1
|
Lee MS, Shim HS, Lee JS. Strategies for mitigating inter-crystal scattering effects in positron emission tomography: a comprehensive review. Biomed Eng Lett 2024; 14:1243-1258. [PMID: 39465104 PMCID: PMC11502689 DOI: 10.1007/s13534-024-00427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
Inter-crystal scattering (ICS) events in Positron Emission Tomography (PET) present challenges affecting system sensitivity and image quality. Understanding the physics and factors influencing ICS occurrence is crucial for developing strategies to mitigate its impact. This review paper explores the physics behind ICS events and their occurrence within PET detectors. Various methodologies, including energy-based comparisons, Compton kinematics-based approaches, statistical methods, and Artificial Intelligence (AI) techniques, which have been proposed for identifying and recovering ICS events accurately are introduced. Energy-based methods offer simplicity by comparing energy depositions in crystals. Compton kinematics-based approaches utilize trajectory information for first interaction position estimation, yielding reasonably good results. Additionally, statistical approach and AI algorithms contribute by optimizing likelihood analysis and neural network models for improved positioning accuracy. Experimental validations and simulation studies highlight the potential of recovering ICS events and enhancing PET sensitivity and image quality. Especially, AI technologies offers a promising avenue for addressing ICS challenges and improving PET image accuracy and resolution. These methods offer promising solutions for overcoming the challenges posed by ICS events and enhancing the accuracy and resolution of PET imaging, ultimately improving diagnostic capabilities and patient outcomes. Further studies applying these approaches to real PET systems are needed to validate theoretical results and assess practical implementation feasibility.
Collapse
Affiliation(s)
- Min Sun Lee
- Environmental Radioactivity Assessment Team, Nuclear Emergency & Environmental Protection Division, Korea Atomic Energy Research Institute, Daejeon, Republic of Korea
| | - Hyeong Seok Shim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Jae Sung Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Brightonix Imaging Inc, Seoul, Republic of Korea
| |
Collapse
|
2
|
Yoshida E, Yamaya T. PET detectors with depth-of-interaction and time-of-flight capabilities. Radiol Phys Technol 2024; 17:596-609. [PMID: 38888821 DOI: 10.1007/s12194-024-00821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/09/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
In positron emission tomography (PET), measurements of depth-of-interaction (DOI) information and time-of-flight (TOF) information are important. DOI information reduces the parallax error, and TOF information reduces noise by measuring the arrival time difference of the annihilation photons. Historically, these have been studied independently, and there has been less implementation of both DOI and TOF capabilities because previous DOI detectors did not have good TOF resolution. However, recent improvements in PET detector performance have resulted in commercial PET scanners achieving a coincidence resolving time of around 200 ps, which result in an effect even for small objects. This means that TOF information can now be utilized even for a brain PET scanner, which also requires DOI information. Therefore, various methods have been proposed to obtain better DOI and TOF information. In addition, the cost of PET detectors is also an important factor to consider, since several hundred detectors are used per PET scanner. In this paper, we review the latest DOI-TOF detectors including the history of detector development. When put into practical use, these DOI-TOF detectors are expected to contribute to the improvement of imaging performance in brain PET scanners.
Collapse
Affiliation(s)
- Eiji Yoshida
- National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| | - Taiga Yamaya
- National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
3
|
Abstract
Biomedical research has long relied on small-animal studies to elucidate disease process and develop new medical treatments. The introduction of in vivo functional imaging technology, such as PET, has allowed investigators to peer inside their subjects and follow disease progression longitudinally as well as improve understanding of normal biological processes. Recent developments in CRISPR, immuno-PET, and high-resolution in vivo imaging have only increased the importance of small-animal, or preclinical, PET imaging. Other drivers of preclinical PET innovation include new combinations of imaging technologies, such as PET/MR imaging, which require changes to PET hardware.
Collapse
Affiliation(s)
- Adrienne L Lehnert
- Department of Radiology, University of Washington, 1959 Northeast Pacific Street, UW Box 356043, Seattle, WA, USA.
| | - Robert S Miyaoka
- Department of Radiology, University of Washington, 1959 Northeast Pacific Street, UW Box 356043, Seattle, WA, USA
| |
Collapse
|
4
|
Grasso V, Willumeit-Rӧmer R, Jose J. Superpixel spectral unmixing framework for the volumetric assessment of tissue chromophores: A photoacoustic data-driven approach. PHOTOACOUSTICS 2022; 26:100367. [PMID: 35601933 PMCID: PMC9120071 DOI: 10.1016/j.pacs.2022.100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
The assessment of tissue chromophores at a volumetric scale is vital for an improved diagnosis and treatment of a large number of diseases. Spectral photoacoustic imaging (sPAI) co-registered with high-resolution ultrasound (US) is an innovative technology that has a great potential for clinical translation as it can assess the volumetric distribution of the tissue components. Conventionally, to detect and separate the chromophores from sPAI, an input of the expected tissue absorption spectra is required. However, in pathological conditions, the prediction of the absorption spectra is difficult as it can change with respect to the physiological state. Besides, this conventional approach can also be hampered due to spectral coloring, which is a prominent distortion effect that induces spectral changes at depth. Here, we are proposing a novel data-driven framework that can overcome all these limitations and provide an improved assessment of the tissue chromophores. We have developed a superpixel spectral unmixing (SPAX) approach that can detect the most and less prominent absorber spectra and their volumetric distribution without any user interactions. Within the SPAX framework, we have also implemented an advanced spectral coloring compensation approach by utilizing US image segmentation and Monte Carlo simulations, based on a predefined library of optical properties. The framework has been tested on tissue-mimicking phantoms and also on healthy animals. The obtained results show enhanced specificity and sensitivity for the detection of tissue chromophores. To our knowledge, this is a unique framework that accounts for the spectral coloring and provides automated detection of tissue spectral signatures at a volumetric scale, which can open many possibilities for translational research.
Collapse
Affiliation(s)
- Valeria Grasso
- FUJIFILM VisualSonics, Amsterdam, the Netherlands
- Faculty of Engineering, Institute for Materials Science, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Regine Willumeit-Rӧmer
- Faculty of Engineering, Institute for Materials Science, Christian-Albrecht University of Kiel, Kiel, Germany
- Division Metallic Biomaterials, Institute of Materials Research, Helmholtz-Zentrum Hereon GmbH, Geesthacht, Germany
| | - Jithin Jose
- FUJIFILM VisualSonics, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Cong L, Kuang Z, Sang Z, Wang X, Niu M, Yang Y. Comparison of arithmetic mean and energy-weighted mean flood histogram generation methods for dual-ended readout PET detectors. Med Phys 2022; 49:4455-4465. [PMID: 35567406 DOI: 10.1002/mp.15710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Dual-ended readout pixelated scintillator array detectors can provide a suitable crystal resolvability and satisfactory depth of interaction (DOI), energy, and timing resolutions. Usually, the flood histogram measured by one-sided readout is depth dependent, and the flood histogram quality degrades as the distance between the interaction site and photodetector increases. Information measured by two photodetectors must be combined to obtain an improved flood histogram yielding a better PET scanner spatial resolution. METHODS Two flood histogram generation algorithms for dual-ended readout of pixelated scintillator array detectors were compared by theoretical calculations and experimental measurements. The first algorithm is the arithmetic mean (AM) algorithm, which assigns the same weight to the flood histograms measured by photodetectors 1 and 2. The second algorithm is the energy-weighted mean (EWM) algorithm, which assigns each flood histogram a certain weight proportional to the energy measured by the photodetector. Theoretical equations were derived to determine the quality of the flood histograms obtained with these two algorithms. Experimental measurements were performed with an 18 × 18 lutetium-yttrium oxyorthosilicate (LYSO) array with a crystal size of 0.62 × 0.62 × 20 mm3 read out by two multi-anode photomultiplier tubes at both ends. Flood histograms of the whole array and five specific depths were compared between the above two algorithms. RESULTS The theoretical results indicated that the flood histograms obtained with the EWM method matched those obtained with the AM method at the middle detector depth and were better at other detector depths when the distance (S) between the locations of the same crystal in the flood histograms measured by photodetectors 1 and 2 reached 0. The advantage of the EWM method decreased with increasing S value since the crystal position in the flood histogram obtained with the EWM method varies with the depth when S does not equal 0. The advantage of the EWM method decreased with increasing S value. The experimental results generally agreed with the theoretical predictions. Compared to the AM method, the EWM method provided a similar flood histogram at a depth of 10 mm but generated a better flood histogram at depths of 2 and 18 mm. Although an inverse correlation between Q (a quality factor representing the advantage of the EWM method) and S was observed, the variation in Q given the same S value was high. The average Q value at the same S still agreed with the theoretical predictions. CONCLUSIONS Theoretical equations were derived, and experimental measurements were performed to compare two flood histogram generation algorithms for dual-ended readout PET detectors. The results indicated that the EWM method based on inverse variance weighting theory could provide better flood histograms than those provided by the AM method. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Longhan Cong
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Zhonghua Kuang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Ziru Sang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Xiaohui Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Ming Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Yongfeng Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
6
|
Kuang Z, Wang X, Ren N, Wu S, Zeng T, Niu M, Cong L, Sang Z, Liu Z, Sun T, Hu Z, Liang D, Liu X, Zheng H, Yang Y. Physical and Imaging Performance of SIAT aPET under Different Energy Windows and Timing Windows. Med Phys 2022; 49:1432-1444. [PMID: 35049067 DOI: 10.1002/mp.15455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The performance of small animal PET scanners depends on the energy window (EW) and timing window (TW). In NEMA Standards Publication NU 4-2008, detailed procedures of the performance measurements are defined, but the EW and TW are not specified. In this work, the effects of EW and TW on the physical and imaging performance of SIAT aPET will be evaluated. METHODS First, the flood histogram, energy resolution and timing resolution were measured for a detector of SIAT aPET. Second, the spatial resolutions were measured with different EWs. Third, the sensitivities, the scatter fractions (SFs), and noise equivalent count rates (NECRs) of a mouse-sized phantom and a rat-sized phantom, the recovery coefficients (RCs) of rods of different sizes, and the percentage standard deviation (%STD) of the NEMA image quality phantom were measured for different EWs and TWs. Last, images of a hot rod phantom, a mouse heart and a rat brain were acquired from the scanner with different EWs. RESULTS The SIAT aPET detectors provided good flood histograms such that all but the corner crystals can be resolved even with lower energies of 250-350 keV, an average energy resolution of 21.1±1.9 % and an average timing resolution of 2.63±0.69 ns. The average spatial resolutions obtained with EWs of 250-350 keV and 450-550 keV are 0.68 mm and 0.75 mm. For EWs of 250-750 keV, 350-750 keV, and 450-750 keV with a fixed TW of 12 ns, the sensitivities at center of field of view are 16.0%, 11.9%, and 8.2%, the peak NECRs of a mouse-sized phantom are 355.6 kcps, 324.4 kcps, and 249.4 kcps, and the peak NECRs of a rat-sized phantom are 148.5 kcps, 144.3 kcps, and 117.7 kcps, respectively. For the TWs of 4 ns, 8 ns,12 ns, and 20 ns with a fixed EW of 350-750 keV, the sensitivities at center of field of view are 9.6%, 11.4%, 11.9%, and 12.2%, the peak NECRs of a mouse-sized phantom are 260.1 kcps, 311.5 kcps, 324.4 kcps and 324.9 kcps, and the peak NECRs of a rat-sized phantom are 110.5 kcps, 137.3 kcps,144.3 kcps and 142.6 kcps, respectively. Narrowing the EW and TW improves the RCs of rods of all sizes, and the %STD of images obtained with different EWs and TWs are similar. Rods with diameter down to 0.8 mm can be visually resolved from images of the hot rod phantom obtained with different EWs. Images of mouse heart with high spatial resolution and rat brain with detail brain structure were obtained with different EWs. Images of both phantom and in-vivo animals obtained with different EWs only showed subtle difference. CONCLUSION The performance of SIAT aPET under different EWs and TWs was compared. The EW and TW affect the sensitivity, SF, and NECR, but not the spatial resolution and animal images of SIAT aPET, which imply that careful optimization of the EW and TW is not required. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhonghua Kuang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaohui Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ning Ren
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - San Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tianyi Zeng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ming Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Longhan Cong
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ziru Sang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zheng Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tao Sun
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhanli Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yongfeng Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
7
|
Dexter K, Foster J, Sosabowski J, Petrik M. Preclinical PET and SPECT Instrumentation. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00055-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
8
|
Chomet M, Schreurs M, Vos R, Verlaan M, Kooijman EJ, Poot AJ, Boellaard R, Windhorst AD, van Dongen GA, Vugts DJ, Huisman MC, Beaino W. Performance of nanoScan PET/CT and PET/MR for quantitative imaging of 18F and 89Zr as compared with ex vivo biodistribution in tumor-bearing mice. EJNMMI Res 2021; 11:57. [PMID: 34117946 PMCID: PMC8197690 DOI: 10.1186/s13550-021-00799-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/02/2021] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION The assessment of ex vivo biodistribution is the preferred method for quantification of radiotracers biodistribution in preclinical models, but is not in line with current ethics on animal research. PET imaging allows for noninvasive longitudinal evaluation of tracer distribution in the same animals, but systemic comparison with ex vivo biodistribution is lacking. Our aim was to evaluate the potential of preclinical PET imaging for accurate tracer quantification, especially in tumor models. METHODS NEMA NU 4-2008 phantoms were filled with 11C, 68Ga, 18F, or 89Zr solutions and scanned in Mediso nanoPET/CT and PET/MR scanners until decay. N87 tumor-bearing mice were i.v. injected with either [18F]FDG (~ 14 MBq), kept 50 min under anesthesia followed by imaging for 20 min, or with [89Zr]Zr-DFO-NCS-trastuzumab (~ 5 MBq) and imaged 3 days post-injection for 45 min. After PET acquisition, animals were killed and organs of interest were collected and measured in a γ-counter to determine tracer uptake levels. PET data were reconstructed using TeraTomo reconstruction algorithm with attenuation and scatter correction and regions of interest were drawn using Vivoquant software. PET imaging and ex vivo biodistribution were compared using Bland-Altman plots. RESULTS In phantoms, the highest recovery coefficient, thus the smallest partial volume effect, was obtained with 18F for both PET/CT and PET/MR. Recovery was slightly lower for 11C and 89Zr, while the lowest recovery was obtained with 68Ga in both scanners. In vivo, tumor uptake of the 18F- or 89Zr-labeled tracer proved to be similar irrespective whether quantified by either PET/CT and PET/MR or ex vivo biodistribution with average PET/ex vivo ratios of 0.8-0.9 and a deviation of 10% or less. Both methods appeared less congruent in the quantification of tracer uptake in healthy organs such as brain, kidney, and liver, and depended on the organ evaluated and the radionuclide used. CONCLUSIONS Our study suggests that PET quantification of 18F- and 89Zr-labeled tracers is reliable for the evaluation of tumor uptake in preclinical models and a valuable alternative technique for ex vivo biodistribution. However, PET and ex vivo quantification require fully described experimental and analytical procedures for reliability and reproducibility.
Collapse
Affiliation(s)
- Marion Chomet
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Maxime Schreurs
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Ricardo Vos
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Mariska Verlaan
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Esther J Kooijman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Alex J Poot
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Ronald Boellaard
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Albert D Windhorst
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Guus Ams van Dongen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Danielle J Vugts
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Marc C Huisman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Wissam Beaino
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands.
| |
Collapse
|
9
|
Abstract
Positron emission tomography (PET) is a non-invasive imaging technology employed to describe metabolic, physiological, and biochemical processes in vivo. These include receptor availability, metabolic changes, neurotransmitter release, and alterations of gene expression in the brain. Since the introduction of dedicated small-animal PET systems along with the development of many novel PET imaging probes, the number of PET studies using rats and mice in basic biomedical research tremendously increased over the last decade. This article reviews challenges and advances of quantitative rodent brain imaging to make the readers aware of its physical limitations, as well as to inspire them for its potential applications in preclinical research. In the first section, we briefly discuss the limitations of small-animal PET systems in terms of spatial resolution and sensitivity and point to possible improvements in detector development. In addition, different acquisition and post-processing methods used in rodent PET studies are summarized. We further discuss factors influencing the test-retest variability in small-animal PET studies, e.g., different receptor quantification methodologies which have been mainly translated from human to rodent receptor studies to determine the binding potential and changes of receptor availability and radioligand affinity. We further review different kinetic modeling approaches to obtain quantitative binding data in rodents and PET studies focusing on the quantification of endogenous neurotransmitter release using pharmacological interventions. While several studies have focused on the dopamine system due to the availability of several PET tracers which are sensitive to dopamine release, other neurotransmitter systems have become more and more into focus and are described in this review, as well. We further provide an overview of latest genome engineering technologies, including the CRISPR/Cas9 and DREADD systems that may advance our understanding of brain disorders and function and how imaging has been successfully applied to animal models of human brain disorders. Finally, we review the strengths and opportunities of simultaneous PET/magnetic resonance imaging systems to study drug-receptor interactions and challenges for the translation of PET results from bench to bedside.
Collapse
|
10
|
Groll AN, Levin CS. Instrumentation and Methods to Combine Small-Animal PET With Other Imaging Modalities. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
D'Elia A, Schiavi S, Soluri A, Massari R, Soluri A, Trezza V. Role of Nuclear Imaging to Understand the Neural Substrates of Brain Disorders in Laboratory Animals: Current Status and Future Prospects. Front Behav Neurosci 2020; 14:596509. [PMID: 33362486 PMCID: PMC7759612 DOI: 10.3389/fnbeh.2020.596509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Molecular imaging, which allows the real-time visualization, characterization and measurement of biological processes, is becoming increasingly used in neuroscience research. Scintigraphy techniques such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) provide qualitative and quantitative measurement of brain activity in both physiological and pathological states. Laboratory animals, and rodents in particular, are essential in neuroscience research, providing plenty of models of brain disorders. The development of innovative high-resolution small animal imaging systems together with their radiotracers pave the way to the study of brain functioning and neurotransmitter release during behavioral tasks in rodents. The assessment of local changes in the release of neurotransmitters associated with the performance of a given behavioral task is a turning point for the development of new potential drugs for psychiatric and neurological disorders. This review addresses the role of SPECT and PET small animal imaging systems for a better understanding of brain functioning in health and disease states. Brain imaging in rodent models faces a series of challenges since it acts within the boundaries of current imaging in terms of sensitivity and spatial resolution. Several topics are discussed, including technical considerations regarding the strengths and weaknesses of both technologies. Moreover, the application of some of the radioligands developed for small animal nuclear imaging studies is discussed. Then, we examine the changes in metabolic and neurotransmitter activity in various brain areas during task-induced neural activation with special regard to the imaging of opioid, dopaminergic and cannabinoid receptors. Finally, we discuss the current status providing future perspectives on the most innovative imaging techniques in small laboratory animals. The challenges and solutions discussed here might be useful to better understand brain functioning allowing the translation of preclinical results into clinical applications.
Collapse
Affiliation(s)
- Annunziata D'Elia
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
- Section of Biomedical Sciences and Technologies, Department of Science, University “Roma Tre”, Rome, Italy
| | - Sara Schiavi
- Section of Biomedical Sciences and Technologies, Department of Science, University “Roma Tre”, Rome, Italy
| | - Andrea Soluri
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
| | - Roberto Massari
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
| | - Alessandro Soluri
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
| | - Viviana Trezza
- Section of Biomedical Sciences and Technologies, Department of Science, University “Roma Tre”, Rome, Italy
| |
Collapse
|
12
|
Abstract
In the light of ever-increasing demands for PET scanner with better resolvability, higher sensitivity and wide accessibility for noninvasive screening of small structures and physiological processes in laboratory rodents, several dedicated PET scanners were developed and evaluated. Understanding conceptual design constraints pros and cons of different configurations and impact of the major components will be helpful to further establish the crucial role of these miniaturized systems in a broad spectrum of modern research. Hence, a comprehensive review of preclinical PET scanners developed till early 2020 with particular emphasis on innovations in instrumentation and geometrical designs is provided.
Collapse
Affiliation(s)
- Mahsa Amirrashedi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva CH-1211, Switzerland; Geneva University Neurocenter, Geneva University, Geneva CH-1205, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense 500, Denmark
| | - Mohammad Reza Ay
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Sanaat A, Arabi H, Reza Ay M, Zaidi H. Novel preclinical PET geometrical concept using a monolithic scintillator crystal offering concurrent enhancement in spatial resolution and detection sensitivity: a simulation study. ACTA ACUST UNITED AC 2020; 65:045013. [DOI: 10.1088/1361-6560/ab63ef] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Teimoorisichani M, Goertzen AL. Count rate performance of brain-dedicated PET scanners: a Monte Carlo simulation study. Phys Med Biol 2019; 64:215013. [PMID: 31530762 DOI: 10.1088/1361-6560/ab452f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In recent years, there has been a renewed interest in brain-dedicated PET imaging systems, particularly in the context of combined PET/MR imaging. We are currently designing a brain-dedicated PET insert suitable for an ultra-high field brain-dedicated MR scanner, the Siemens Magnetom 7T MR scanner. In this paper, an investigation on the count rate performance of several possible detectors through a series of Monte Carlo simulations is reported. Brain-dedicated PET scanners with a lutetium oxyorthosilicate scintillator and a detector area of 0.04 (1 crystal per detector) to 101.37 (2500 crystals per detector) cm2, detector thickness of 10 to 20 mm and a fixed crystal pitch of ~2 mm were simulated. The count rate performance of each scanner was evaluated as a function of detector deadtime type and constant, coincidence timing window and lower level discriminator. Also, the effects of activity outside the field-of-view (FOV) on the count rate performance of each scanner were studied. For each detector geometry and performance metric, the scanner singles rate, scanner sensitivity and noise equivalent count rate as a function of activity in the FOV were measured. It was seen that scanners with detectors comprised a few crystal elements showed reduced scanner sensitivity due to a high number of inter-detector scattering. The count rate performance of scanners with large detectors, on the other hand, was mainly determined by the deadtime properties of the detectors. A model for the count rate performance of the scanner with each studied detector is presented in this work.
Collapse
Affiliation(s)
- Mohammadreza Teimoorisichani
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada. Author to whom any correspondence should be addressed
| | | |
Collapse
|
15
|
Amirrashedi M, Sarkar S, Ghafarian P, Hashemi Shahraki R, Geramifar P, Zaidi H, Ay MR. NEMA NU-4 2008 performance evaluation of Xtrim-PET: A prototype SiPM-based preclinical scanner. Med Phys 2019; 46:4816-4825. [PMID: 31448421 DOI: 10.1002/mp.13785] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Xtrim-PET is a newly designed Silicon Photomultipliers (SiPMs)-based prototype PET scanner dedicated for small laboratory animal imaging. We present the performance evaluation of the Xtrim-PET scanner following NEMA NU-4 2008 standards to help optimizing scanning protocols which can be achieved through standard and reliable system performance characterization. METHODS The performance assessment was conducted according to the National Electrical Manufacturers Association (NEMA) NU-4 2008 standards in terms of spatial resolution, sensitivity, counting rate performance, scatter fraction and image quality. The in vivo imaging capability of the scanner is also showcased through scanning a normal mouse injected with 18 F-FDG. Furthermore, the performance characteristics of the developed scanner are compared with commercially available systems and current prototypes. RESULTS The volumetric spatial resolution at 5 mm radial offset from the central axis of the scanner is 6.81 µl, whereas a peak absolute sensitivity of 2.99% was achieved using a 250-650 keV energy window and a 10 ns timing window. The peak noise-equivalent count rate (NECR) using a mouse-like phantom is 113.18 kcps at 0.34 KBq/cc with 12.5% scatter fraction, whereas the NECR peaked at 82.76 kcps for an activity concentration level of 0.048 KBq/cc with a scatter fraction of 25.8% for rat-like phantom. An excellent uniformity (3.8%) was obtained using NEMA image quality phantom. Recovery coefficients of 90%, 86%, 68%, 40% and 12% were calculated for rod diameters of 5, 4, 3, 2 and 1 mm, respectively. Spill-over ratios for air-filled and water-filled chambers were 35% and 25% without applying any correction for attenuation and Compton scattering effects. CONCLUSION Our findings revealed that beyond compactness, lightweight, easy installation and good energy resolution, the Xtrim-PET prototype presents a reasonable performance making it suitable for preclinical molecular imaging-based research.
Collapse
Affiliation(s)
- Mahsa Amirrashedi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Sarkar
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Pardis Ghafarian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,PET/CT and Cyclotron Center, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Hashemi Shahraki
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, CH-1211, Switzerland.,Geneva University Neurocenter, Geneva University, CH-1205, Geneva, Switzerland.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, Netherlands.,Department of Nuclear Medicine, University of Southern Denmark, 500, Odense, Denmark
| | - Mohammad Reza Ay
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Teuho J, Han C, Riehakainen L, Honkaniemi A, Tirri M, Liljenbäck H, Virta J, Gu S, Liu S, Wan L, Teräs M, Roivainen A, Xie Q, Knuuti J. NEMA NU 4-2008 and in vivo imaging performance of RAYCAN trans-PET/CT X5 small animal imaging system. ACTA ACUST UNITED AC 2019; 64:115014. [DOI: 10.1088/1361-6560/ab1856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Lee MS, Kang SK, Lee JS. Novel inter-crystal scattering event identification method for PET detectors. ACTA ACUST UNITED AC 2018; 63:115015. [DOI: 10.1088/1361-6560/aabe3a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Lauber DT, Fülöp A, Kovács T, Szigeti K, Máthé D, Szijártó A. State of the art in vivo imaging techniques for laboratory animals. Lab Anim 2017; 51:465-478. [PMID: 28948893 DOI: 10.1177/0023677217695852] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In recent decades, imaging devices have become indispensable tools in the basic sciences, in preclinical research and in modern drug development. The rapidly evolving high-resolution in vivo imaging technologies provide a unique opportunity for studying biological processes of living organisms in real time on a molecular level. State of the art small-animal imaging modalities provide non-invasive images rich in quantitative anatomical and functional information, which renders longitudinal studies possible allowing precise monitoring of disease progression and response to therapy in models of different diseases. The number of animals in a scientific investigation can be substantially reduced using imaging techniques, which is in full compliance with the ethical endeavours for the 3R (reduction, refinement, replacement) policies formulated by Russell and Burch; furthermore, biological variability can be alleviated, as each animal serves as its own control. The most suitable and commonly used imaging modalities for in vivo small-animal imaging are optical imaging (OI), ultrasonography (US), computed tomography (CT), magnetic resonance imaging (MRI), and finally the methods of nuclear medicine: positron emission tomography (PET) and single photon emission computed tomography (SPECT).
Collapse
Affiliation(s)
- David Tibor Lauber
- 1 Hepato-Pancreatico-Biliary Surgery Research Center Hungary, 1st Department of Surgery, Semmelweis University, Budapest, Hungary
| | - András Fülöp
- 1 Hepato-Pancreatico-Biliary Surgery Research Center Hungary, 1st Department of Surgery, Semmelweis University, Budapest, Hungary
| | - Tibor Kovács
- 1 Hepato-Pancreatico-Biliary Surgery Research Center Hungary, 1st Department of Surgery, Semmelweis University, Budapest, Hungary
- 2 Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Krisztián Szigeti
- 2 Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Domokos Máthé
- 2 Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- 3 CROmed Translational Research Centers Ltd, Budapest, Hungary
| | - Attila Szijártó
- 1 Hepato-Pancreatico-Biliary Surgery Research Center Hungary, 1st Department of Surgery, Semmelweis University, Budapest, Hungary
| |
Collapse
|
19
|
Ota R, Omura T, Yamada R, Miwa T, Watanabe M. Evaluation of a Sub-Millimeter Resolution PET Detector With a 1.2 mm Pitch TSV-MPPC Array One-to-One Coupled to LFS Scintillator Crystals and Inter-Crystal Scatter Studies With Individual Signal Readout. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2017. [DOI: 10.1109/tns.2016.2617334] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Zhang Z, Ye J, Chen B, Perkins AE, Rose S, Sidky EY, Kao CM, Xia D, Tung CH, Pan X. Investigation of optimization-based reconstruction with an image-total-variation constraint in PET. Phys Med Biol 2016; 61:6055-84. [PMID: 27452653 DOI: 10.1088/0031-9155/61/16/6055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Interest remains in reconstruction-algorithm research and development for possible improvement of image quality in current PET imaging and for enabling innovative PET systems to enhance existing, and facilitate new, preclinical and clinical applications. Optimization-based image reconstruction has been demonstrated in recent years of potential utility for CT imaging applications. In this work, we investigate tailoring the optimization-based techniques to image reconstruction for PET systems with standard and non-standard scan configurations. Specifically, given an image-total-variation (TV) constraint, we investigated how the selection of different data divergences and associated parameters impacts the optimization-based reconstruction of PET images. The reconstruction robustness was explored also with respect to different data conditions and activity up-takes of practical relevance. A study was conducted particularly for image reconstruction from data collected by use of a PET configuration with sparsely populated detectors. Overall, the study demonstrates the robustness of the TV-constrained, optimization-based reconstruction for considerably different data conditions in PET imaging, as well as its potential to enable PET configurations with reduced numbers of detectors. Insights gained in the study may be exploited for developing algorithms for PET-image reconstruction and for enabling PET-configuration design of practical usefulness in preclinical and clinical applications.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lerche CW, Salomon A, Goldschmidt B, Lodomez S, Weissler B, Solf T. Maximum likelihood positioning and energy correction for scintillation detectors. Phys Med Biol 2016; 61:1650-76. [DOI: 10.1088/0031-9155/61/4/1650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
DiFilippo FP. Enhanced PET resolution by combining pinhole collimation and coincidence detection. Phys Med Biol 2015; 60:7969-84. [PMID: 26418305 DOI: 10.1088/0031-9155/60/20/7969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Spatial resolution of clinical PET scanners is limited by detector design and photon non-colinearity. Although dedicated small animal PET scanners using specialized high-resolution detectors have been developed, enhancing the spatial resolution of clinical PET scanners is of interest as a more available alternative. Multi-pinhole 511 keV SPECT is capable of high spatial resolution but requires heavily shielded collimators to avoid significant background counts. A practical approach with clinical PET detectors is to combine multi-pinhole collimation with coincidence detection. In this new hybrid modality, there are three locations associated with each event, namely those of the two detected photons and the pinhole aperture. These three locations over-determine the line of response and provide redundant information that is superior to coincidence detection or pinhole collimation alone. Multi-pinhole collimation provides high resolution and avoids non-colinearity error but is subject to collimator penetration and artifacts from overlapping projections. However the coincidence information, though at lower resolution, is valuable for determining whether the photon passed near a pinhole within the cone acceptance angle and for identifying through which pinhole the photon passed. This information allows most photons penetrating through the collimator to be rejected and avoids overlapping projections. With much improved event rejection, a collimator with minimal shielding may be used, and a lightweight add-on collimator for high resolution imaging is feasible for use with a clinical PET scanner. Monte Carlo simulations were performed of a (18)F hot rods phantom and a 54-pinhole unfocused whole-body mouse collimator with a clinical PET scanner. Based on coincidence information and pinhole geometry, events were accepted or rejected, and pinhole-specific crystal-map projections were generated. Tomographic images then were reconstructed using a conventional pinhole SPECT algorithm. Hot rods of 1.4 mm diameter were resolved easily in a simulated phantom. System sensitivity was 0.09% for a simulated 70-mm line source corresponding to the NEMA NU-4 mouse phantom. Higher resolution is expected with further optimization of pinhole design, and higher sensitivity is expected with a focused and denser pinhole configuration. The simulations demonstrate high spatial resolution and feasibility of small animal imaging with an add-on multi-pinhole collimator for a clinical PET scanner. Further work is needed to develop geometric calibration and quantitative data corrections and, eventually, to construct a prototype device and produce images with physical phantoms.
Collapse
Affiliation(s)
- Frank P DiFilippo
- Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
23
|
Santos A, Fernández-Friera L, Villalba M, López-Melgar B, España S, Mateo J, Mota RA, Jiménez-Borreguero J, Ruiz-Cabello J. Cardiovascular imaging: what have we learned from animal models? Front Pharmacol 2015; 6:227. [PMID: 26539113 PMCID: PMC4612690 DOI: 10.3389/fphar.2015.00227] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/22/2015] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular imaging has become an indispensable tool for patient diagnosis and follow up. Probably the wide clinical applications of imaging are due to the possibility of a detailed and high quality description and quantification of cardiovascular system structure and function. Also phenomena that involve complex physiological mechanisms and biochemical pathways, such as inflammation and ischemia, can be visualized in a non-destructive way. The widespread use and evolution of imaging would not have been possible without animal studies. Animal models have allowed for instance, (i) the technical development of different imaging tools, (ii) to test hypothesis generated from human studies and finally, (iii) to evaluate the translational relevance assessment of in vitro and ex-vivo results. In this review, we will critically describe the contribution of animal models to the use of biomedical imaging in cardiovascular medicine. We will discuss the characteristics of the most frequent models used in/for imaging studies. We will cover the major findings of animal studies focused in the cardiovascular use of the repeatedly used imaging techniques in clinical practice and experimental studies. We will also describe the physiological findings and/or learning processes for imaging applications coming from models of the most common cardiovascular diseases. In these diseases, imaging research using animals has allowed the study of aspects such as: ventricular size, shape, global function, and wall thickening, local myocardial function, myocardial perfusion, metabolism and energetic assessment, infarct quantification, vascular lesion characterization, myocardial fiber structure, and myocardial calcium uptake. Finally we will discuss the limitations and future of imaging research with animal models.
Collapse
Affiliation(s)
- Arnoldo Santos
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; CIBER de Enfermedades Respiratorias (CIBERES) Madrid, Spain ; Madrid-MIT M+Visión Consortium Madrid, Spain ; Department of Anesthesia, Massachusetts General Hospital, Harvard Medical School Boston, MA, USA
| | - Leticia Fernández-Friera
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; Hospital Universitario HM Monteprincipe Madrid, Spain
| | - María Villalba
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain
| | - Beatriz López-Melgar
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; Hospital Universitario HM Monteprincipe Madrid, Spain
| | - Samuel España
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; CIBER de Enfermedades Respiratorias (CIBERES) Madrid, Spain ; Madrid-MIT M+Visión Consortium Madrid, Spain
| | - Jesús Mateo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; CIBER de Enfermedades Respiratorias (CIBERES) Madrid, Spain
| | - Ruben A Mota
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; Charles River Barcelona, Spain
| | - Jesús Jiménez-Borreguero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; Cardiac Imaging Department, Hospital de La Princesa Madrid, Spain
| | - Jesús Ruiz-Cabello
- Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid, Spain ; CIBER de Enfermedades Respiratorias (CIBERES) Madrid, Spain ; Universidad Complutense de Madrid Madrid, Spain
| |
Collapse
|
24
|
Abstract
The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the ‘gas-phase’ assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations.
Collapse
|
25
|
Somlai-Schweiger I, Ziegler SI. CHERENCUBE: Concept definition and implementation challenges of a Cherenkov-based detector block for PET. Med Phys 2015; 42:1825-35. [DOI: 10.1118/1.4914857] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
26
|
Liang Y, Peng H. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction. Phys Med Biol 2015; 60:1217-36. [DOI: 10.1088/0031-9155/60/3/1217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Prasad R, Zaidi H. Scatter characterization and correction for simultaneous multiple small-animal PET imaging. Mol Imaging Biol 2014; 16:199-209. [PMID: 23990147 DOI: 10.1007/s11307-013-0683-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PURPOSE The rapid growth and usage of small-animal positron emission tomography (PET) in molecular imaging research has led to increased demand on PET scanner's time. One potential solution to increase throughput is to scan multiple rodents simultaneously. However, this is achieved at the expense of deterioration of image quality and loss of quantitative accuracy owing to enhanced effects of photon attenuation and Compton scattering. The purpose of this work is, first, to characterize the magnitude and spatial distribution of the scatter component in small-animal PET imaging when scanning single and multiple rodents simultaneously and, second, to assess the relevance and evaluate the performance of scatter correction under similar conditions. METHODS The LabPET™-8 scanner was modelled as realistically as possible using Geant4 Application for Tomographic Emission Monte Carlo simulation platform. Monte Carlo simulations allow the separation of unscattered and scattered coincidences and as such enable detailed assessment of the scatter component and its origin. Simple shape-based and more realistic voxel-based phantoms were used to simulate single and multiple PET imaging studies. The modelled scatter component using the single-scatter simulation technique was compared to Monte Carlo simulation results. PET images were also corrected for attenuation and the combined effect of attenuation and scatter on single and multiple small-animal PET imaging evaluated in terms of image quality and quantitative accuracy. RESULTS A good agreement was observed between calculated and Monte Carlo simulated scatter profiles for single- and multiple-subject imaging. In the LabPET™-8 scanner, the detector covering material (kovar) contributed the maximum amount of scatter events while the scatter contribution due to lead shielding is negligible. The out-of field-of-view (FOV) scatter fraction (SF) is 1.70, 0.76, and 0.11% for lower energy thresholds of 250, 350, and 400 keV, respectively. The increase in SF ranged between 25 and 64% when imaging multiple subjects (three to five) of different size simultaneously in comparison to imaging a single subject. The spill-over ratio (SOR) increases with increasing the number of subjects in the FOV. Scatter correction improved the SOR for both water and air cold compartments of single and multiple imaging studies. The recovery coefficients for different body parts of the mouse whole-body and rat whole-body anatomical models were improved for multiple imaging studies following scatter correction. CONCLUSIONS The magnitude and spatial distribution of the scatter component in small-animal PET imaging of single and multiple subjects simultaneously were characterized, and its impact was evaluated in different situations. Scatter correction improves PET image quality and quantitative accuracy for single rat and simultaneous multiple mice and rat imaging studies, whereas its impact is insignificant in single mouse imaging.
Collapse
Affiliation(s)
- Rameshwar Prasad
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva, Switzerland
| | | |
Collapse
|
28
|
España S, Marcinkowski R, Keereman V, Vandenberghe S, Van Holen R. DigiPET: sub-millimeter spatial resolution small-animal PET imaging using thin monolithic scintillators. Phys Med Biol 2014; 59:3405-20. [PMID: 24888974 DOI: 10.1088/0031-9155/59/13/3405] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A new preclinical PET system based on dSiPMs, called DigiPET, is presented. The system is based on thin monolithic scintillation crystals and exhibits superior spatial resolution at low-cost compared to systems based on pixelated crystals. Current dedicated small-rodent PET scanners have a spatial resolution in the order of 1 mm. Most of them have a large footprint, requiring considerable laboratory space. For rodent brain imaging, a PET scanner with sub-millimeter resolution is desired. To achieve this, crystals with a pixel pitch down to 0.5 mm have been used. However, fine pixels are difficult to produce and will render systems expensive. In this work, we present the first results with a high-resolution preclinical PET scanner based on thin monolithic scintillators and a large solid angle. The design is dedicated to rat-brain imaging and therefore has a very compact geometry. Four detectors were placed in a square arrangement with a distance of 34.5 mm between two opposing detector modules, defining a field of view (FOV) of 32 × 32 × 32 mm(3). Each detector consists of a thin monolithic LYSO crystal of 32 × 32 × 2 mm(3) optically coupled to a digital silicon photomultiplier (dSiPM). Event positioning within each detector was obtained using the maximum likelihood estimation (MLE) method. To evaluate the system performance, we measured the energy resolution, coincidence resolving time (CRT), sensitivity and spatial resolution. The image quality was evaluated by acquiring a hot-rod phantom filled with (18)F-FDG and a rat head one hour after an (18)F-FDG injection. The MLE yielded an average intrinsic spatial resolution on the detector of 0.54 mm FWHM. We obtained a CRT of 680 ps and an energy resolution of 18% FWHM at 511 keV. The sensitivity and spatial resolution obtained at the center of the FOV were 6.0 cps kBq(-1) and 0.7 mm, respectively. In the reconstructed images of the hot-rod phantom, hot rods down to 0.7 mm can be discriminated. In conclusion, a compact PET scanner was built using dSiPM technology and thin monolithic LYSO crystals. Excellent spatial resolution and acceptable sensitivity were demonstrated. Promising results were also obtained in a hot-rod phantom and in rat-brain imaging.
Collapse
Affiliation(s)
- Samuel España
- Department of Electronics and Information Systems, MEDISIP, Ghent University-iMinds-IBiTech, De Pintelaan 185 block B, B-9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
29
|
Xie T, Zaidi H. Assessment of S values in stylized and voxel-based rat models for positron-emitting radionuclides. Mol Imaging Biol 2014; 15:542-51. [PMID: 23558509 DOI: 10.1007/s11307-013-0632-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Positron emission tomography (PET) is a powerful tool in small animal research, enabling noninvasive quantitative imaging of biochemical processes in living subjects. However, the dosimetric characteristics of small animal PET imaging are usually overlooked, although the radiation dose may be significant. The variations of anatomical characteristics between the various computational models may result in differences in the dosimetric outcome. METHODS We used five different anatomical rat models (two stylized and three voxel based) to compare calculated absorbed fractions and S values for eight positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Y-86, and I-124) commonly used to label various probes for small animal PET imaging. The MCNPX radiation transport code was used for radiation dose calculations. RESULTS For most source/target organ pairs, O-15 and Ga-68 produce the highest self-absorbed S values because of the high-energy and high-frequency of positron emissions, while Y-86 produces the highest cross-absorbed S values because of the high energy and high frequency of γ-rays emission. Anatomical models produced from different rat strains or modeling techniques exhibit different organ masses, volumes, and thus give rise to different S values and absorbed dose. The variations of absorbed fractions between models of the same type are less than those between models with different types. The calculated S values depend strongly on organ mass, and as such, different models produce similar S values for organs of comparable masses. In most source organs presenting with high cumulated activity, the absorbed dose is less affected by model difference compared with other organs. CONCLUSIONS The produced S values for common positron-emitting radionuclides can be exploited in the assessment of radiation dose to rats from different radiotracers used in small animal PET experiments. This work contributes to a better understanding of the influence of different computational models on small animal dosimetry.
Collapse
Affiliation(s)
- Tianwu Xie
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland
| | | |
Collapse
|
30
|
|
31
|
Prasad R, Zaidi H. A cone-shaped phantom for assessment of small animal PET scatter fraction and count rate performance. Mol Imaging Biol 2013; 14:561-71. [PMID: 22311541 PMCID: PMC3443338 DOI: 10.1007/s11307-012-0546-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Purpose Positron emission tomography (PET) image quality deteriorates as the object size increases owing to increased detection of scattered and random events. The characterization of the scatter component in small animal PET imaging has received little attention owing to the small scatter fraction (SF) when imaging rodents. The purpose of this study is first to design and fabricate a cone-shaped phantom which can be used for measurement of object size-dependent SF and noise equivalent count rates (NECR), and second, to assess these parameters for two small animal PET scanners as function of radial offset, object size and lower energy threshold (LET). Methods The X-PET™ and LabPET-8™ scanners were modeled as realistically as possible using GATE Monte Carlo simulation platform. The simulation models were validated against experimental measurements in terms of sensitivity, SF and NECR. The dedicated phantom was fabricated in-house using high-density polyethylene. The optimized dimensions of the cone-shaped phantom are 158 mm (length), 20 mm (minimum diameter), 70 mm (maximum diameter) and taper angle of 9°. Results The relative difference between simulated and experimental results for the LabPET-8™ scanner varied between 0.7% and 10% except for a few results where it was below 16%. Depending on the radial offset from the center of the central axial field-of-view (3–6 cm diameter), the SF for the cone-shaped phantom varied from 26.3% to 18.2%, 18.6 to 13.1% and 10.1 to 7.6% for the X-PET™, whereas it varied from 34.4% to 26.9%, 19.1 to 17.0% and 9.1 to 7.3% for the LabPET-8™, for LETs of 250, 350 and 425 keV, respectively. The SF increases as the radial offset decreases, LET decreases and object size increases. The SF is higher for the LabPET-8™ compared with the X-PET™ scanner. The NECR increases as the radial offset increases and object size decreases. The maximum NECR was obtained at a LET of 350 keV for the LabPET-8™ and 250 keV for the X-PET™. High correlation coefficients for SF and NECR were observed between the cone-shaped phantom and an equivalent volume cylindrical phantom for the three considered axial fields of view. Conclusions A single cone-shaped phantom enables the assessment of the impact of three factors, namely radial offset, LET and object size on PET SF and count rate estimates. This phantom is more realistic owing to the non-uniform shape of rodents’ bodies compared to cylindrical uniform phantoms and seems to be well suited for evaluation of object size-dependent SF and NECR.
Collapse
Affiliation(s)
- Rameshwar Prasad
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211 Geneva, Switzerland
- Geneva Neuroscience Center, Geneva University, 1211 Geneva, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9700 Groningen, the Netherlands
| |
Collapse
|
32
|
Clinthorne N, Brzezinski K, Chesi E, Cochran E, Grkovski M, Grošičar B, Honscheid K, Huh S, Kagan H, Lacasta C, Linhart V, Mikuž M, Smith S, Stankova V, Studen A, Weilhammer P, žontar D. Silicon as an Unconventional Detector in Positron Emission Tomography. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT 2013; 699:216-220. [PMID: 23230345 PMCID: PMC3516620 DOI: 10.1016/j.nima.2012.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Positron emission tomography (PET) is a widely used technique in medical imaging and in studying small animal models of human disease. In the conventional approach, the 511 keV annihilation photons emitted from a patient or small animal are detected by a ring of scintillators such as LYSO read out by arrays of photodetectors. Although this has been a successful in achieving ~5mm FWHM spatial resolution in human studies and ~1mm resolution in dedicated small animal instruments, there is interest in significantly improving these figures. Silicon, although its stopping power is modest for 511 keV photons, offers a number of potential advantages over more conventional approaches. Foremost is its high spatial resolution in 3D: our past studies show that there is little diffculty in localizing 511 keV photon interactions to ~0.3mm. Since spatial resolution and reconstructed image noise trade off in a highly non-linear manner that depends on the PET instrument response, if high spatial resolution is the goal, silicon may outperform standard PET detectors even though it has lower sensitivity to 511 keV photons. To evaluate silicon in a variety of PET "magnifying glass" configurations, an instrument has been constructed that consists of an outer partial-ring of PET scintillation detectors into which various arrangements of silicon detectors can be inserted to emulate dual-ring or imaging probe geometries. Recent results have demonstrated 0.7 mm FWHM resolution using pad detectors having 16×32 arrays of 1.4mm square pads and setups have shown promising results in both small animal and PET imaging probe configurations. Although many challenges remain, silicon has potential to become the PET detector of choice when spatial resolution is the primary consideration.
Collapse
Affiliation(s)
- N.H. Clinthorne
- Dept. Radiology, University of Michigan, Ann Arbor, MI USA 48109-5610
| | | | | | - E. Cochran
- Dept. Physics, Ohio State University, Columbus, OH USA
| | | | | | - K. Honscheid
- Dept. Physics, Ohio State University, Columbus, OH USA
| | - S. Huh
- Dept. Radiology, University of Michigan, Ann Arbor, MI USA 48109-5610
| | - H. Kagan
- Dept. Physics, Ohio State University, Columbus, OH USA
| | - C. Lacasta
- IFIC/CSIC University of Valencia, Valencia, Spain
| | - V. Linhart
- IFIC/CSIC University of Valencia, Valencia, Spain
| | - M. Mikuž
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - S. Smith
- Dept. Physics, Ohio State University, Columbus, OH USA
| | - V. Stankova
- IFIC/CSIC University of Valencia, Valencia, Spain
| | - A. Studen
- Jožef Stefan Institute, Ljubljana, Slovenia
| | | | - D. žontar
- Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
33
|
Converse AK, Ahlers EO, Bryan TW, Williams PH, Barnhart TE, Engle JW, Nickles RJ, DeJesus OT. Positron emission tomography (PET) of radiotracer uptake and distribution in living plants: methodological aspects. J Radioanal Nucl Chem 2012. [DOI: 10.1007/s10967-012-2383-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Xie T, Zaidi H. Monte Carlo-based evaluation of S-values in mouse models for positron-emitting radionuclides. Phys Med Biol 2012; 58:169-82. [PMID: 23221270 DOI: 10.1088/0031-9155/58/1/169] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In addition to being a powerful clinical tool, Positron emission tomography (PET) is also used in small laboratory animal research to visualize and track certain molecular processes associated with diseases such as cancer, heart disease and neurological disorders in living small animal models of disease. However, dosimetric characteristics in small animal PET imaging are usually overlooked, though the radiation dose may not be negligible. In this work, we constructed 17 mouse models of different body mass and size based on the realistic four-dimensional MOBY mouse model. Particle (photons, electrons and positrons) transport using the Monte Carlo method was performed to calculate the absorbed fractions and S-values for eight positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Y-86 and I-124). Among these radionuclides, O-15 emits positrons with high energy and frequency and produces the highest self-absorbed S-values in each organ, while Y-86 emits γ-rays with high energy and frequency which results in the highest cross-absorbed S-values for non-neighbouring organs. Differences between S-values for self-irradiated organs were between 2% and 3%/g difference in body weight for most organs. For organs irradiating other organs outside the splanchnocoele (i.e. brain, testis and bladder), differences between S-values were lower than 1%/g. These appealing results can be used to assess variations in small animal dosimetry as a function of total-body mass. The generated database of S-values for various radionuclides can be used in the assessment of radiation dose to mice from different radiotracers in small animal PET experiments, thus offering quantitative figures for comparative dosimetry research in small animal models.
Collapse
Affiliation(s)
- Tianwu Xie
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|
35
|
El Ali HH, Bodholdt RP, Jørgensen JT, Myschetzky R, Kjaer A. Importance of Attenuation Correction (AC) for Small Animal PET Imaging. Diagnostics (Basel) 2012; 2:42-51. [PMID: 26859397 PMCID: PMC4665554 DOI: 10.3390/diagnostics2040042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/13/2012] [Accepted: 10/08/2012] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The purpose of this study was to investigate whether a correction for annihilation photon attenuation in small objects such as mice is necessary. The attenuation recovery for specific organs and subcutaneous tumors was investigated. A comparison between different attenuation correction methods was performed. METHODS Ten NMRI nude mice with subcutaneous implantation of human breast cancer cells (MCF-7) were scanned consecutively in small animal PET and CT scanners (MicroPET(TM) Focus 120 and ImTek's MicroCAT(TM) II). CT-based AC, PET-based AC and uniform AC methods were compared. RESULTS The activity concentration in the same organ with and without AC revealed an overall attenuation recovery of 9-21% for MAP reconstructed images, i.e., SUV without AC could underestimate the true activity at this level. For subcutaneous tumors, the attenuation was 13 ± 4% (9-17%), for kidneys 20 ± 1% (19-21%), and for bladder 18 ± 3% (15-21%). The FBP reconstructed images showed almost the same attenuation levels as the MAP reconstructed images for all organs. CONCLUSIONS The annihilation photons are suffering attenuation even in small subjects. Both PET-based and CT-based are adequate as AC methods. The amplitude of the AC recovery could be overestimated using the uniform map. Therefore, application of a global attenuation factor on PET data might not be accurate for attenuation correction.
Collapse
Affiliation(s)
- Henrik H El Ali
- Cluster for Molecular Imaging, Faculty of Health Sciences & Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark.
| | - Rasmus Poul Bodholdt
- Cluster for Molecular Imaging, Faculty of Health Sciences & Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark.
| | - Jesper Tranekjær Jørgensen
- Cluster for Molecular Imaging, Faculty of Health Sciences & Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark.
| | - Rebecca Myschetzky
- Cluster for Molecular Imaging, Faculty of Health Sciences & Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark.
| | - Andreas Kjaer
- Cluster for Molecular Imaging, Faculty of Health Sciences & Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark.
| |
Collapse
|
36
|
DiFilippo FP, Patel S, Asosingh K, Erzurum SC. Small-Animal Imaging Using Clinical Positron Emission Tomography/Computed Tomography and Super-Resolution. Mol Imaging 2012. [DOI: 10.2310/7290.2011.00041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Frank P. DiFilippo
- From the Department of Nuclear Medicine, Imaging Institute, Department of Pathobiology, Lerner Research Institute, and Respiratory Institute, Cleveland Clinic, Cleveland, OH
| | - Sagar Patel
- From the Department of Nuclear Medicine, Imaging Institute, Department of Pathobiology, Lerner Research Institute, and Respiratory Institute, Cleveland Clinic, Cleveland, OH
| | - Kewal Asosingh
- From the Department of Nuclear Medicine, Imaging Institute, Department of Pathobiology, Lerner Research Institute, and Respiratory Institute, Cleveland Clinic, Cleveland, OH
| | - Serpil C. Erzurum
- From the Department of Nuclear Medicine, Imaging Institute, Department of Pathobiology, Lerner Research Institute, and Respiratory Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
37
|
Levin CS. Promising new photon detection concepts for high-resolution clinical and preclinical PET. J Nucl Med 2012; 53:167-70. [PMID: 22302960 DOI: 10.2967/jnumed.110.084343] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The ability of PET to visualize and quantify regions of low concentration of PET tracer representing subtle cellular and molecular signatures of disease depends on relatively complex biochemical, biologic, and physiologic factors that are challenging to control, as well as on instrumentation performance parameters that are, in principle, still possible to improve on. Thus, advances to the latter can somewhat offset barriers of the former. PET system performance parameters such as spatial resolution, contrast resolution, and photon sensitivity contribute significantly to PET's ability to visualize and quantify lower concentrations of signal in the presence of background. In this report we present some technology innovations under investigation toward improving these PET system performance parameters. We focus particularly on a promising advance known as 3-dimensional position-sensitive detectors, which are detectors capable of distinguishing and measuring the position, energy, and arrival time of individual interactions of multi-interaction photon events in 3 dimensions. If successful, these new strategies enable enhancements such as the detection of fewer diseased cells in tissue or the ability to characterize lower-abundance molecular targets within cells. Translating these advanced capabilities to the clinic might allow expansion of PET's roles in disease management, perhaps to earlier stages of disease. In preclinical research, such enhancements enable more sensitive and accurate studies of disease biology in living subjects.
Collapse
Affiliation(s)
- Craig S Levin
- Molecular Imaging Instrumentation Laboratory, Departments of Radiology, Physics, and Electrical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
38
|
Prasad R, Ratib O, Zaidi H. NEMA NU-04-based performance characteristics of the LabPET-8™ small animal PET scanner. Phys Med Biol 2011; 56:6649-64. [DOI: 10.1088/0031-9155/56/20/009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
39
|
Zaidi H, Prasad R. Advances in multimodality molecular imaging. J Med Phys 2011; 34:122-8. [PMID: 20098557 PMCID: PMC2807675 DOI: 10.4103/0971-6203.54844] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Revised: 01/16/2009] [Accepted: 01/31/2009] [Indexed: 11/12/2022] Open
Abstract
Multimodality molecular imaging using high resolution positron emission tomography (PET) combined with other modalities is now playing a pivotal role in basic and clinical research. The introduction of combined PET/CT systems in clinical setting has revolutionized the practice of diagnostic imaging. The complementarity between the intrinsically aligned anatomic (CT) and functional or metabolic (PET) information provided in a “one-stop shop” and the possibility to use CT images for attenuation correction of the PET data has been the driving force behind the success of this technology. On the other hand, combining PET with Magnetic Resonance Imaging (MRI) in a single gantry is technically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of few preclinical PET systems and one human prototype dedicated for simultaneous PET/MR brain imaging. This paper discusses recent advances in PET instrumentation and the advantages and challenges of multimodality imaging systems. Future opportunities and the challenges facing the adoption of multimodality imaging instrumentation will also be addressed.
Collapse
Affiliation(s)
- Habib Zaidi
- Geneva University Hospital, Division of Nuclear Medicine, CH-1211 Geneva, Switzerland
| | | |
Collapse
|
40
|
Chinn G, Levin CS. A maximum NEC criterion for Compton collimation to accurately identify true coincidences in PET. IEEE TRANSACTIONS ON MEDICAL IMAGING 2011; 30:1341-1352. [PMID: 21317079 PMCID: PMC3667991 DOI: 10.1109/tmi.2011.2113379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this work, we propose a new method to increase the accuracy of identifying true coincidence events for positron emission tomography (PET). This approach requires 3-D detectors with the ability to position each photon interaction in multi-interaction photon events. When multiple interactions occur in the detector, the incident direction of the photon can be estimated using the Compton scatter kinematics (Compton Collimation). If the difference between the estimated incident direction of the photon relative to a second, coincident photon lies within a certain angular range around colinearity, the line of response between the two photons is identified as a true coincidence and used for image reconstruction. We present an algorithm for choosing the incident photon direction window threshold that maximizes the noise equivalent counts of the PET system. For simulated data, the direction window removed 56%-67% of random coincidences while retaining > 94% of true coincidences from image reconstruction as well as accurately extracted 70% of true coincidences from multiple coincidences.
Collapse
Affiliation(s)
- Garry Chinn
- Radiology Department, Stanford University, Stanford, CA 94305 USA ()
| | | |
Collapse
|
41
|
Zeraatkar N, Ay MR, Kamali-Asl AR, Zaidi H. Accurate Monte Carlo modeling and performance assessment of the X-PET subsystem of the FLEX triumph preclinical PET/CT scanner. Med Phys 2011; 38:1217-25. [PMID: 21520834 DOI: 10.1118/1.3547721] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE X-PET is a commercial small animal PET scanner incorporating several innovative designs to achieve improved performance. It is employed as a PET subsystem in the FLEX Triumph preclinical PET/CT scanner, the first commercial small animal PET/CT scanner worldwide. The authors report on a novel Monte Carlo (MC) model designed for the evaluation of performance parameters of the X-PET METHODS: The Geant4 Application for Tomographic Emission (GATE) MC code was used as a simulation tool. The authors implemented more accurate modeling of the geometry of detector blocks and associated electronic chains, including dead-time and time-independent parameters, compared to previously presented MC models of the X-PET scanner. Validation of the MC model involved comparison between simulated and measured performance parameters of the X-PET, including spatial resolution, sensitivity, and noise equivalent count rate (NECR). Thereafter, various simulations were performed to assess scanner performance parameters according to NEMA NU 4-2008 standards with the aim to present a reliable Monte Carlo platform for small animal PET scanner design optimization. RESULTS The average differences between simulated and measured results were 11.2%, 33.3%, and 9.1% for spatial resolution, sensitivity, and NECR, respectively. The average system absolute sensitivity was 2.7%. Furthermore, the peak true count rate, peak NECR, and scatter fraction were 2050 kcps, 1520 kcps, and 4.7%, respectively, for a mouse phantom and 1017 kcps, 469 kcps, and 18.2%, respectively, for a rat phantom. Spatial resolution was also measured in ten different positions at two axial locations. The radial, tangential, and axial FWHM ranged from 1.31 to 1.96 mm, 1.17 to 2.11 mm, and 1.77 to 2.44 mm, respectively, as the radial position varied from 0 to 25 mm at the centre of the axial field-of-view. CONCLUSIONS The developed MC simulation platform provides a reliable tool for performance evaluation of small animal PET scanners and has the potential to be used in other applications such as detector design optimization, correction of image degrading factors such as randoms, scatter, intercrystal scatter, parallax error, and partial volume effect.
Collapse
Affiliation(s)
- N Zeraatkar
- Department of Radiation Medicine Engineering, Shahid Beheshti University, 1983963113 Tehran, Iran
| | | | | | | |
Collapse
|
42
|
Prasad R, Ratib O, Zaidi H. Performance evaluation of the FLEX triumph X-PET scanner using the national electrical manufacturers association NU-4 standards. J Nucl Med 2010; 51:1608-15. [PMID: 20847182 DOI: 10.2967/jnumed.110.076125] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The purpose of this work was to evaluate the performance characteristics of the preclinical X-PET subsystem of the FLEX Triumph PET/CT scanner based on the NU 4-2008 standards of the National Electrical Manufacturers Association (NEMA). METHODS The performance parameters evaluated include the spatial resolution, scatter fraction, count losses and random coincidences, sensitivity, and image-quality characteristics. The PET detector array consisted of 11,520 individual bismuth germanate crystals arranged in 48 rings and 180 blocks, with an axial field of view (FOV) of 11.6 cm and a inner ring diameter of 16.5 cm. The spatial resolution was measured with a small (22)Na point source (diameter, 0.25 mm) at different radial offsets from the center. Sensitivity was calculated using the same source by stepping the source axially through the axial FOV of the scanner. Scatter fraction and counting-rate performances were determined using a mouse- and rat-sized phantom with an (18)F line source insert. The NEMA image-quality phantom and rodent imaging were also performed to access the overall imaging capabilities of the scanner. RESULTS Tangential spatial resolution in terms of full width at half maximum varied between 2.2 mm at the center of the FOV and 2.3 mm at a radial offset of 2.5 cm. The radial spatial resolution varied between 2.0 at the center and 4.4 mm at a radial offset of 2.3 cm. The peak system absolute sensitivity was 5.9% at the center of the FOV. The absolute system sensitivity was 0.67 counts/s/Bq, and the relative total system sensitivity was 73.9%. The scatter fraction for the mouse-sized phantom was 7.9%, with a peak true counting rate of 168 kilocounts per second (kcps) at 0.3 MBq/mL and a peak noise-equivalent counting rate of 106 kcps at 0.17 MBq/mL. The rat-sized phantom had a scatter fraction of 21%, with a peak true counting rate of 93 kcps at 0.034 MBq/mL and a peak noise-equivalent counting rate of 49 kcps at 0.02 MBq/mL. Recovery coefficients for the image-quality phantom ranged from 0.13 to 0.88. CONCLUSION The performance of the X-PET scanner based on the NEMA NU 4-2008 standards was fully characterized. The overall performance demonstrates that the X-PET system is suitable for preclinical research.
Collapse
Affiliation(s)
- Rameshwar Prasad
- Division of Nuclear Medicine, Geneva University Hospital, Geneva, Switzerland
| | | | | |
Collapse
|
43
|
Abstract
Multimodality small-animal molecular imaging has become increasingly important as transgenic and knockout mice are produced to model human diseases. With the ever-increasing number and importance of human disease models, particularly in rodents (mice and rats), the ability of high-resolution multimodality molecular imaging instrumentation to contribute unique information is becoming more common and necessary. Multimodality imaging with high spatial resolution and good sensitivity, which combines modalities and records sequentially or simultaneously complementary information, offers many advantages in certain research experiments. This article discusses the current trends and new horizons in preclinical multimodality imaging in-vivo and its role in biomedical research.
Collapse
Affiliation(s)
- David B Stout
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, The David Geffen School of Medicine at UCLA, 570 Westwood Plaza, CNSI Building, Room 2151, Los Angeles, CA 90095, USA
| | - Habib Zaidi
- Division of Nuclear Medicine, Geneva University Hospital, CH-1211 Geneva, Switzerland.
| |
Collapse
|
44
|
Navigating beyond the 6th dimension: a challenge in the era of multi-parametric molecular imaging. Eur J Nucl Med Mol Imaging 2009; 36:1025-8. [DOI: 10.1007/s00259-009-1095-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
|
46
|
Shao Y, Yao R, Ma T. A novel method to calibrate DOI function of a PET detector with a dual-ended-scintillator readout. Med Phys 2008; 35:5829-40. [DOI: 10.1118/1.3021118] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|