 PMCID: PMC9339653 DOI: 10.3389/fnins.2022.919440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Developmental dyslexia (DD) is a neurological-based learning disorder that affects 5-17.5% of children. Handwriting difficulty is a prevailing symptom of dyslexia, but its neural mechanisms remain elusive. Using functional magnetic resonance imaging (fMRI), this study examined functional brain networks associated with handwriting in a copying task in Chinese children with DD (n = 17) and age-matched children (n = 36). We found that dyslexics showed reduced network connectivity between the sensory-motor network (SMN) and the visual network (VN), and between the default mode network (DMN) and the ventral attention network (VAN) during handwriting, but not during drawing geometric figures. Moreover, the connectivity strength of the networks showing group differences was correlated with handwriting speed, reading and working memory, suggesting that the handwriting deficit in DD is linked with disruption of a large-scale brain network supporting motoric, linguistic and executive control processes. Taken together, this study demonstrates the alternations of functional brain networks that underly the handwriting deficit in Chinese dyslexia, providing a new clue for the neural basis of DD.
Collapse
Affiliation(s)
- Zhengyan Liu
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Junjun Li
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Yan Bi
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Min Xu
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen, China
- *Correspondence: Min Xu,
| | - Yang Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Yang Yang,
| |
Collapse
|