1
|
Streckaite S, Macernis M, Li F, Kuthanová Trsková E, Litvin R, Yang C, Pascal AA, Valkunas L, Robert B, Llansola-Portoles MJ. Modeling Dynamic Conformations of Organic Molecules: Alkyne Carotenoids in Solution. J Phys Chem A 2020; 124:2792-2801. [PMID: 32163283 PMCID: PMC7313542 DOI: 10.1021/acs.jpca.9b11536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Calculating
the spectroscopic properties of complex conjugated
organic molecules in their relaxed state is far from simple. An additional complexity arises for
flexible molecules in solution, where the rotational energy barriers
are low enough so that nonminimum conformations may become dynamically
populated. These metastable conformations quickly relax during the
minimization procedures preliminary to density functional theory calculations,
and so accounting for their contribution to the experimentally observed
properties is problematic. We describe a strategy for stabilizing
these nonminimum conformations in silico, allowing
their properties to be calculated. Diadinoxanthin and alloxanthin
present atypical vibrational properties in solution, indicating the
presence of several conformations. Performing energy calculations in vacuo and polarizable continuum model calculations in
different solvents, we found three different conformations with values
for the δ dihedral angle of the end ring ca. 0, 180, and 90°
with respect to the plane of the conjugated chain. The latter conformation,
a nonglobal minimum, is not stable during the minimization necessary
for modeling its spectroscopic properties. To circumvent this classical
problem, we used a Car–Parinello MD supermolecular approach,
in which diadinoxanthin was solvated by water molecules so that metastable
conformations were stabilized by hydrogen-bonding interactions. We
progressively removed the number of solvating waters to find the minimum
required for this stabilization. This strategy represents the first
modeling of a carotenoid in a distorted conformation and provides
an accurate interpretation of the experimental data.
Collapse
Affiliation(s)
- Simona Streckaite
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Mindaugas Macernis
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Ave. 3, LT-10222 Vilnius, Lithuania
| | - Fei Li
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.,Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, People's Republic of China
| | - Eliška Kuthanová Trsková
- Faculty of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.,Institute of Microbiology, Academy of Sciences of the Czech Republic, 379 81 Třeboň, Czech Republic
| | - Radek Litvin
- Biology Centre, Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic
| | - Chunhong Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, People's Republic of China
| | - Andrew A Pascal
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Leonas Valkunas
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Ave. 3, LT-10222 Vilnius, Lithuania.,Molecular Compounds Physics Department, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Bruno Robert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Manuel J Llansola-Portoles
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Hashimoto H, Uragami C, Yukihira N, Gardiner AT, Cogdell RJ. Understanding/unravelling carotenoid excited singlet states. J R Soc Interface 2018; 15:20180026. [PMID: 29643225 PMCID: PMC5938589 DOI: 10.1098/rsif.2018.0026] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/16/2018] [Indexed: 11/12/2022] Open
Abstract
Carotenoids are essential light-harvesting pigments in natural photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and thus expand the wavelength range of light that is able to drive photosynthesis. This process is an example of singlet-singlet excitation energy transfer, and carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. The photochemistry and photophysics of carotenoids have often been interpreted by referring to those of simple polyene molecules that do not possess any functional groups. However, this may not always be wise because carotenoids usually have a number of functional groups that induce the variety of photochemical behaviours in them. These differences can also make the interpretation of the singlet excited states of carotenoids very complicated. In this article, we review the properties of the singlet excited states of carotenoids with the aim of producing as coherent a picture as possible of what is currently known and what needs to be learned.
Collapse
Affiliation(s)
- Hideki Hashimoto
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Chiasa Uragami
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Nao Yukihira
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Alastair T Gardiner
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
3
|
Niedzwiedzki DM, Swainsbury DJK, Martin EC, Hunter CN, Blankenship RE. Origin of the S* Excited State Feature of Carotenoids in Light-Harvesting Complex 1 from Purple Photosynthetic Bacteria. J Phys Chem B 2017; 121:7571-7585. [PMID: 28719215 DOI: 10.1021/acs.jpcb.7b04251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This spectroscopic study investigates the origin of the transient feature of the S* excited state of carotenoids bound in LH1 complexes from purple bacteria. The studies were performed on two RC-LH1 complexes from Rba. sphaeroides strains that bound carotenoids with different carbon-carbon double bond conjugation N, neurosporene (N = 9) and spirilloxanthin (N = 13). The S* transient spectral feature, originally associated with an elusive and optically silent excited state of spirilloxanthin in the LH1 complex, may be successfully explained and mimicked without involving any unknown electronic state. The spectral and temporal characteristics of the S* feature suggest that it is associated with triplet-triplet annihilation of carotenoid triplets formed after direct excitation of the molecule via a singlet fission mechanism. Depending on pigment homogeneity and carotenoid assembly in the LH1 complex, the spectro-temporal component associated with triplet-triplet annihilation may simply resolve a pure T-S spectrum of a carotenoid. In some cases (like spirilloxanthin), the T-S feature will also be accompanied by a carotenoid Stark spectrum and/or residual transient absorption of minor carotenoid species bound into LH1 antenna complex.
Collapse
Affiliation(s)
| | - David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | | |
Collapse
|
4
|
Dilbeck PL, Tang Q, Mothersole DJ, Martin EC, Hunter CN, Bocian DF, Holten D, Niedzwiedzki DM. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway. J Phys Chem B 2016; 120:5429-43. [PMID: 27285777 PMCID: PMC4921951 DOI: 10.1021/acs.jpcb.6b03305] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Six light-harvesting-2 complexes
(LH2) from genetically modified
strains of the purple photosynthetic bacterium Rhodobacter
(Rb.) sphaeroides were studied using static and ultrafast
optical methods and resonance Raman spectroscopy. These strains were
engineered to incorporate carotenoids for which the number of conjugated
groups (N = NC=C + NC=O) varies from 9 to 15.
The Rb. sphaeroides strains incorporate their native
carotenoids spheroidene (N = 10) and spheroidenone
(N = 11), as well as longer-chain analogues including
spirilloxanthin (N = 13) and diketospirilloxantion
(N = 15) normally found in Rhodospirillum
rubrum. Measurements of the properties of the carotenoid
first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to
those in LH2 complexes from various other bacterial species and thus
are not significantly impacted by differences in polypeptide composition.
Instead, variations in carotenoid-to-BChl a energy
transfer are primarily regulated by the N-determined
energy of the carotenoid S1 excited state, which for long-chain
(N ≥ 13) carotenoids is not involved in energy
transfer. Furthermore, the role of the long-chain carotenoids switches
from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial
(∼2-fold) reduction of the B850* lifetime and the B850* fluorescence
quantum yield for LH2 housing the longest carotenoids.
Collapse
Affiliation(s)
| | - Qun Tang
- Department of Chemistry, University of California Riverside , Riverside, California 92521, United States
| | - David J Mothersole
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - David F Bocian
- Department of Chemistry, University of California Riverside , Riverside, California 92521, United States
| | | | | |
Collapse
|
5
|
Niedzwiedzki DM, Dilbeck PL, Tang Q, Mothersole DJ, Martin EC, Bocian DF, Holten D, Hunter CN. Functional characteristics of spirilloxanthin and keto-bearing Analogues in light-harvesting LH2 complexes from Rhodobacter sphaeroides with a genetically modified carotenoid synthesis pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1847:640-55. [PMID: 25871644 DOI: 10.1016/j.bbabio.2015.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 11/24/2022]
Abstract
Light-harvesting 2 (LH2) complexes from a genetically modified strain of the purple photosynthetic bacterium Rhodobacter (Rba.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. Carotenoid synthesis in the Rba. sphaeroides strain was engineered to redirect carotenoid production away from spheroidene into the spirilloxanthin synthesis pathway. The strain assembles LH2 antennas with substantial amounts of spirilloxanthin (total double-bond conjugation length N=13) if grown anaerobically and of keto-bearing long-chain analogs [2-ketoanhydrorhodovibrin (N=13), 2-ketospirilloxanthin (N=14) and 2,2'-diketospirilloxanthin (N=15)] if grown semi-aerobically (with ratios that depend on growth conditions). We present the photophysical, electronic, and vibrational properties of these carotenoids, both isolated in organic media and assembled within LH2 complexes. Measurements of excited-state energy transfer to the array of excitonically coupled bacteriochlorophyll a molecules (B850) show that the mean lifetime of the first singlet excited state (S1) of the long-chain (N≥13) carotenoids does not change appreciably between organic media and the protein environment. In each case, the S1 state appears to lie lower in energy than that of B850. The energy-transfer yield is ~0.4 in LH2 (from the strain grown aerobically or semi-aerobically), which is less than half that achieved for LH2 that contains short-chain (N≤11) analogues. Collectively, the results suggest that the S1 excited state of the long-chain (N≥13) carotenoids participates little if at all in carotenoid-to-BChl a energy transfer, which occurs predominantly via the carotenoid S2 excited state in these antennas.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Photosynthetic Antenna Research Center, Washington University, St. Louis, MO 63130, USA.
| | - Preston L Dilbeck
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Qun Tang
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA
| | - David J Mothersole
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - David F Bocian
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
6
|
Hauer J, Maiuri M, Viola D, Lukes V, Henry S, Carey AM, Cogdell RJ, Cerullo G, Polli D. Explaining the temperature dependence of spirilloxanthin's S* signal by an inhomogeneous ground state model. J Phys Chem A 2013; 117:6303-10. [PMID: 23577754 PMCID: PMC3725610 DOI: 10.1021/jp4011372] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We
investigate the nature of the S* excited state in carotenoids by performing
a series of pump–probe experiments with sub-20 fs time resolution
on spirilloxanthin in a polymethyl-methacrylate matrix varying the
sample temperature. Following photoexcitation, we observe sub-200
fs internal conversion of the bright S2 state into the
lower-lying S1 and S* states, which in turn relax to the
ground state on a picosecond time scale. Upon cooling down the sample
to 77 K, we observe a systematic decrease of the S*/S1 ratio.
This result can be explained by assuming two thermally populated ground
state isomers. The higher lying one generates the S* state, which
can then be effectively frozen out by cooling. These findings are
supported by quantum chemical modeling and provide strong evidence
for the existence and importance of ground state isomers in the photophysics
of carotenoids.
Collapse
Affiliation(s)
- J Hauer
- Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, 1040 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kosumi D, Maruta S, Horibe T, Nagaoka Y, Fujii R, Sugisaki M, Cogdell RJ, Hashimoto H. Ultrafast excited state dynamics of spirilloxanthin in solution and bound to core antenna complexes: Identification of the S* and T1 states. J Chem Phys 2012; 137:064505. [DOI: 10.1063/1.4737129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Martiskainen J, Kananavičius R, Linnanto J, Lehtivuori H, Keränen M, Aumanen V, Tkachenko N, Korppi-Tommola J. Excitation energy transfer in the LHC-II trimer: from carotenoids to chlorophylls in space and time. PHOTOSYNTHESIS RESEARCH 2011; 107:195-207. [PMID: 21287272 DOI: 10.1007/s11120-011-9626-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 01/17/2011] [Indexed: 05/30/2023]
Abstract
Exciton model for description of experimentally determined excitation energy transfer from carotenoids to chlorophylls in the LHC-II trimer of spinach is presented. Such an approach allows connecting the excitonic states to the spatial structure of the complex and hence descriptions of advancements of the initially created excitations in space and time. Carotenoids were excited at 490 nm and at 500 nm and induced absorbance changes probed in the Chl Q(y) region to provide kinetic data that were interpreted by using the results from exciton calculations. Calculations included the 42 chlorophylls and the 12 carotenoids of the complex, Soret, Q(x) and Q(y) states of the chlorophylls, and the main absorbing S(2) state of the carotenoids. According to the calculations excitation at 500 nm populates mostly a mixed Lut S(2) Chl a Soret state, from where excitation is transferred to the Q(x) and Q(y) states of the Chl a's on the stromal side. Internal conversion of the mixed state to a mixed Lut S(1) and Chl a Q(y) state provides a channel for Lut S(1) to Chl a Q(y) energy transfer. The results from the calculations support a picture where excitation at 490 nm populates primarily a mixed neoxanthin S(2) Chl b Soret state. From this state excitation from neoxanthin is transferred to iso-energetic Chl b Soret states or via internal conversion to S(1) Chl b Q(y) states. From the Soret states excitation proceeds via internal conversion to Q(y) states of Chl b's mostly on the lumenal side. A rapid Chl b to Chl a transfer and subsequent transfer to the stromal side Chl a's and to the final state completes the process after 490 nm excitation. The interpretation is further supported by the fact that excitation energy transfer kinetics after excitation of neoxanthin at 490 nm and the Chl b Q(y) band at 647 nm (Linnanto et al., Photosynth Res 87:267-279, 2006) are very similar.
Collapse
Affiliation(s)
- Jari Martiskainen
- Physical Chemistry Laboratory, Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Real-time time-frequency two-dimensional imaging of ultrafast transient signals in solid-state organic materials. SENSORS 2010; 10:4253-69. [PMID: 22399879 PMCID: PMC3292118 DOI: 10.3390/s100504253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 03/18/2010] [Accepted: 04/05/2010] [Indexed: 11/18/2022]
Abstract
In this review, we demonstrate a real-time time-frequency two-dimensional (2D) pump-probe imaging spectroscopy implemented on a single shot basis applicable to excited-state dynamics in solid-state organic and biological materials. Using this technique, we could successfully map ultrafast time-frequency 2D transient absorption signals of β-carotene in solid films with wide temporal and spectral ranges having very short accumulation time of 20 ms per unit frame. The results obtained indicate the high potential of this technique as a powerful and unique spectroscopic tool to observe ultrafast excited-state dynamics of organic and biological materials in solid-state, which undergo rapid photodegradation.
Collapse
|
10
|
Berera R, van Grondelle R, Kennis JTM. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. PHOTOSYNTHESIS RESEARCH 2009; 101:105-18. [PMID: 19578970 PMCID: PMC2744833 DOI: 10.1007/s11120-009-9454-y] [Citation(s) in RCA: 402] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 06/05/2009] [Indexed: 05/19/2023]
Abstract
The photophysical and photochemical reactions, after light absorption by a photosynthetic pigment-protein complex, are among the fastest events in biology, taking place on timescales ranging from tens of femtoseconds to a few nanoseconds. The advent of ultrafast laser systems that produce pulses with femtosecond duration opened up a new area of research and enabled investigation of these photophysical and photochemical reactions in real time. Here, we provide a basic description of the ultrafast transient absorption technique, the laser and wavelength-conversion equipment, the transient absorption setup, and the collection of transient absorption data. Recent applications of ultrafast transient absorption spectroscopy on systems with increasing degree of complexity, from biomimetic light-harvesting systems to natural light-harvesting antennas, are presented. In particular, we will discuss, in this educational review, how a molecular understanding of the light-harvesting and photoprotective functions of carotenoids in photosynthesis is accomplished through the application of ultrafast transient absorption spectroscopy.
Collapse
Affiliation(s)
- Rudi Berera
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
- Institute of Biology and Technology of Saclay, CEA (Commissariat a l’Energie Atomique), URA 2096 CNRS (Centre National de la Recherche Scientifique), 91191 Gif/Yvette, France
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - John T. M. Kennis
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
11
|
Kosumi D, Fujiwara M, Fujii R, Cogdell RJ, Hashimoto H, Yoshizawa M. The dependence of the ultrafast relaxation kinetics of the S2 and S1 states in β-carotene homologs and lycopene on conjugation length studied by femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies. J Chem Phys 2009; 130:214506. [DOI: 10.1063/1.3147008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Niedzwiedzki DM, Sandberg DJ, Cong H, Sandberg MN, Gibson GN, Birge RR, Frank HA. Ultrafast Time-resolved Absorption Spectroscopy of Geometric Isomers of Carotenoids. Chem Phys 2009; 357:4-16. [PMID: 20161150 PMCID: PMC2733370 DOI: 10.1016/j.chemphys.2008.07.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structures of a number of stereoisomers of carotenoids have been revealed in three-dimensional X-ray crystallographic investigations of pigment-protein complexes from photosynthetic organisms. Despite these structural elucidations, the reason for the presence of stereoisomers in these systems is not well understood. An important unresolved issue is whether the natural selection of geometric isomers of carotenoids in photosynthetic pigment-protein complexes is determined by the structure of the protein binding site or by the need for the organism to accomplish a specific physiological task. The association of cis isomers of a carotenoid with reaction centers and trans isomers of the same carotenoid with light-harvesting pigment-protein complexes has led to the hypothesis that the stereoisomers play distinctly different physiological roles. A systematic investigation of the photophysics and photochemistry of purified, stable geometric isomers of carotenoids is needed to understand if a relationship between stereochemistry and biological function exists. In this work we present a comparative study of the spectroscopy and excited state dynamics of cis and trans isomers of three different open-chain carotenoids in solution. The molecules are neurosporene (n=9), spheroidene (n=10), and spirilloxanthin (n=13), where n is the number of conjugated pi-electron double bonds. The spectroscopic experiments were carried out on geometric isomers of the carotenoids purified by high performance liquid chromatography (HPLC) and then frozen to 77 K to inhibit isomerization. The spectral data taken at 77 K provide a high resolution view of the spectroscopic differences between geometric isomers. The kinetic data reveal that the lifetime of the lowest excited singlet state of a cis-isomer is consistently shorter than that of its corresponding all-trans counterpart despite the fact that the excited state energy of the cis molecule is typically higher than that of the trans molecule. Quantum theoretical calculations on an n=9 linear polyene were carried out to examine this process. The calculations indicate that the electronic coupling terms are significantly higher for the cis isomer, and when combined with the Franck-Condon factors, predict internal conversion rates roughly double those of the all-trans species. The electronic effects more than offset the decrease in coupling efficiencies associated with the higher system origin energies and explain the observed shorter cis isomer lifetimes.
Collapse
Affiliation(s)
| | - Daniel J. Sandberg
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA
| | - Hong Cong
- Department of Physics, University of Connecticut, Storrs, CT 06269-3046, USA
| | - Megan N. Sandberg
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA
| | - George N. Gibson
- Department of Physics, University of Connecticut, Storrs, CT 06269-3046, USA
| | - Robert R. Birge
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA
| | - Harry A. Frank
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA
| |
Collapse
|
13
|
Zugazagoitia JS, Collado-Fregoso E, Plaza-Medina EF, Peon J. Relaxation in the Triplet Manifold of 1-Nitronaphthalene Observed by Transient Absorption Spectroscopy. J Phys Chem A 2009; 113:805-10. [DOI: 10.1021/jp8087397] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jimena S. Zugazagoitia
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, 04510, México, D.F., México
| | - Elisa Collado-Fregoso
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, 04510, México, D.F., México
| | - Eddy F. Plaza-Medina
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, 04510, México, D.F., México
| | - Jorge Peon
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, 04510, México, D.F., México
| |
Collapse
|
14
|
Cong H, Niedzwiedzki DM, Gibson GN, LaFountain AM, Kelsh RM, Gardiner AT, Cogdell RJ, Frank HA. Ultrafast time-resolved carotenoid to-bacteriochlorophyll energy transfer in LH2 complexes from photosynthetic bacteria. J Phys Chem B 2008; 112:10689-703. [PMID: 18671366 PMCID: PMC3628606 DOI: 10.1021/jp711946w] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Steady-state and ultrafast time-resolved optical spectroscopic investigations have been carried out at 293 and 10 K on LH2 pigment-protein complexes isolated from three different strains of photosynthetic bacteria: Rhodobacter (Rb.) sphaeroides G1C, Rb. sphaeroides 2.4.1 (anaerobically and aerobically grown), and Rps. acidophila 10050. The LH2 complexes obtained from these strains contain the carotenoids, neurosporene, spheroidene, spheroidenone, and rhodopin glucoside, respectively. These molecules have a systematically increasing number of pi-electron conjugated carbon-carbon double bonds. Steady-state absorption and fluorescence excitation experiments have revealed that the total efficiency of energy transfer from the carotenoids to bacteriochlorophyll is independent of temperature and nearly constant at approximately 90% for the LH2 complexes containing neurosporene, spheroidene, spheroidenone, but drops to approximately 53% for the complex containing rhodopin glucoside. Ultrafast transient absorption spectra in the near-infrared (NIR) region of the purified carotenoids in solution have revealed the energies of the S1 (2(1)Ag-)-->S2 (1(1)Bu+) excited-state transitions which, when subtracted from the energies of the S0 (1(1)Ag-)-->S2 (1(1)Bu+) transitions determined by steady-state absorption measurements, give precise values for the positions of the S1 (2(1)Ag-) states of the carotenoids. Global fitting of the ultrafast spectral and temporal data sets have revealed the dynamics of the pathways of de-excitation of the carotenoid excited states. The pathways include energy transfer to bacteriochlorophyll, population of the so-called S* state of the carotenoids, and formation of carotenoid radical cations (Car*+). The investigation has found that excitation energy transfer to bacteriochlorophyll is partitioned through the S1 (1(1)Ag-), S2 (1(1)Bu+), and S* states of the different carotenoids to varying degrees. This is understood through a consideration of the energies of the states and the spectral profiles of the molecules. A significant finding is that, due to the low S1 (2(1)Ag-) energy of rhodopin glucoside, energy transfer from this state to the bacteriochlorophylls is significantly less probable compared to the other complexes. This work resolves a long-standing question regarding the cause of the precipitous drop in energy transfer efficiency when the extent of pi-electron conjugation of the carotenoid is extended from ten to eleven conjugated carbon-carbon double bonds in LH2 complexes from purple photosynthetic bacteria.
Collapse
Affiliation(s)
- Hong Cong
- Department of Chemistry, University of Connecticut, U-3060, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Polli D, Antognazza M, Brida D, Lanzani G, Cerullo G, De Silvestri S. Broadband pump-probe spectroscopy with sub-10-fs resolution for probing ultrafast internal conversion and coherent phonons in carotenoids. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2007.12.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Li C, Miki T, Kakitani Y, Koyama Y, Nagae H. Negligible shift of 3Ag- potential in longer-chain carotenoids as revealed by a single persistent peak of 3Ag-→1Ag- stimulated emission followed by 3Ag-←1Ag- transient-absorption. Chem Phys Lett 2007. [DOI: 10.1016/j.cplett.2007.10.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Wang Z, Kobayashi T. Real-time vibrational amplitude change in the ground and excited states of a quinoid thiophene induced by few-cycle pulses. Chem Phys Lett 2007. [DOI: 10.1016/j.cplett.2007.08.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Sutresno A, Kakitani Y, Zuo P, Li C, Koyama Y, Nagae H. Presence and absence of electronic mixing in shorter-chain and longer-chain carotenoids: Assignment of the symmetries of 1Bu- and 3Ag- states located just below the 1Bu+ state. Chem Phys Lett 2007. [DOI: 10.1016/j.cplett.2007.08.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Pendon ZD, Gibson GN, van der Hoef I, Lugtenburg J, Frank HA. Effect of isomer geometry on the steady-state absorption spectra and femtosecond time-resolved dynamics of carotenoids. J Phys Chem B 2007; 109:21172-9. [PMID: 16853743 DOI: 10.1021/jp0529117] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Steady-state absorption and femtosecond time-resolved optical spectroscopic studies have been carried out on all-trans-beta-carotene, 15,15'-cis-beta-carotene, all-trans-spheroidene, and 13,14-locked-cis-spheroidene. We examine in detail the effect of isomer geometry on the spectroscopic properties and photophysics of the low-lying S(1) (2(1)A(g)(-)) and S(2) (1(1)B(u)(+)) excited states of these molecules. The experiments on 13,14-locked-cis-spheroidene, a molecule incapable of undergoing cis-to-trans isomerization, provide a unique opportunity to examine the role of isomer geometry in controlling excited-state deactivation of carotenoids. The kinetic results have been obtained using both single wavelength transient absorption measurements and global fitting procedures. The overall scheme for the deactivation of these molecules after S(0) --> S(2) photon absorption is decay of S(2) to a vibrationally hot S(1) state, followed by vibrational relaxation within S(1), and finally, S(1) --> S(0) internal conversion back to the ground state. Changes in isomer geometry are shown to lead to small but noticeable alterations in the spectroscopic and kinetic behavior of the molecules. The effects are interpreted in terms of minor alterations in excited-state energy and vibrational coupling upon isomerization that bring about changes in the spectroscopic and kinetic behavior of this biologically important class of pigments.
Collapse
Affiliation(s)
- Zeus D Pendon
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060, USA
| | | | | | | | | |
Collapse
|
20
|
Niedzwiedzki D, Koscielecki JF, Cong H, Sullivan JO, Gibson GN, Birge RR, Frank HA. Ultrafast dynamics and excited state spectra of open-chain carotenoids at room and low temperatures. J Phys Chem B 2007; 111:5984-98. [PMID: 17441762 DOI: 10.1021/jp070500f] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many of the spectroscopic features and photophysical properties of carotenoids are explained using a three-state model in which the strong visible absorption of the molecules is associated with an S0 (1(1)Ag-) --> S2 (1(1)Bu+) transition, and the lowest lying singlet state, S1 (2(1)Ag-), is a state into which absorption from the ground state is forbidden by symmetry. However, semiempirical and ab initio quantum calculations have suggested additional excited singlet states may lie either between or in the vicinity of S1 (2(1)Ag-) and S2 (1(1)Bu+), and some ultrafast spectroscopic studies have reported evidence for these states. One such state, denoted S*, has been implicated as an intermediate in the depopulation of S2 (1(1)Bu+) and as a pathway for the formation of carotenoid triplet states in light-harvesting complexes. In this work, we present the results of an ultrafast, time-resolved spectroscopic investigation of a series of open-chain carotenoids derived from photosynthetic bacteria and systematically increasing in their number of pi-electron carbon-carbon double bonds (n). The molecules are neurosporene (n = 9), spheroidene (n = 10), rhodopin glucoside (n = 11), rhodovibrin (n = 12), and spirilloxanthin (n = 13). The molecules were studied in acetone and CS2 solvents at room temperature. These experiments explore the effect of solvent polarity and polarizability on the spectroscopic and kinetic behavior of the molecules. The molecules were also studied in ether/isopentane/ethanol (EPA) glasses at 77 K, in which the spectral resolution is greatly enhanced. Analysis of the data using global fitting techniques has revealed the ultrafast dynamics of the excited states and spectral changes associated with their decay, including spectroscopic features not previously reported. The data are consistent with S* being identified with a twisted conformational structure, the yield of which is increased in molecules having longer pi-electron conjugations. In particular, for the longest molecule in the series, spirilloxanthin, the experiments and a detailed quantum computational analysis reveal the presence of two S* states associated with relaxed S1 (2(1)Ag-) conformations involving nearly planar 6-s-cis and 6-s-trans geometries. We propose that in polar solvents, the ground state of spirilloxanthin takes on a corkscrew conformation that generates a net solute dipole moment while decreasing the cavity formation energy. Upon excitation and relaxation into the S1 (2(1)Ag-) state, the polyene unravels and flattens into a more planar geometry with comparable populations of 6-s-trans and 6-s-cis conformations.
Collapse
Affiliation(s)
- Dariusz Niedzwiedzki
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Singlet internal conversion processes in the order of 1Bu+→3Ag-→1Bu-→2Ag-→1Ag- in all-trans-spheroidene and lycopene as revealed by subpicosecond time-resolved Raman spectroscopy. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2006.07.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Kosumi D, Yanagi K, Fujii R, Hashimoto H, Yoshizawa M. Conjugation length dependence of relaxation kinetics in β-carotene homologs probed by femtosecond Kerr-gate fluorescence spectroscopy. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2006.05.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Polli D, Cerullo G, Lanzani G, De Silvestri S, Hashimoto H, Cogdell RJ. Carotenoid-bacteriochlorophyll energy transfer in LH2 complexes studied with 10-fs time resolution. Biophys J 2006; 90:2486-97. [PMID: 16428274 PMCID: PMC1403180 DOI: 10.1529/biophysj.105.069286] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this report, we present a study of carotenoid-bacteriochlorophyll energy transfer processes in two peripheral light-harvesting complexes (known as LH2) from purple bacteria. We use transient absorption spectroscopy with approximately 10 fs temporal resolution, which is necessary to observe the very fast energy relaxation processes. By comparing excited-state dynamics of the carotenoids in organic solvents and inside the LH2 complexes, it has been possible to directly evaluate their energy transfer efficiency to the bacteriochlorophylls. In the case of okenone in the LH2 complex from Chromatium purpuratum, we obtained an energy transfer efficiency of etaET2=63+/-2.5% from the optically active excited state (S2) and etaET1=61+/-2% from the optically dark state (S1); for rhodopin glucoside contained in the LH2 complex from Rhodopseudomonas acidophila these values become etaET2=49.5+/-3.5% and etaET1=5.1+/-1%. The measurements also enabled us to observe vibrational energy relaxation in the carotenoids' S1 state and real-time collective vibrational coherence initiated by the ultrashort pump pulses. Our results are important for understanding the dynamics of early events of photosynthesis and relating it to the structural arrangement of the chromophores.
Collapse
Affiliation(s)
- Dario Polli
- ULTRAS-INFM, Dipartimento di Fisica, Politecnico di Milano, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
24
|
Kosumi D, Komukai M, Hashimoto H, Yoshizawa M. Ultrafast dynamics of all-trans--carotene explored by resonant and nonresonant photoexcitations. PHYSICAL REVIEW LETTERS 2005; 95:213601. [PMID: 16384139 DOI: 10.1103/physrevlett.95.213601] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Indexed: 05/05/2023]
Abstract
Excitation energy dependence of transmittance change has been investigated in -carotene. The signal induced by nonresonant excitation is ascribed to the ac Stark effect and the two-photon absorption of the excitation and probe pulses in three-level systems. The ultrafast response following resonant excitation is assigned to the two-photon absorption and the transient absorption of the photogenerated S(2) state with a lifetime of 150 fs. The long-debated S(2)-S(1) relaxation in beta-carotene can be explained by a two-state model (S(2), S(1)) without involving any intermediate states.
Collapse
Affiliation(s)
- D Kosumi
- Department of Physics, Graduate School of Science, Tohoku University, Aramaki-aza-aoba, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | |
Collapse
|
25
|
Pendon ZD, Sullivan JO, van der Hoef I, Lugtenburg J, Cua A, Bocian DF, Birge RR, Frank HA. Stereoisomers of carotenoids: spectroscopic properties of locked and unlocked cis-isomers of spheroidene. PHOTOSYNTHESIS RESEARCH 2005; 86:5-24. [PMID: 16172922 DOI: 10.1007/s11120-005-1205-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 01/24/2005] [Indexed: 05/04/2023]
Abstract
A systematic optical spectroscopic and computational investigation of a series of locked-cis-isomers of spheroidene has been carried out with the goal being to better understand the relationships between stereochemistry, photochemistry, photophysics and biological function of geometric isomers of carotenoids. The spectroscopic properties of 15,15'-locked-cis-spheroidene, 13,14-locked-cis-spheroidene, 11, 12-locked-cis-spheroidene in solution are compared with those observed for unlocked spheroidene. The locked-cis bonds are incapable of undergoing cis-to-trans isomerization and therefore provide an effective means of exploring the relationship between specific stereoisomers and molecular spectroscopy. Samples of the molecules were purified using a high performance liquid chromatography (HPLC) apparatus equipped with a diode array detector, which records the absorption spectra immediately as the molecules emerge from the column and prior to any isomerization that might occur. For several stable isomers, resonance Raman (rR) spectroscopy was carried out to assign their configurations. Quantum computations of absorption spectra were performed using ZINDO/S and also MNDO-PSDCI methods employing nearly full single and double configuration interaction within the pi-electron manifold. Also, for a few test cases, ground state minimizations were done using density functional methods (B3LYP/6-31G(d)). The MNDO-PSDCI methods coupled with the density functional ground state minimization provide an accurate assignment of the positions of the 2(1)Ag - , 1(1)Bu +, and 1(1)Ag + excited states and also address the nature of the forbidden 1(1)Bu - state, whose location is uncertain for polyenes and carotenoids. We demonstrate that the configurational description of the 1(1)Bu - state is sufficiently unique to preclude assignment of its energy based on the characterization of surrounding excited singlet states. The experimental and computational data also offer important insights into the photochemical and photophysical properties of stereoisomers of carotenoids.
Collapse
Affiliation(s)
- Zeus D Pendon
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kosumi D, Yanagi K, Nishio T, Hashimoto H, Yoshizawa M. Excitation energy dependence of excited states dynamics in all-trans-carotenes determined by femtosecond absorption and fluorescence spectroscopy. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2005.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Polli D, Cerullo G, Lanzani G, De Silvestri S, Yanagi K, Hashimoto H, Cogdell RJ. Conjugation length dependence of internal conversion in carotenoids: role of the intermediate state. PHYSICAL REVIEW LETTERS 2004; 93:163002. [PMID: 15524985 DOI: 10.1103/physrevlett.93.163002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Indexed: 05/24/2023]
Abstract
We report on a sub-20-fs transient absorption study of the S2(1(1)B(+)(u))-->S1(2(1)A(-)(g)) internal conversion in a series of carotenoids with a number of conjugated double bonds (N) ranging from 5 to 15. For the longer carotenoids (N>or=9), the measurements reveal the existence of an additional intermediate excited state lying between the optically allowed S2 state and the lower-lying forbidden S1 state. This state enables us to explain the nonmonotonic dependence of the S2-->S1 conversion rate on N and is expected to play an important role in photosynthetic light harvesting.
Collapse
Affiliation(s)
- D Polli
- ULTRAS-INFM, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|