1
|
Wang Y, Shen L, Sun M. Prognostic Significance and Functional Mechanism of UTS2 in Glioblastoma Multiforme. Curr Cancer Drug Targets 2025; 25:636-647. [PMID: 38265405 DOI: 10.2174/0115680096275291231226081320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 01/25/2024]
Abstract
AIM We aimed to explore the role of urotensin 2 (UTS2) in glioblastoma (GBM). BACKGROUND GBM is the most malignant primary brain cancer with a poor prognosis. Previous studies have suggested that GBM vessels undergo dynamic remodeling modulated by tumor vasodilation and vasoconstriction instead of tumor angiogenesis. OBJECTIVE Here, we have first investigated the expression and function of UTS2, a potent vasoconstrictor, in GBM. METHODS The mRNA expression profiles and clinical information of GBM patients were obtained from the TCGA database. The clinical relevance of UTS2 was explored by the Mann-Whitney U test and Cox hazard regression survival test. We further explored the role of UTS2 in GBM cell proliferation, migration, and tumor immune microenvironment. Moreover, we established the in vivo mice model to validate its oncogenic effects on GBM progression. RESULTS Although we did not find significant correlations between UTS2 expression and patients' clinical characteristics, UTS2 was identified as a valid independent prognostic indicator according to multivariate survival analysis. Knockdown of UTS2 resulted in decreased GBM cell proliferation and migration. In addition, functional enrichment analysis implied UTS2 to be involved in the regulation of the immune microenvironment. In vivo studies showed that UTS2 knockdown suppressed GBM xenograft growth, highlighting the tumor-promoting effects of UTS2 on GBM. CONCLUSION Our study identified that UTS2 could predict the prognosis of GBM patients and provided evidence regarding its oncogenic effects both in vitro and in vivo.
Collapse
Affiliation(s)
- Yanfei Wang
- Laboratory Department, Yancheng Third People's Hospital, Yancheng 224008, China
| | - Langping Shen
- Laboratory Department, Yancheng Third People's Hospital, Yancheng 224008, China
| | - Mingzhong Sun
- Laboratory Department, Yancheng Third People's Hospital, Yancheng 224008, China
| |
Collapse
|
2
|
Kheradkhah G, Sheibani M, Kianfar T, Toreyhi Z, Azizi Y. A comprehensive review on the effects of sex hormones on chemotherapy-induced cardiotoxicity: are they lucrative or unprofitable? CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:86. [PMID: 39627907 PMCID: PMC11613924 DOI: 10.1186/s40959-024-00293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024]
Abstract
Chemotherapy is one of the routine treatment for preventing rapid growth of the tumor cells. However, chemotherapeutic agents, especially doxorubicin cause damages to the normal cells especially cardiomyocytes. Cardiotoxicity induced by chemotherapeutic drugs lead to the myocardial cell injury and finally causes left ventricular dysfunction. It seems that there were some differences in the severity of cardiovascular side effects of drugs used in the treatment of cancers. Sex hormones in male and female play crucial roles in cardiovascular development and physiological function of the heart and blood vessels. Gender differences and sex-specific hormones influence various aspects of cardiovascular health, including ventricular function, mitochondrial autophagy, and the development of abdominal aortic aneurysms. The most important gender related hormones are LH, FSH, testosterone, estrogen, progesterone, prolactin and oxytocin. They exert very important cardiovascular effects via different signaling mechanisms. Sex related hormones are also important in the cardiovascular side effects of chemotherapeutic agents, so that chronic cardiotoxicity induced by anthracyclines is more common in women. During different stages of life (before, during, and after sexual life), the levels of these hormones will be changed. This alterations can affect cardiovascular function during physiological conditions and pathological process. Because of the importance of the sex related hormones in the cardiac function, in this review we tried to comprehensively elucidate the role of these physiological hormones in cardiotoxicity induced by chemotherapeutic agents with emphasizing their signaling mechanisms.
Collapse
Affiliation(s)
- Golnaz Kheradkhah
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tina Kianfar
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Toreyhi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaser Azizi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Wei P, Tian K, Liu H, Li K, Alam N, Cheng D, Li M, He X, Guo J, Wang R, Wang W, Bai L, Liu E, Xu B, Li Y, Zhao S. Urotensin II receptor deficiency ameliorates ligation-induced carotid intimal hyperplasia partially through the RhoA-YAP1 pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167170. [PMID: 38631407 DOI: 10.1016/j.bbadis.2024.167170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Intimal hyperplasia (IH) is a common pathological feature of vascular proliferative diseases, such as atherosclerosis and restenosis after angioplasty. Urotensin II (UII) and its receptor (UTR) are widely expressed in cardiovascular tissues. However, it remains unclear whether the UII/UTR system is involved in IH. Right unilateral common carotid artery ligation was performed and maintained for 21 days to induce IH in UTR knockout (UTR-/-) and wild-type (WT) mice. Histological analysis revealed that compared with WT mice, UTR-deficient mice exhibited a decreased neointimal area, angiostenosis and intima-media ratio. Immunostaining revealed fewer smooth muscle cells (SMCs), endothelial cells and macrophages in the lesions of UTR-/- mice than in those of WT mice. Protein interaction analysis suggested that the UTR may affect cell proliferation by regulating YAP and its downstream target genes. In vitro experiments revealed that UII can promote the proliferation and migration of SMCs, and western blotting also revealed that UII increased the protein expression of RhoA, CTGF, Cyclin D1 and PCNA and downregulated p-YAP protein expression, while these effects could be partly reversed by urantide. To evaluate the translational value of UTRs in IH management, WT mice were also treated with two doses of urantide, a UTR antagonist, to confirm the benefit of UTR blockade in IH progression. A high dose of urantide (600 μg/kg/day), rather than a low dose (60 μg/kg/day), successfully improved ligation-induced IH compared with that in mice receiving vehicle. The results of the present study suggested that the UII/UTR system may regulate IH partly through the RhoA-YAP signaling pathway.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Movement
- Cell Proliferation
- Hyperplasia/metabolism
- Hyperplasia/pathology
- Ligation
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima/metabolism
- Neointima/pathology
- Neointima/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- rhoA GTP-Binding Protein/metabolism
- rhoA GTP-Binding Protein/genetics
- Signal Transduction
- Tunica Intima/pathology
- Tunica Intima/metabolism
- Urotensins/metabolism
- Urotensins/genetics
- Urotensins/pharmacology
- YAP-Signaling Proteins/metabolism
Collapse
Affiliation(s)
- Panpan Wei
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Kangli Tian
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Haole Liu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Kexin Li
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Naqash Alam
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Daxin Cheng
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Meng Li
- Department of Vascular Surgery, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xue He
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jia Guo
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rong Wang
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Weirong Wang
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Liang Bai
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Enqi Liu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yankui Li
- Department of Vascular Surgery, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Sihai Zhao
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
4
|
Kumric M, Dujic G, Vrdoljak J, Supe-Domic D, Bilopavlovic N, Dolic K, Dujic Z, Bozic J. Effects of CBD supplementation on ambulatory blood pressure and serum urotensin-II concentrations in Caucasian patients with essential hypertension: A sub-analysis of the HYPER-H21-4 trial. Biomed Pharmacother 2023; 164:115016. [PMID: 37321059 DOI: 10.1016/j.biopha.2023.115016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
HYPER-H21-4 was a randomized crossover trial that aimed to determine if cannabidiol (CBD), a non-intoxicating constituent of cannabis, has relevant effects on blood pressure and vascular health in patients with essential hypertension. In the present sub-analysis, we aimed to elucidate whether serum urotensin-II concentrations may reflect hemodynamic changes caused by oral supplementation with CBD. The sub-analysis of this randomized crossover study included 51 patients with mild to moderate hypertension that received CBD for five weeks, and placebo for five weeks. After five weeks of oral CBD supplementation, but not placebo, serum urotensin concentrations reduced significantly in comparison to baseline (3.31 ± 1.46 ng/mL vs. 2.08 ± 0.91 ng/mL, P < 0.001). Following the five weeks of CBD supplementation, the magnitude of reduction in 24 h mean arterial pressure (MAP) positively correlated with the extent of change in serum urotensin levels (r = 0.412, P = 0.003); this association was independent of age, sex, BMI and previous antihypertensive treatment (β ± standard error, 0.023 ± 0.009, P = 0.009). No correlation was present in the placebo condition (r = -0.132, P = 0.357). In summary, potent vasoconstrictor urotensin seems to be implicated in CBD-mediated reduction in blood pressure, although further research is needed to confirm these notions.
Collapse
Affiliation(s)
- Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia.
| | - Goran Dujic
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital of Split, 21000 Split, Croatia.
| | - Josip Vrdoljak
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia.
| | - Daniela Supe-Domic
- Department of Health Studies, University of Split, 21000 Split, Croatia; Department of Medical Laboratory Diagnostics, University Hospital of Split, 21000 Split, Croatia.
| | - Nada Bilopavlovic
- Department of Medical Laboratory Diagnostics, University Hospital of Split, 21000 Split, Croatia
| | - Kresimir Dolic
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital of Split, 21000 Split, Croatia.
| | - Zeljko Dujic
- Department of Integrative Physiology, University of Split School of Medicine, 21000 Split, Croatia.
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia.
| |
Collapse
|
5
|
Mihovilovic A, Dogas Z, Martinovic D, Tokic D, Puizina Mladinic E, Kumric M, Ivkovic N, Vilovic M, Bozic J. Serum Urotensin II Levels Are Elevated in Patients with Obstructive Sleep Apnea. Biomolecules 2023; 13:914. [PMID: 37371494 DOI: 10.3390/biom13060914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Obstructive sleep apnea (OSA) has become major public concern and is continuously investigated in new aspects of pathophysiology and management. Urotensin II (UII) is a powerful vasoconstrictor with a role in cardiovascular diseases. The main goal of this study was to evaluate serum UII levels in OSA patients and matched controls. A total of 89 OSA patients and 89 controls were consecutively enrolled. A medical history review and physical examination of the participants was conducted, with polysomnography performed in the investigated group. UII levels and other biochemical parameters were assessed according to the standard laboratory protocols. The median AHI in the OSA group was 39.0 (31.4-55.2) events/h, and they had higher levels of hsCRP when compared to control group (2.87 ± 0.71 vs. 1.52 ± 0.68 mg/L; p < 0.001). Additionally, serum UII levels were significantly higher in the OSA group (3.41 ± 1.72 vs. 2.18 ± 1.36 ng/mL; p < 0.001), while positive correlation was found between UII levels and hsCRP (r = 0.450; p < 0.001) and systolic blood pressure (SPB) (r = 0.317; p < 0.001). Finally, multiple regression analysis showed significant association of UII levels with AHI (0.017 ± 0.006, p = 0.013), SBP (0.052 ± 0.008, p < 0.001) and hsCRP (0.538 ± 0.164, p = 0.001). As UII levels were associated with blood pressure and markers of inflammation and OSA severity, it might play an important role in the complex pathophysiology of OSA and its cardiometabolic complications.
Collapse
Affiliation(s)
- Ante Mihovilovic
- Department of Maxillofacial Surgery, University Hospital of Split, 21000 Split, Croatia
| | - Zoran Dogas
- Department of Neuroscience and Sleep Medicine Center, University of Split School of Medicine, 21000 Split, Croatia
| | - Dinko Martinovic
- Department of Maxillofacial Surgery, University Hospital of Split, 21000 Split, Croatia
| | - Daria Tokic
- Department of Anesthesiology and Intensive Care, University Hospital of Split, 21000 Split, Croatia
| | - Ema Puizina Mladinic
- Department of Maxillofacial Surgery, University Hospital of Split, 21000 Split, Croatia
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| | - Natalija Ivkovic
- Department of Neuroscience and Sleep Medicine Center, University of Split School of Medicine, 21000 Split, Croatia
| | - Marino Vilovic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
6
|
Li J, Luo L, Zhang Y, Dong X, Dang S, Guo X, Ding W. Globular adiponectin-mediated vascular remodeling by affecting the secretion of adventitial-derived tumor necrosis factor-α induced by urotensin II. J Zhejiang Univ Sci B 2022; 23:1014-1027. [PMID: 36518054 PMCID: PMC9758717 DOI: 10.1631/jzus.b2200346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES In this study, we explored how adiponectin mediated urotensin II (UII)-induced tumor necrosis factor-α (TNF-α) and α-smooth muscle actin (α-SMA) expression and ensuing intracellular signaling pathways in adventitial fibroblasts (AFs). METHODS Growth-arrested AFs and rat tunica adventitia of vessels were incubated with UII and inhibitors of signal transduction pathways for 1‒24 h. The cells were then harvested for TNF-α receptor (TNF-α-R) messenger RNA (mRNA) and TNF-α protein expression determination by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Adiponectin and adiponectin receptor (adipoR) expression was measured by RT-PCR, quantitative real-time PCR (qPCR), immunohistochemical analysis, and cell counting kit-8 (CCK-8) cell proliferation experiments. We then quantified TNF-α and α-SMA mRNA and protein expression levels by qPCR and immunofluorescence (IF) staining. RNA interference (RNAi) was used to explore the function of the adipoR genes. To investigate the signaling pathway, we applied western blotting (WB) to examine phosphorylation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK). In vivo, an adiponectin (APN)-knockout (APN-KO) mouse model mimicking adventitial inflammation was generated to measure TNF-α and α-SMA expression by application of qPCR and IF, with the goal of gaining a comprehensive atlas of adiponectin in vascular remodeling. RESULTS In both cells and tissues, UII promoted TNF-α protein and TNF-α-R secretion in a dose- and time-dependent manner via Rho/protein kinase C (PKC) pathway. We detected marked expression of adipoR1, T-cadherin, and calreticulin as well as a moderate presence of adipoR2 in AFs, while no adiponectin was observed. Globular adiponectin (gAd) fostered the growth of AFs, and acted in concert with UII to induce α-SMA and TNF-α through the adipoR1/T-cadherin/calreticulin/AMPK pathway. In AFs, gAd and UII synergistically induced AMPK phosphorylation. In the adventitial inflammation model, APN deficiency up-regulated the expression of α-SMA, UII receptor (UT), and UII while inhibiting TNF-α expression. CONCLUSIONS From the results of our study, we can speculate that UII induces TNF-α protein and TNF-α-R secretion in AFs and rat tunica adventitia of vessels via the Rho and PKC signal transduction pathways. Thus, it is plausible that adiponectin is a major player in adventitial progression and could serve as a novel therapeutic target for cardiovascular disease administration.
Collapse
Affiliation(s)
- Jun Li
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Division of Cardiology, Department of Internal Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- Division of Cardiology, Department of Internal Medicine, Peking University First Hospital, Beijing 100034, China
| | - Limin Luo
- Department of Dermatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yonggang Zhang
- Department of Cardiovascular Diseases, the Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Xiao Dong
- Division of Cardiology, Department of Internal Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Shuyi Dang
- Division of Cardiology, Department of Internal Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xiaogang Guo
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Wenhui Ding
- Division of Cardiology, Department of Internal Medicine, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
7
|
Combination of Docking-Based and Pharmacophore-Based Virtual Screening Identifies Novel Agonists That Target the Urotensin Receptor. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248692. [PMID: 36557826 PMCID: PMC9788431 DOI: 10.3390/molecules27248692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
The urotensin receptor (UT receptor), a G-protein-coupled receptor mediating urotensin-II and urotensin-II-related peptide signaling in the urotensinergic system, has multiple pharmacological activities. However, there is no drug targeting the UT receptor currently in clinical use, and the discovery of new leads is still important. The complete crystal structure of the UT receptor has not yet been resolved and a screening strategy combining multiple methods can improve the accuracy and efficiency of drug screening. This study aimed to identify novel UT receptor agonists using a combination of docking-based, pharmacophore-based, and cell-based drug screening. First, the three-dimensional structures of the UT receptor were constructed through single-template, multi-template homologous modeling and threading strategies. After structure evaluation and ligand enrichment analysis, a model from the threading modeling was selected for docking-based virtual screening based on stepwise filtering, and 1368 positive compounds were obtained from our compound library. Second, the pharmacophore models were constructed using known ligands targeting the UT receptor for pharmacophore-based virtual screening. A model was selected after model validation, and 300 positive compounds were retrieved. Then, after intersecting the results of two different virtual screening methods with 570 compound entities from our primary screening, 14 compounds were obtained. Finally, three hits were obtained after in vitro confirmation. Furthermore, preliminary evaluation of the hits showed that they influenced glucose consumption. In summary, by integrating docking-based, pharmacophore-based, and in vitro drug screening, three new agonists targeting the UT receptor were identified which may serve as promising therapeutic agents for urotensinergic system disorders.
Collapse
|
8
|
Avagimyan A. THE PATHOPHYSIOLOGICAL BASIS OF DIABETIC CARDIOMYOPATHY DEVELOPMENT. Curr Probl Cardiol 2022; 47:101156. [DOI: 10.1016/j.cpcardiol.2022.101156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/16/2022] [Indexed: 01/02/2023]
|