1
|
Bapteste É. The ageing virus hypothesis: Epigenetic ageing beyond the Tree of Life. Bioessays 2025; 47:e2400099. [PMID: 39400402 DOI: 10.1002/bies.202400099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
A recent thought-provoking theory argues that complex organisms using epigenetic information for their normal development and functioning must irreversibly age as a result of epigenetic signal loss. Importantly, the scope of this theory could be considerably expanded, with scientific benefits, by analyzing epigenetic ageing beyond the borders of the Tree of Life. Viruses that use epigenetic signals for their normal functioning may also age, that is, present an increasing risk of failing to complete their individual life cycle and to disappear with time. As viruses are ancient, abundant, and infect a considerable diversity of hosts, the ageing virus hypothesis, if verified, would have important consequences for many fields of the Life sciences. Uncovering ageing viruses would integrate the most abundant and biologically central entities on Earth into theories of ageing, enhance virology, gerontology, evolutionary biology, molecular ecology, genomics, and possibly medicine through the development of new therapies manipulating viral ageing.
Collapse
Affiliation(s)
- Éric Bapteste
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université Des Antilles, Paris, France
| |
Collapse
|
2
|
Groves IJ, O’Connor CM. Loopy virus or controlled contortionist? 3D regulation of HCMV gene expression by CTCF-driven chromatin interactions. J Virol 2024; 98:e0114824. [PMID: 39212383 PMCID: PMC11495066 DOI: 10.1128/jvi.01148-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Three-dimensional chromatin control of eukaryotic transcription is pivotal for regulating gene expression. This additional layer of epigenetic regulation is also utilized by DNA viruses, including herpesviruses. Dynamic, spatial genomic organization often involves looping of chromatin anchored by host-encoded CCCTC-binding factor (CTCF) and other factors, which control crosstalk between promoters and enhancers. Herein, we review the contribution of CTCF-mediated looping in regulating transcription during herpesvirus infection, with a specific focus on the betaherpesvirus, human cytomegalovirus (HCMV).
Collapse
Affiliation(s)
- Ian J. Groves
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christine M. O’Connor
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Apostolou E, Rosén A. Epigenetic reprograming in myalgic encephalomyelitis/chronic fatigue syndrome: A narrative of latent viruses. J Intern Med 2024; 296:93-115. [PMID: 38693641 DOI: 10.1111/joim.13792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic disease presenting with severe fatigue, post-exertional malaise, and cognitive disturbances-among a spectrum of symptoms-that collectively render the patient housebound or bedbound. Epigenetic studies in ME/CFS collectively confirm alterations and/or malfunctions in cellular and organismal physiology associated with immune responses, cellular metabolism, cell death and proliferation, and neuronal and endothelial cell function. The sudden onset of ME/CFS follows a major stress factor that, in approximately 70% of cases, involves viral infection, and ME/CFS symptoms overlap with those of long COVID. Viruses primarily linked to ME/CFS pathology are the symbiotic herpesviruses, which follow a bivalent latent-lytic lifecycle. The complex interaction between viruses and hosts involves strategies from both sides: immune evasion and persistence by the viruses, and immune activation and viral clearance by the host. This dynamic interaction is imperative for herpesviruses that facilitate their persistence through epigenetic regulation of their own and the host genome. In the current article, we provide an overview of the epigenetic signatures demonstrated in ME/CFS and focus on the potential strategies that latent viruses-particularly Epstein-Barr virus-may employ in long-term epigenetic reprograming in ME/CFS. Epigenetic studies could aid in elucidating relevant biological pathways impacted in ME/CFS and reflect the physiological variations among the patients that stem from environmental triggers, including exogenous viruses and/or altered viral activity.
Collapse
Affiliation(s)
- Eirini Apostolou
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anders Rosén
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
4
|
Groves IJ, Matthews SM, O’Connor CM. Host-encoded CTCF regulates human cytomegalovirus latency via chromatin looping. Proc Natl Acad Sci U S A 2024; 121:e2315860121. [PMID: 38408244 PMCID: PMC10927566 DOI: 10.1073/pnas.2315860121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a prevalent pathogen that establishes life-long latent infection in hematopoietic cells. While this infection is usually asymptomatic, immune dysregulation leads to viral reactivation, which can cause significant morbidity and mortality. However, the mechanisms underpinning reactivation remain incompletely understood. The HCMV major immediate early promoter (MIEP)/enhancer is a key factor in this process, as its transactivation from a repressed to active state helps drive viral gene transcription necessary for reactivation from latency. Numerous host transcription factors bind the MIE locus and recruit repressive chromatin modifiers, thus impeding virus reactivation. One such factor is CCCTC-binding protein (CTCF), a highly conserved host zinc finger protein that mediates chromatin conformation and nuclear architecture. However, the mechanisms by which CTCF contributes to HCMV latency were previously unexplored. Here, we confirm that CTCF binds two convergent sites within the MIE locus during latency in primary CD14+ monocytes, and following cellular differentiation, CTCF association is lost as the virus reactivates. While mutation of the MIE enhancer CTCF binding site does not impact viral lytic growth in fibroblasts, this mutant virus fails to maintain latency in myeloid cells. Furthermore, we show the two convergent CTCF binding sites allow looping to occur across the MIEP, supporting transcriptional repression during latency. Indeed, looping between the two sites diminishes during virus reactivation, concurrent with activation of MIE transcription. Taken together, our data reveal that three-dimensional chromatin looping aids in the regulation of HCMV latency and provides insight into promoter/enhancer regulation that may prove broadly applicable across biological systems.
Collapse
Affiliation(s)
- Ian J. Groves
- Infection Biology Program, Sheikha Fatima bint Mubarak Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH44195
- Case Comprehensive Cancer Center, Cleveland, OH44106
| | - Stephen M. Matthews
- Infection Biology Program, Sheikha Fatima bint Mubarak Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
- Case Comprehensive Cancer Center, Cleveland, OH44106
| | - Christine M. O’Connor
- Infection Biology Program, Sheikha Fatima bint Mubarak Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH44195
- Case Comprehensive Cancer Center, Cleveland, OH44106
| |
Collapse
|
5
|
Dobrica MO, Varghese CS, Harris JM, Ferguson J, Magri A, Arnold R, Várnai C, Parish JL, McKeating JA. CTCF regulates hepatitis B virus cccDNA chromatin topology. J Gen Virol 2024; 105. [PMID: 38175123 DOI: 10.1099/jgv.0.001939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Hepatitis B Virus (HBV) is a small DNA virus that replicates via an episomal covalently closed circular DNA (cccDNA) that serves as the transcriptional template for viral mRNAs. The host protein, CCCTC-binding factor (CTCF), is a key regulator of cellular transcription by maintaining epigenetic boundaries, nucleosome phasing, stabilisation of long-range chromatin loops and directing alternative exon splicing. We previously reported that CTCF binds two conserved motifs within Enhancer I of the HBV genome and represses viral transcription, however, the underlying mechanisms were not identified. We show that CTCF depletion in cells harbouring cccDNA-like HBV molecules and in de novo infected cells resulted in an increase in spliced transcripts, which was most notable in the abundant SP1 spliced transcript. In contrast, depletion of CTCF in cell lines with integrated HBV DNA had no effect on the abundance of viral transcripts and in line with this observation there was limited evidence for CTCF binding to viral integrants, suggesting that CTCF-regulation of HBV transcription is specific to episomal cccDNA. Analysis of HBV chromatin topology by Assay for Transposase Accessible Chromatin Sequencing (ATAC-Seq) revealed an accessible region spanning Enhancers I and II and the basal core promoter (BCP). Mutating the CTCF binding sites within Enhancer I resulted in a dramatic rearrangement of chromatin accessibility where the open chromatin region was no longer detected, indicating loss of the phased nucleosome up- and down-stream of the HBV enhancer/BCP. These data demonstrate that CTCF functions to regulate HBV chromatin conformation and nucleosomal positioning in episomal maintained cccDNA, which has important consequences for HBV transcription regulation.
Collapse
Affiliation(s)
- Mihaela Olivia Dobrica
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Present address: Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Christy Susan Varghese
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Jack Ferguson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Present address: Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Andrea Magri
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roland Arnold
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Csilla Várnai
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Joanna L Parish
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Oxford, UK
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|