1
|
Graelmann FJ, Gondorf F, Majlesain Y, Niemann B, Klepac K, Gosejacob D, Gottschalk M, Mayer M, Iriady I, Hatzfeld P, Lindenberg SK, Wunderling K, Thiele C, Abdullah Z, He W, Hiller K, Händler K, Beyer MD, Ulas T, Pfeifer A, Esser C, Weighardt H, Förster I, Reverte-Salisa L. Differential cell type-specific function of the aryl hydrocarbon receptor and its repressor in diet-induced obesity and fibrosis. Mol Metab 2024; 85:101963. [PMID: 38821174 PMCID: PMC11214421 DOI: 10.1016/j.molmet.2024.101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/02/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024] Open
Abstract
OBJECTIVE The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor regulating xenobiotic responses as well as physiological metabolism. Dietary AhR ligands activate the AhR signaling axis, whereas AhR activation is negatively regulated by the AhR repressor (AhRR). While AhR-deficient mice are known to be resistant to diet-induced obesity (DIO), the influence of the AhRR on DIO has not been assessed so far. METHODS In this study, we analyzed AhRR-/- mice and mice with a conditional deletion of either AhRR or AhR in myeloid cells under conditions of DIO and after supplementation of dietary AhR ligands. Moreover, macrophage metabolism was assessed using Seahorse Mito Stress Test and ROS assays as well as transcriptomic analysis. RESULTS We demonstrate that global AhRR deficiency leads to a robust, but not as profound protection from DIO and hepatosteatosis as AhR deficiency. Under conditions of DIO, AhRR-/- mice did not accumulate TCA cycle intermediates in the circulation in contrast to wild-type (WT) mice, indicating protection from metabolic dysfunction. This effect could be mimicked by dietary supplementation of AhR ligands in WT mice. Because of the predominant expression of the AhRR in myeloid cells, AhRR-deficient macrophages were analyzed for changes in metabolism and showed major metabolic alterations regarding oxidative phosphorylation and mitochondrial activity. Unbiased transcriptomic analysis revealed increased expression of genes involved in de novo lipogenesis and mitochondrial biogenesis. Mice with a genetic deficiency of the AhRR in myeloid cells did not show alterations in weight gain after high fat diet (HFD) but demonstrated ameliorated liver damage compared to control mice. Further, deficiency of the AhR in myeloid cells also did not affect weight gain but led to enhanced liver damage and adipose tissue fibrosis compared to controls. CONCLUSIONS AhRR-deficient mice are resistant to diet-induced metabolic syndrome. Although conditional ablation of either the AhR or AhRR in myeloid cells did not recapitulate the phenotype of the global knockout, our findings suggest that enhanced AhR signaling in myeloid cells deficient for AhRR protects from diet-induced liver damage and fibrosis, whereas myeloid cell-specific AhR deficiency is detrimental.
Collapse
Affiliation(s)
- Frederike J Graelmann
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Fabian Gondorf
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Yasmin Majlesain
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Birte Niemann
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Germany
| | - Katarina Klepac
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Germany
| | - Dominic Gosejacob
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Germany
| | - Marlene Gottschalk
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Michelle Mayer
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Irina Iriady
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Philip Hatzfeld
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Sophie K Lindenberg
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Klaus Wunderling
- Biochemistry & Cell Biology of Lipids, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Christoph Thiele
- Biochemistry & Cell Biology of Lipids, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Zeinab Abdullah
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, University of Bonn, Germany
| | - Wei He
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Karsten Hiller
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Kristian Händler
- PRECISE Platform for Single cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn and West German Genome Center, Bonn, Germany; Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany; Institute of Human Genetics, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562 Lübeck, Germany
| | - Marc D Beyer
- PRECISE Platform for Single cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn and West German Genome Center, Bonn, Germany; Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Thomas Ulas
- PRECISE Platform for Single cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn and West German Genome Center, Bonn, Germany; Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Germany
| | - Charlotte Esser
- IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Düsseldorf, Germany
| | - Heike Weighardt
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany; IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Düsseldorf, Germany
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany.
| | - Laia Reverte-Salisa
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany.
| |
Collapse
|
2
|
Rance N. How single-cell transcriptomics provides insight on hepatic responses to TCDD. CURRENT OPINION IN TOXICOLOGY 2023; 36:100441. [PMID: 37981901 PMCID: PMC10653208 DOI: 10.1016/j.cotox.2023.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The prototypical aryl hydrocarbon receptor (AHR) ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has been a valuable model for investigating toxicant-associated fatty liver disease (TAFLD). TCDD induces dose-dependent hepatic lipid accumulation, followed by the development of inflammatory foci and eventual progression to fibrosis in mice. Previously, bulk approaches and in vitro examination of different cell types were relied upon to study the mechanisms underlying TCDD-induced liver pathologies. However, the advent of single-cell transcriptomic technologies, such as single-nuclei RNA sequencing (snRNAseq) and spatial transcriptomics (STx), has provided new insights into the responses of hepatic cell types to TCDD exposure. This review explores the application of these single-cell transcriptomic technologies and highlights their contributions towards unraveling the cell-specific mechanisms mediating the hepatic responses to TCDD.
Collapse
Affiliation(s)
- Nault Rance
- Institute for Integrative Toxicology, Michigan State University, Michigan, USA
- Department of Biochemistry & Molecular Biology, Michigan State University, Michigan, USA
| |
Collapse
|
3
|
Bastami M, Masotti A, Saadatian Z, Daraei A, Farjam M, Ghanbariasad A, Vahed SZ, Eyvazi S, Mansoori Y, Nariman-Saleh-Fam Z. Critical roles of microRNA-196 in normal physiology and non-malignant diseases: Diagnostic and therapeutic implications. Exp Mol Pathol 2021; 122:104664. [PMID: 34166682 DOI: 10.1016/j.yexmp.2021.104664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/26/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) have emerged as a critical component of regulatory networks that modulate and fine-tune gene expression in a post-transcriptional manner. The microRNA-196 family is encoded by three loci in the human genome, namely hsa-mir-196a-1, hsa-mir-196a-2, and hsa-mir-196b. Increasing evidence supports the roles of different components of this miRNA family in regulating key cellular processes during differentiation and development, ranging from inflammation and differentiation of stem cells to limb development and remodeling and structure of adipose tissue. This review first discusses about the genomic context and regulation of this miRNA family and then take a bird's eye view on the updated list of its target genes and their biological processes to obtain insights about various functions played by members of the microRNA-196 family. We then describe evidence supporting the involvement of the human microRNA-196 family in regulating critical cellular processes both in physiological and non-malignant inflammatory conditions, highlighting recent seminal findings that carry implications for developing novel therapeutic or diagnostic strategies.
Collapse
Affiliation(s)
- Milad Bastami
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome 00146, Italy
| | - Zahra Saadatian
- Department of Genetics, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mojtaba Farjam
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Ghanbariasad
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Yaser Mansoori
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Medical Genetics Department, Fasa University of Medical Sciences, Fasa, Iran.
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Plant Occurring Flavonoids as Modulators of the Aryl Hydrocarbon Receptor. Molecules 2021; 26:molecules26082315. [PMID: 33923487 PMCID: PMC8073824 DOI: 10.3390/molecules26082315] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/26/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a transcription factor deeply implicated in health and diseases. Historically identified as a sensor of xenobiotics and mainly toxic substances, AhR has recently become an emerging pharmacological target in cancer, immunology, inflammatory conditions, and aging. Multiple AhR ligands are recognized, with plant occurring flavonoids being the largest group of natural ligands of AhR in the human diet. The biological implications of the modulatory effects of flavonoids on AhR could be highlighted from a toxicological and environmental concern and for the possible pharmacological applicability. Overall, the possible AhR-mediated harmful and/or beneficial effects of flavonoids need to be further investigated, since in many cases they are contradictory. Similar to other AhR modulators, flavonoids commonly exhibit tissue, organ, and species-specific activities on AhR. Such cellular-context dependency could be probably beneficial in their pharmacotherapeutic use. Flavones, flavonols, flavanones, and isoflavones are the main subclasses of flavonoids reported as AhR modulators. Some of the structural features of these groups of flavonoids that could be influencing their AhR effects are herein summarized. However, limited generalizations, as well as few outright structure-activity relationships can be suggested on the AhR agonism and/or antagonism caused by flavonoids.
Collapse
|
5
|
Esteban J, Sánchez-Pérez I, Hamscher G, Miettinen HM, Korkalainen M, Viluksela M, Pohjanvirta R, Håkansson H. Role of aryl hydrocarbon receptor (AHR) in overall retinoid metabolism: Response comparisons to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure between wild-type and AHR knockout mice. Reprod Toxicol 2021; 101:33-49. [PMID: 33607186 DOI: 10.1016/j.reprotox.2021.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/20/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Young adult wild-type and aryl hydrocarbon receptor knockout (AHRKO) mice of both sexes and the C57BL/6J background were exposed to 10 weekly oral doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; total dose of 200 μg/kg bw) to further characterize the observed impacts of AHR as well as TCDD on the retinoid system. Unexposed AHRKO mice harboured heavier kidneys, lighter livers and lower serum all-trans retinoic acid (ATRA) and retinol (REOH) concentrations than wild-type mice. Results from the present study also point to a role for the murine AHR in the control of circulating REOH and ATRA concentrations. In wild-type mice, TCDD elevated liver weight and reduced thymus weight, and drastically reduced the hepatic concentrations of 9-cis-4-oxo-13,14-dihydro-retinoic acid (CORA) and retinyl palmitate (REPA). In female wild-type mice, TCDD increased the hepatic concentration of ATRA as well as the renal and circulating REOH concentrations. Renal CORA concentrations were substantially diminished in wild-type male mice exclusively following TCDD-exposure, with a similar tendency in serum. In contrast, TCDD did not affect any of these toxicity or retinoid system parameters in AHRKO mice. Finally, a distinct sex difference occurred in kidney concentrations of all the analysed retinoid forms. Together, these results strengthen the evidence of a mandatory role of AHR in TCDD-induced retinoid disruption, and suggest that the previously reported accumulation of several retinoid forms in the liver of AHRKO mice is a line-specific phenomenon. Our data further support participation of AHR in the control of liver and kidney development in mice.
Collapse
Affiliation(s)
- Javier Esteban
- Instituto De Bioingeniería, Universidad Miguel Hernández De Elche, Elche, Alicante, Spain.
| | - Ismael Sánchez-Pérez
- Instituto De Bioingeniería, Universidad Miguel Hernández De Elche, Elche, Alicante, Spain.
| | - Gerd Hamscher
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany.
| | - Hanna M Miettinen
- School of Pharmacy (Toxicology) and Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Merja Korkalainen
- Environmental Health Unit, Finnish Insitute for Health and Welfare (THL), Kuopio, Finland.
| | - Matti Viluksela
- School of Pharmacy (Toxicology) and Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland; Environmental Health Unit, Finnish Insitute for Health and Welfare (THL), Kuopio, Finland.
| | - Raimo Pohjanvirta
- Department of Food Hygiene & Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Mustialankatu 1, FI-00790 Helsinki, Finland.
| | - Helen Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Targeting the aryl hydrocarbon receptor with a novel set of triarylmethanes. Eur J Med Chem 2020; 207:112777. [PMID: 32971427 DOI: 10.1016/j.ejmech.2020.112777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 01/06/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a chemical sensor upregulating the transcription of responsive genes associated with endocrine homeostasis, oxidative balance and diverse metabolic, immunological and inflammatory processes, which have raised the pharmacological interest on its modulation. Herein, a novel set of 32 unsymmetrical triarylmethane (TAM) class of structures has been synthesized, characterized and their AhR transcriptional activity evaluated using a cell-based assay. Eight of the assayed TAM compounds (14, 15, 18, 19, 21, 22, 25, 28) exhibited AhR agonism but none of them showed antagonist effects. TAMs bearing benzotrifluoride, naphthol or heteroaromatic (indole, quinoline or thiophene) rings seem to be prone to AhR activation unlike phenyl substituted or benzotriazole derivatives. A molecular docking analysis with the AhR ligand binding domain (LBD) showed similarities in the binding mode and in the interactions of the most potent TAM identified 4-(pyridin-2-yl (thiophen-2-yl)methyl)phenol (22) compared to the endogenous AhR agonist 5,11-dihydroindolo[3,2-b]carbazole-12-carbaldehyde (FICZ). Finally, in silico predictions of physicochemical and biopharmaceutical properties for the most potent agonistic compounds were performed and these exhibited acceptable druglikeness and good ADME profiles. To our knowledge, this is the first study assessing the AhR modulatory effects of unsymmetrical TAM class of compounds.
Collapse
|
7
|
Prakash J, Mishra AK. Simultaneous Quantification of Multiple Polycyclic Aromatic Hydrocarbons in Aqueous Media using Micelle Assisted White Light Excitation Fluorescence. Sci Rep 2020; 10:8921. [PMID: 32488103 PMCID: PMC7265557 DOI: 10.1038/s41598-020-65788-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/05/2020] [Indexed: 11/09/2022] Open
Abstract
Qualitative and quantitative display of multiple fluorescent analytes is made simple and reliable in this micelle assisted methodology. The adopted method involves micelle assisted evincing of ppb level of PAHs in water; measurement of total fluorescence (white light excitation fluorescence, WLEF) and data deciphering using multivariate analysis. This protocol yields sensitive and accurate quantification of the cancerous pollutants (PAHs) in aqueous media with Limit of Quantification of the order 1-10 μg/L and accuracy of >98%. The use of WLEF enables the simultaneous acquisition of fluorescence signatures of all the PAHs. It has the additional advantage of being portable, layman-friendly and cost-effective. The optimized amount of surfactants for the simultaneous extraction of PAHs from real samples was estimated as 27.8 mg (19.3 mM) of SDS and 9.1 mg (5 mM) of CTAB. Also, the analytical fidelity of the quantification such as percentage recovery (98 ± 2%), linear dynamic range (2-250 μg/L), RMSEP (<0.5), etc. explains the veracity of methodology.
Collapse
Affiliation(s)
- John Prakash
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, 610 005, India
| | - Ashok Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, India.
| |
Collapse
|
8
|
Goya-Jorge E, Doan TQ, Scippo ML, Muller M, Giner RM, Barigye SJ, Gozalbes R. Elucidating the aryl hydrocarbon receptor antagonism from a chemical-structural perspective. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:209-226. [PMID: 31916862 DOI: 10.1080/1062936x.2019.1708460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
The aryl hydrocarbon receptor (AhR) plays an important role in several biological processes such as reproduction, immunity and homoeostasis. However, little is known on the chemical-structural and physicochemical features that influence the activity of AhR antagonistic modulators. In the present report, in vitro AhR antagonistic activity evaluations, based on a chemical-activated luciferase gene expression (AhR-CALUX) bioassay, and an extensive literature review were performed with the aim of constructing a structurally diverse database of contaminants and potentially toxic chemicals. Subsequently, QSAR models based on Linear Discriminant Analysis and Logistic Regression, as well as two toxicophoric hypotheses were proposed to model the AhR antagonistic activity of the built dataset. The QSAR models were rigorously validated yielding satisfactory performance for all classification parameters. Likewise, the toxicophoric hypotheses were validated using a diverse set of 350 decoys, demonstrating adequate robustness and predictive power. Chemical interpretations of both the QSAR and toxicophoric models suggested that hydrophobic constraints, the presence of aromatic rings and electron-acceptor moieties are critical for the AhR antagonism. Therefore, it is hoped that the deductions obtained in the present study will contribute to elucidate further on the structural and physicochemical factors influencing the AhR antagonistic activity of chemical compounds.
Collapse
Affiliation(s)
- E Goya-Jorge
- CEEI (Centro Europeo de Empresas Innovadoras), ProtoQSAR SL, Parque Tecnológico de Valencia, Valencia, Spain
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Valencia, Spain
| | - T Q Doan
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, ULiège, Liège, Belgium
| | - M L Scippo
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, ULiège, Liège, Belgium
| | - M Muller
- Laboratory for Organogenesis and Regeneration, GIGA-Research, ULiège, Liège, Belgium
| | - R M Giner
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Valencia, Spain
| | - S J Barigye
- CEEI (Centro Europeo de Empresas Innovadoras), ProtoQSAR SL, Parque Tecnológico de Valencia, Valencia, Spain
| | - R Gozalbes
- CEEI (Centro Europeo de Empresas Innovadoras), ProtoQSAR SL, Parque Tecnológico de Valencia, Valencia, Spain
- R&D Department, MolDrug AI Systems SL, Valencia, Spain
| |
Collapse
|