1
|
Battisti A, Lazzaro G, Ursumando L, D'Aiello B, Zanna V, Costanzo F, Vicari S, Menghini D. Examining tolerability, safety, and blinding in 1032 transcranial electrical stimulation sessions for children and adolescents with neuropsychiatric and neurodevelopmental disorders. Sci Rep 2025; 15:4560. [PMID: 39915614 PMCID: PMC11802757 DOI: 10.1038/s41598-025-88256-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025] Open
Abstract
The present study first extensively evaluated the tolerability, safety, and blinding of transcranial direct current stimulation (tDCS) and transcranial random noise stimulation (tRNS) in paediatric clinical populations, composed of 92 children and adolescents (54 females, age range: 8-17 years), involving 1032 sessions across neuropsychiatric (i.e., anorexia nervosa) and neurodevelopmental (i.e., attention deficit and hyperactivity disorder, developmental dyscalculia) conditions. It compared adverse events (AEs) occurrence between active and sham transcranial electrical stimulation (tES) conditions (i.e., 528 active vs. 504 sham sessions) as well as tDCS and tRNS (i.e., 772 tDCS sessions vs. 260 tRNS sessions), while considering demographic and emotional-behavioural factors. Results showed tES safety with no "moderate" or "severe" AEs reported; about 77% of sessions were AE-free, supporting tES use in these populations. Itching was the most common symptom, and active sessions were found to be more likely to induce AEs compared to sham sessions. Notably, tRNS had a higher AE likelihood than tDCS, possibly due to experimental differences. In the current study, demographic and emotional-behavioural variables did not significantly affect AEs. Blinding procedures were moderately effective, with about half of participants correctly identifying their condition. As indicated in prior studies, tRNS seems to better preserve blinding integrity. In conclusion, this study provides comprehensive insights into tES tolerability and safety in paediatric clinical populations, emphasizing the need for further AEs exploration in tES and blinding procedure refinement in future research.
Collapse
Affiliation(s)
- Andrea Battisti
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, 00146, Italy
- Department of Human Science, LUMSA University, Rome, 00193, Italy
| | - Giulia Lazzaro
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, 00146, Italy
| | - Luciana Ursumando
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, 00146, Italy
| | - Barbara D'Aiello
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, 00146, Italy
| | - Valeria Zanna
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, 00146, Italy
| | - Floriana Costanzo
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, 00146, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, 00146, Italy
- Department of Life Science and Public Health, Catholic University of the Sacred Heart, Rome, 00168, Italy
| | - Deny Menghini
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, 00146, Italy.
| |
Collapse
|
2
|
Xu Z, Shen B, Xiao S, Zhang C, Zhan J, Li J, Fu W, Jin J. The Effect of Transcranial Direct Current Stimulation on Lower-Limb Endurance Performance: A Systematic Review. Bioengineering (Basel) 2024; 11:1088. [PMID: 39593748 PMCID: PMC11591268 DOI: 10.3390/bioengineering11111088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
This study systematically reviews the literature on transcranial direct current stimulation (tDCS) interventions for lower-limb endurance performance in healthy adults and provides a summary of the effects and underlying mechanisms of tDCS on lower-limb endurance performance. Systematic searches were performed in PubMed, Web of Science, EBSCO, and ScienceDirect. The risk of bias was assessed using the Cochrane risk of bias assessment tool. The electronic search totaled 341 studies. Twenty-one studies were included in the review after screening. The results show that tDCS effectively improved time to task failure (TTF), increased blood lactate accumulation, and reduced the rating of perceived exertion during cycling. However, the tDCS failed to significantly improve the TTF, relieve muscle pain, and reduce fatigue indices during single-joint fatigue tasks in the knee. Moreover, tDCS intervention caused the effective improvement of the overall lower-limb endurance performance but exerted no uniformly conclusive effect on knee endurance performance. This finding can be partly attributed to varying stimulation protocols across studies. Future studies may focus on the effects of the application of stimulation protocols, such as multitarget stimulation and personalized dosage, to develop targeted stimulation protocols.
Collapse
Affiliation(s)
- Zhen Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (Z.X.); (B.S.)
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Bin Shen
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (Z.X.); (B.S.)
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Songlin Xiao
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (Z.X.); (B.S.)
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Chuyi Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (Z.X.); (B.S.)
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Jianglong Zhan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (Z.X.); (B.S.)
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Jingjing Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (Z.X.); (B.S.)
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Weijie Fu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (Z.X.); (B.S.)
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Jing Jin
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
3
|
Bjekić J, Živanović M, Stanković M, Paunović D, Konstantinović U, Filipović SR. The subjective experience of transcranial electrical stimulation: a within-subject comparison of tolerability and side effects between tDCS, tACS, and otDCS. Front Hum Neurosci 2024; 18:1468538. [PMID: 39507062 PMCID: PMC11537871 DOI: 10.3389/fnhum.2024.1468538] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Low-intensity transcranial electrical stimulation (tES), including techniques like transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), and oscillatory transcranial direct current stimulation (otDCS), has been widely explored for its neuromodulatory effects on motor, cognitive, and behavioral processes. Despite well-established safety, these techniques can induce varying degrees of discomfort and side effects, potentially impacting their application. This study presents a within-subject sham-controlled experiment directly comparing the subjective experience and side effects of tDCS, tACS, and otDCS. Participants reported their discomfort levels at multiple time points during 20-min stimulation sessions and completed a side-effects questionnaire before and after each session. Results indicated that the overall discomfort levels were low across all conditions, with ≥95% reporting the absence of discomfort or mild procedure-induced discomfort. Nevertheless, tDCS and otDCS were slightly less comfortable compared to sham, especially at the beginning of stimulation, with tACS-induced discomfort levels being overall comparable to sham. The most common side / adverse effects were mild skin sensations, including itching and tingling, particularly with tDCS and otDCS, while tACS occasionally caused phosphenes and blurred vision. These findings provide a systematic comparison of tES-induced discomfort and side effects between different tES techniques, highlighting the high safety of tES, but also the importance of considering within- and between-person variability and time-course effects in tES applications.
Collapse
Affiliation(s)
- Jovana Bjekić
- Human Neuroscience Group, Centre for Neuroscience and Neuromodulation, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Marko Živanović
- Institute of Psychology, Department of Psychology, Faculty of Philosophy, University of Belgrade, Belgrade, Serbia
| | - Marija Stanković
- Human Neuroscience Group, Centre for Neuroscience and Neuromodulation, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Dunja Paunović
- Human Neuroscience Group, Centre for Neuroscience and Neuromodulation, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Uroš Konstantinović
- Human Neuroscience Group, Centre for Neuroscience and Neuromodulation, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Saša R. Filipović
- Human Neuroscience Group, Centre for Neuroscience and Neuromodulation, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Bertoni S, Franceschini S, Mancarella M, Puccio G, Ronconi L, Marsicano G, Gori S, Campana G, Facoetti A. Action video games and posterior parietal cortex neuromodulation enhance both attention and reading in adults with developmental dyslexia. Cereb Cortex 2024; 34:bhae152. [PMID: 38610090 DOI: 10.1093/cercor/bhae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The impact of action video games on reading performance has been already demonstrated in individuals with and without neurodevelopmental disorders. The combination of action video games and posterior parietal cortex neuromodulation by a transcranial random noise stimulation could enhance brain plasticity, improving attentional control and reading skills also in adults with developmental dyslexia. In a double blind randomized controlled trial, 20 young adult nonaction video game players with developmental dyslexia were trained for 15 h with action video games. Half of the participants were stimulated with bilateral transcranial random noise stimulation on the posterior parietal cortex during the action video game training, whereas the others were in the placebo (i.e. sham) condition. Word text reading, pseudowords decoding, and temporal attention (attentional blink), as well as electroencephalographic activity during the attentional blink, were measured before and after the training. The action video game + transcranial random noise stimulation group showed temporal attention, word text reading, and pseudoword decoding enhancements and P300 amplitude brain potential changes. The enhancement in temporal attention performance was related with the efficiency in pseudoword decoding improvement. Our results demonstrate that the combination of action video game training with parietal neuromodulation increases the efficiency of visual attention deployment, probably reshaping goal-directed and stimulus-driven fronto-parietal attentional networks interplay in young adults with neurodevelopmental conditions.
Collapse
Affiliation(s)
- Sara Bertoni
- Department of Human and Social Sciences, University of Bergamo, Piazzale Sant'Agostino 2, Bergamo 24129, Italy
| | - Sandro Franceschini
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Via Venezia 8, Padua 35131, Italy
| | - Martina Mancarella
- Katholieke Universiteit Leuven, Leopold Vanderkelenstraat 32, Leuven 3000, Belgium
| | - Giovanna Puccio
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Via Venezia 8, Padua 35131, Italy
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, Milan 20132, Italy
| | - Gianluca Marsicano
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Viale Rasi e Spinelli 176, Cesena 47521, Italy
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, Bologna 40121, Italy
| | - Simone Gori
- Department of Human and Social Sciences, University of Bergamo, Piazzale Sant'Agostino 2, Bergamo 24129, Italy
| | - Gianluca Campana
- PercUp Lab, Department of General Psychology, University of Padua, Via Venezia 8, Padua 35131, Italy
| | - Andrea Facoetti
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Via Venezia 8, Padua 35131, Italy
| |
Collapse
|
5
|
Battisti A, Lazzaro G, Varuzza C, Vicari S, Menghini D. Effects of online tDCS and hf-tRNS on reading performance in children and adolescents with developmental dyslexia: a study protocol for a cross sectional, within-subject, randomized, double-blind, and sham-controlled trial. Front Neurol 2024; 15:1338430. [PMID: 38533416 PMCID: PMC10964771 DOI: 10.3389/fneur.2024.1338430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Background Developmental Dyslexia (DD) is a brain-based developmental disorder causing severe reading difficulties. The extensive data on the neurobiology of DD have increased interest in brain-directed approaches, such as transcranial direct current stimulation (tDCS), which have been proposed for DD. While positive outcomes have been observed, results remain heterogeneous. Various methodological approaches have been employed to address this issue. However, no studies have compared the effects of different transcranial electrical stimulation techniques (e.g., tDCS and transcranial random noise stimulation, tRNS), on reading in children and adolescents with DD. Methods The present within-subject, double-blind, and sham-controlled trial aims to investigate the effects of tDCS and hf-tRNS on reading in children and adolescents with DD. Participants will undergo three conditions with a one-week interval session: (A) single active tDCS session; (B) single active hf-tRNS session; and (C) single sham session (tDCS/hf-tRNS). Left anodal/right cathodal tDCS and bilateral tRNS will be applied over the temporo-parietal regions for 20 min each. Reading measures will be collected before and during each session. Safety and blinding parameters will be recordered. Discussion We hypothesize that tRNS will demonstrate comparable effectiveness to tDCS in improving reading compared to sham conditions. Additionally, we anticipate that hf-tRNS will exhibit a similar safety profile to tDCS. This study will contribute novel insights into the effectiveness of hf-tRNS, expediting the validation of brain-based treatments for DD.
Collapse
Affiliation(s)
- Andrea Battisti
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Human Sciences, LUMSA University, Rome, Italy
| | - Giulia Lazzaro
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Cristiana Varuzza
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Deny Menghini
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
6
|
El Jamal C, Harrie A, Rahman-Filipiak A, Iordan AD, DaSilva AF, Ploutz-Snyder R, Khadr L, Vesia M, Bikson M, Hampstead BM. Tolerability and blinding of high-definition transcranial direct current stimulation among older adults at intensities of up to 4 mA per electrode. Brain Stimul 2023; 16:1328-1335. [PMID: 37660936 PMCID: PMC11218548 DOI: 10.1016/j.brs.2023.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Few studies have investigated tolerability, blinding, and double-blinding of High-Definition transcranial Direct Current Stimulation (HD-tDCS) at amplitudes above 2 milliamps (mA). OBJECTIVE We examined a) tolerability of HD-tDCS during stimulation sessions and b) blinding and double blinding of participants and study team members. METHODS Data from a mixed neurologic sample of 292 older adults were pooled from 3046 HD-tDCS sessions (2329 active; 717 sham). Per electrode amplitudes ranged from 1 mA to 4 mA with total currents up to 10 mA. Participants completed a standardized sensation (tolerability) questionnaire after each session. Participants and study team members stated whether the participant received active or sham stimulation at the end of various sessions. Data were collapsed into the presence/absence of a symptom due to low rates of positive responding and were analyzed for both differences and bioequivalency. RESULTS There were no safety-related adverse events. HD-tDCS was well tolerated with mostly no ("none") or "mild" sensations reported across sessions, regardless of active or sham condition and in both stimulation naïve and experienced participants. There were no significant differences in side effects between active and sham, with some achieving bioequivalence. Tingling and itching were significantly more common after lower (<2 mA) than higher (≥3 mA) amplitude active sessions, while skin redness was significantly more common after higher amplitudes. Blinding was effective at the participant and study team levels. CONCLUSIONS HD-tDCS was well tolerated with center electrode amplitudes up to 4 mA. The bimodal ramp-up/down format of the sham was effective for blinding. These results support higher scalp-based amplitudes that enable greater brain-based current intensities in older adults.
Collapse
Affiliation(s)
- Carine El Jamal
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Ashley Harrie
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Annalise Rahman-Filipiak
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Alexandru D Iordan
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Alexandre F DaSilva
- Headache & Orofacial Pain Effort (H.O.P.E.), Biologic & Materials Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Robert Ploutz-Snyder
- Applied Biostatistics Laboratory, School of Nursing, University of Michigan, Ann Arbor, MI, USA
| | - Lara Khadr
- Applied Biostatistics Laboratory, School of Nursing, University of Michigan, Ann Arbor, MI, USA
| | - Michael Vesia
- Brain Behavior Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Benjamin M Hampstead
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA; Mental Health Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Dakwar-Kawar O, Mairon N, Hochman S, Berger I, Cohen Kadosh R, Nahum M. Transcranial random noise stimulation combined with cognitive training for treating ADHD: a randomized, sham-controlled clinical trial. Transl Psychiatry 2023; 13:271. [PMID: 37528107 PMCID: PMC10394047 DOI: 10.1038/s41398-023-02547-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Non-invasive brain stimulation has been suggested as a potential treatment for improving symptomology and cognitive deficits in Attention-Deficit/Hyperactivity Disorder (ADHD), the most common childhood neurodevelopmental disorder. Here, we examined whether a novel form of stimulation, high-frequency transcranial random noise stimulation (tRNS), applied with cognitive training (CT), may impact symptoms and neural oscillations in children with ADHD. We conducted a randomized, double-blind, sham-controlled trial in 23 unmedicated children with ADHD, who received either tRNS over the right inferior frontal gyrus (rIFG) and left dorsolateral prefrontal cortex (lDLPFC) or sham stimulation for 2 weeks, combined with CT. tRNS + CT yielded significant clinical improvements (reduced parent-reported ADHD rating-scale scores) following treatment, compared to the control intervention. These improvements did not change significantly at a 3-week follow-up. Moreover, resting state (RS)-EEG periodic beta bandwidth of the extracted peaks was reduced in the experimental compared to control group immediately following treatment, with further reduction at follow-up. A lower aperiodic exponent, which reflects a higher cortical excitation/inhibition (E/I) balance and has been related to cognitive improvement, was seen in the experimental compared to control group. This replicates previous tRNS findings in adults without ADHD but was significant only when using a directional hypothesis. The experimental group further exhibited longer sleep onset latencies and more wake-up times following treatment compared to the control group. No significant group differences were seen in executive functions, nor in reported adverse events. We conclude that tRNS + CT has a lasting clinical effect on ADHD symptoms and on beta activity. These results provide a preliminary direction towards a novel intervention in pediatric ADHD.
Collapse
Affiliation(s)
- Ornella Dakwar-Kawar
- School of Occupational Therapy, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Noam Mairon
- School of Occupational Therapy, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Itai Berger
- Pediatric Neurology Unit, Assuta-Ashdod University Hospital and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- School of Social Work and Social Welfare, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Mor Nahum
- School of Occupational Therapy, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
8
|
Klees-Themens G, Théoret H. The effects of transcranial direct current stimulation on corticospinal excitability: A systematic review of nonsignificant findings. Eur J Neurosci 2023; 58:3074-3097. [PMID: 37407275 DOI: 10.1111/ejn.16073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that can modulate brain activity through the application of low-intensity electrical currents. Based on its reported effects on corticospinal excitability (CSE), tDCS has been used to study cognition in healthy individuals and reduce symptoms in a variety of clinical conditions. Despite its increasing popularity as a research and clinical tool, high interindividual variability has been reported in the response to protocols using transcranial magnetic stimulation (TMS) to assess tDCS-induced changes in CSE leading to several nonsignificant findings. In this systematic review, studies that reported no significant modulation of CSE following tDCS were identified from PubMed and Embase (Ovid) databases. Forty-three articles were identified where demographic, TMS and tDCS parameters were extracted. Overall, stimulation parameters, CSE measurements and participant characteristics were similar to those described in studies reporting positive results and were likewise heterogeneous between studies. Small sample sizes and inadequate blinding were notable features of the reviewed studies. This systematic review suggests that studies reporting nonsignificant findings do not markedly differ from those reporting significant modulation of CSE.
Collapse
Affiliation(s)
| | - Hugo Théoret
- Department of Psychology, Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
9
|
Turnbull A, Anthony M, Tadin D, Porsteinsson AP, Heffner K, Lin FV. Effect of online tDCS to left somatomotor cortex on neuropsychiatric symptoms among older adults at risk for dementia. Cortex 2023; 159:131-141. [PMID: 36623419 PMCID: PMC9931675 DOI: 10.1016/j.cortex.2022.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Neuropsychiatric symptoms (NPS) in mild cognitive impairment (MCI) cause distress to patients and caregivers, and accelerate progression to dementia. Transcranial direct current stimulation (tDCS) is a promising non-invasive treatment for NPS. OBJECTIVE/HYPOTHESIS This pilot study assessed behavioral and neural effects of a 4-week anodal tDCS intervention targeting left sensorimotor cortex (LSMC: left precentral/postcentral gyri) during visual attention (compared to online sham tDCS), in 40 older adults (24 females, mean age = 71) with MCI. METHODS A phase 0 double-blinded randomized control trial was conducted. NPS (patient-reported mood symptoms plus a caregiver-reported questionnaire) and fMRI were measured at baseline and immediately post-intervention. RESULTS Generalized Estimating Equations found no significant group by time interactions for either NPS measure. However, there was evidence of decreased patient-reported NPS (Wald's χ2 = 3.80, p = .051), decreased LSMC activation during visual attention (Wald's χ2 = 2.93, p = .087), and increased LSMC-amygdala resting-state functional connectivity (rsFC; Wald's χ2 = 3.13, p = .077) in intervention group from pre-to post-intervention. Decrease in LSMC activation (Wald's χ2 = 9.20, p = .002) and increase in LSMC-amygdala rsFC (Wald's χ2 = 4.72, p = .030) related to decreased patient-reported NPS. Increased positive valence across sessions was significantly associated with intervention-related NPS improvement (Wald's χ2 = 22.92, p < .001). There were no findings for caregiver-reported NPS. Effects were stronger for left postcentral compared to left precentral gyrus. CONCLUSION We found tentative evidence that tDCS applied to LSMC during visual attention in older adults with MCI improved NPS via changes in LSMC activation and LSMC-amygdala rsFC, suggesting improved emotion regulation. Patient-reported NPS was more sensitive to these changes than caregiver-reports, and effects were strongest for left postcentral gyrus. Follow-up studies should perform precise mechanistic investigation and efficacy testing.
Collapse
Affiliation(s)
- Adam Turnbull
- CogT Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA; Departments of Brain and Cognitive Sciences, Neuroscience and Ophthalmology, University of Rochester, NY, USA.
| | - Mia Anthony
- CogT Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA; Departments of Brain and Cognitive Sciences, Neuroscience and Ophthalmology, University of Rochester, NY, USA
| | - Duje Tadin
- Departments of Brain and Cognitive Sciences, Neuroscience and Ophthalmology, University of Rochester, NY, USA
| | - Anton P Porsteinsson
- Departments of Brain and Cognitive Sciences, Neuroscience and Ophthalmology, University of Rochester, NY, USA; Department of Psychiatry, University of Rochester Medical Center, NY, USA
| | - Kathi Heffner
- Department of Psychiatry, University of Rochester Medical Center, NY, USA; Elaine Hubbard Center for Nursing Research on Aging, School of Nursing, University of Rochester Medical Center, NY, USA; Division of Geriatrics & Aging, Department of Medicine, University of Rochester Medical Center, NY, USA
| | - Feng V Lin
- CogT Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA
| |
Collapse
|
10
|
Bertoni S, Franceschini S, Campana G, Facoetti A. The effects of bilateral posterior parietal cortex tRNS on reading performance. Cereb Cortex 2022; 33:5538-5546. [PMID: 36336338 DOI: 10.1093/cercor/bhac440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
According to established cognitive neuroscience knowledge based on studies on disabled and typically developing readers, reading is based on a dual-stream model in which a phonological-dorsal stream (left temporo-parietal and inferior frontal areas) processes unfamiliar words and pseudowords, whereas an orthographic-ventral stream (left occipito-temporal and inferior frontal areas) processes known words. However, correlational neuroimaging, causal longitudinal, training, and pharmacological studies have suggested the critical role of visuo-spatial attention in reading development. In a double blind, crossover within-subjects experiment, we manipulated the neuromodulatory effect of a short-term bilateral stimulation of posterior parietal cortex (PPC) by using active and sham tRNS during reading tasks in a large sample of young adults. In contrast to the dual-stream model predicting either no effect or a selective effect on the stimulated phonological-dorsal stream (as well as to a general multisensory effect on both reading streams), we found that only word-reading performance improved after active bilateral PPC tRNS. These findings demonstrate a direct neural connectivity between the PPC, controlling visuo-spatial attention, and the ventral stream for visual word recognition. These results support a neurobiological model of reading where performance of the orthographic-ventral stream is boosted by an efficient deployment of visuo-spatial attention from bilateral PPC stimulation.
Collapse
Affiliation(s)
- Sara Bertoni
- Developmental and Cognitive Neuroscience Lab , Department of General Psychology, , Padua 35131 , Italy
- University of Padua , Department of General Psychology, , Padua 35131 , Italy
- Department of Human and Social Sciences, University of Bergamo , Bergamo 24129 , Italy
| | - Sandro Franceschini
- Developmental and Cognitive Neuroscience Lab , Department of General Psychology, , Padua 35131 , Italy
- University of Padua , Department of General Psychology, , Padua 35131 , Italy
| | - Gianluca Campana
- PercUp Lab , Department of General Psychology, , Padua 35131 , Italy
- University of Padua , Department of General Psychology, , Padua 35131 , Italy
| | - Andrea Facoetti
- Developmental and Cognitive Neuroscience Lab , Department of General Psychology, , Padua 35131 , Italy
- University of Padua , Department of General Psychology, , Padua 35131 , Italy
| |
Collapse
|
11
|
Zhang Y, Zhou Z, Zhou J, Qian Z, Lü J, Li L, Liu Y. Temporal interference stimulation targeting right frontoparietal areas enhances working memory in healthy individuals. Front Hum Neurosci 2022; 16:918470. [PMID: 36393981 PMCID: PMC9650295 DOI: 10.3389/fnhum.2022.918470] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background Temporal interference (TI) stimulation is a novel technique that enables the non-invasive modulation of deep brain regions. However, the implementation of this technology in humans has not been well-characterized or examined, including its safety and feasibility. Objective We aimed to examine the feasibility, safety, and blinding of using TI on human participants in this pilot study. Materials and methods In a randomized, single-blinded, and sham-controlled pilot study, healthy young participants were randomly divided into four groups [TI and transcranial alternating current stimulation (tACS) targeting the right frontoparietal region, TI-sham, and tACS-sham]. Each participant was asked to complete N-back (N = 1 to 3) tasks before, during, and after one session of stimulation to assess their working memory (WM). The side effects and blinding efficacy were carefully assessed. The accuracy, reaction time (RT), and inverse efficiency score (IES, reaction time/accuracy) of the N-back tasks were measured. Results No severe side effects were reported. Only mild-to-moderate side effects were observed in those who received TI, which was similar to those observed in participants receiving tACS. The blinding efficacy was excellent, and there was no correlation between the severity of the reported side effects and the predicted type of stimulation that the participants received. WM appeared to be only marginally improved by TI compared to tACS-sham, and this improvement was only observed under high-load cognitive tasks. WM seemed to have improved a little in the TI-sham group. However, it was not observed significant differences between TI and TI-sham or TI and tACS in all N-back tests. Conclusion Our pilot study suggests that TI is a promising technique that can be safely implemented in human participants. Studies are warranted to confirm the findings of this study and to further examine the effects of TI-sham stimulation as well as the effects of TI on deeper brain regions.
Collapse
Affiliation(s)
- Yufeng Zhang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Zhining Zhou
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Junhong Zhou
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research and Harvard Medical School, Boston, MA, United States
| | - Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Jiaojiao Lü
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- *Correspondence: Jiaojiao Lü,
| | - Lu Li
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- Lu Li,
| | - Yu Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
12
|
Mondino M, Janin D, Galvao F, Brunelin J. High-Frequency Transcranial Random Noise Stimulation for Auditory Hallucinations of Schizophrenia: A Case Series. Biomedicines 2022; 10:2698. [PMID: 36359217 PMCID: PMC9687535 DOI: 10.3390/biomedicines10112698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/26/2022] [Accepted: 10/18/2022] [Indexed: 09/19/2023] Open
Abstract
Transcranial electrical stimulation has been proposed as a noninvasive therapeutic approach for reducing treatment-resistant symptoms of schizophrenia-in particular, auditory hallucinations. However, the high variability observed in the clinical response leaves much room to optimize the stimulation parameters and strengthen its benefits. We proposed to investigate the effects of high-frequency transcranial random noise stimulation (hf-tRNS), which is supposed to induce larger effects than conventional direct current stimulation. Here, we present an initial case series of ten patients with schizophrenia who underwent 10 sessions of 20 min hf-tRNS (2 mA, 100-500 Hz, 1 mA offset), with the anode placed over the left dorsolateral prefrontal cortex and the cathode over the left temporoparietal junction. Patients showed a significant reduction in auditory hallucinations after the hf-tRNS sessions (-36.1 +/- 21.8%, p = 0.0059). In this preliminary, open-label study conducted in ten patients with treatment-resistant symptoms of schizophrenia, frontotemporal hf-tRNS was shown to induce a substantial improvement in auditory hallucinations. Additional sham-controlled studies are needed to further evaluate hf-tRNS as a treatment for schizophrenia.
Collapse
Affiliation(s)
- Marine Mondino
- Pôle Est, Centre Hospitalier Le Vinatier, F-69500 Bron, France
- PSYR2 Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, F-69000 Lyon, France
- University Lyon 1, F-69100 Villeurbanne, France
| | - Delphine Janin
- Pôle Est, Centre Hospitalier Le Vinatier, F-69500 Bron, France
- PSYR2 Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, F-69000 Lyon, France
- University Lyon 1, F-69100 Villeurbanne, France
| | - Filipe Galvao
- Pôle Est, Centre Hospitalier Le Vinatier, F-69500 Bron, France
| | - Jérôme Brunelin
- Pôle Est, Centre Hospitalier Le Vinatier, F-69500 Bron, France
- PSYR2 Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, F-69000 Lyon, France
- University Lyon 1, F-69100 Villeurbanne, France
| |
Collapse
|