1
|
Tian X, Liu J, Zhao P, Li X, Li Z, Sheng W. The Roles of Surface Hydrogen and Hydroxyl in Alkaline Hydrogen Oxidation on Ni-Based Electrocatalysts. CHEMSUSCHEM 2025; 18:e202402150. [PMID: 39648150 DOI: 10.1002/cssc.202402150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/20/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
One important target for anion exchange membrane fuel cells (AEMFCs) is to enable the application of anode non-precious metal hydrogen oxidation reaction (HOR) catalyst. Nickel presents a promising candidate for alkaline HOR; yet, its practical application is hampered by the intrinsically sluggish activity and poor stability. Herein, a series of Ni-based metals (Ni5Mo, Ni25Co, Ni14W and Ni) are electrodeposited as model catalysts to systematically explore the alkaline HOR by considering the role of adsorbed hydroxyl (OHad). Spectroscopic studies together with density functional theory calculations shed light on the beneficial effect of transition metal M (M=Mo, Co, W) alloying/doping on HOR by introducing the charge transfer from M to Ni and down shifting Ni 3d band center. The HOR specific activities on Ni-based catalysts reveal a volcano-type relationship with the hydrogen binding energy (HBE). The strongly adsorbed OHad is proven to induce deactivation for Ni active sites, and the deactivation potential is OHad binding energy (OHBE) dependent. This study adds new insight into the HOR mechanism and stability of Ni-based electrocatalysts, providing a new avenue for the rational design of highly efficient and robust alkaline HOR catalysts.
Collapse
Affiliation(s)
- Xiaoyu Tian
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China
| | - Jiaxiang Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Pengcheng Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China
| | - Xianping Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China
| | - Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China
| | - Wenchao Sheng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China
| |
Collapse
|
2
|
Peng F, Zhang B, Zhao R, Liu S, Wu Y, Xu S, Keenan LL, Liu H, Qian Q, Wu T, Yang H, Liu Z, Li J, Chen B, Kang X, Han B. Selective hydrogenolysis of the Csp 2-O bond in the furan ring using hydride-proton pairs derived from hydrogen spillover. Chem Sci 2024:d4sc05751a. [PMID: 39502504 PMCID: PMC11533051 DOI: 10.1039/d4sc05751a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Selective hydrogenolysis of biomass-derived furanic compounds is a promising approach for synthesizing aliphatic polyols by opening the furan ring. However, there remains a significant need for highly efficient catalysts that selectively target the Csp2-O bond in the furan ring, as well as for a deeper understanding of the fundamental atomistic mechanisms behind these reactions. In this study, we present the use of Pt-Fe bimetallic catalysts supported on layered double hydroxides [PtFe x /LDH] for the hydrogenolysis of furanic compounds into aliphatic alcohols, achieving over 90% selectivity toward diols and triols. Our findings reveal that the synergy between Pt nanoparticles, atomically dispersed Pt sites and the support facilitates the formation of hydride-proton pair at the Pt δ+⋯O2- Lewis acid-base unit of PtFe x /LDH through hydrogen spillover. The hydride specifically targets the Csp2-O bond in the furan ring, initiating an SN2 reaction and ring cleavage. Moreover, the presence of Fe improves the yield of desired alcohols by inhibiting the adsorption of vinyl groups, thereby suppressing the hydrogenation of the furan ring.
Collapse
Affiliation(s)
- Fangfang Peng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Bin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Runyao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 101408 P. R. China
| | - Shiqiang Liu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Yuxuan Wu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 101408 P. R. China
| | - Shaojun Xu
- Department of Chemical Engineering, School of Engineering, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Luke L Keenan
- Diamond Light Source, Harwell Science Campus Oxfordshire OX11 0DE UK
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 101408 P. R. China
| | - Qingli Qian
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 101408 P. R. China
| | - Tianbin Wu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Haijun Yang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 101408 P. R. China
| | - Jikun Li
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 101408 P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Bingfeng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 101408 P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 101408 P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
3
|
Nguyen PM, Van Nguyen H, Lam VT, Nhu Duong TT, Chong TV, Tran HTT. Ab Initio Investigation of the Hydrogen Interaction on Two Dimensional Silicon Carbide. ACS OMEGA 2022; 7:47642-47649. [PMID: 36591197 PMCID: PMC9798518 DOI: 10.1021/acsomega.2c04532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
A series of density functional theory calculations were performed to understand the bonding and interaction of hydrogen adsorption on two-dimensional silicon carbide obtained from molecular dynamics simulation. The converged energy results pointed out that the H atom can sufficiently bond to 2D SiC at the top sites (atop Si and C), of which the most stable adsorption site is TSi. The vibrational properties along with the zero-point energy were incorporated into the energy calculations to further understand the phonon effect of the adsorbed H. Most of the 2D SiC structure deformations caused by the H atoms were found at the adsorbent atom along the vertical axis. For the first time, five SiC defect formations, including the quadrilateral-octagon linear defect (8-4), the silicon interstitial defect, the divacancy (4-10-4) defect, the divacancy (8-4-4-8) defect, and the divacancy (4-8-8-4) defect, were investigated and compared with previous 2D defect studies. The linear defect (8-4) has the lowest formation energy and is most likely to be formed for SiC materials. Furthermore, hydrogen atoms adsorb more readily on the defect surface than on the pristine SiC surface.
Collapse
Affiliation(s)
- Phi Minh Nguyen
- Laboratory
of Computational Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 268 Ly Thuong
Kiet Street, District 10, Ho Chi Minh City70000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City70000, Vietnam
| | - Hoa Van Nguyen
- Laboratory
of Computational Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 268 Ly Thuong
Kiet Street, District 10, Ho Chi Minh City70000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City70000, Vietnam
| | - Vi Toan Lam
- Laboratory
of Computational Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 268 Ly Thuong
Kiet Street, District 10, Ho Chi Minh City70000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City70000, Vietnam
| | - Tranh Thi Nhu Duong
- Laboratory
of Computational Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 268 Ly Thuong
Kiet Street, District 10, Ho Chi Minh City70000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City70000, Vietnam
| | - Tet Vui Chong
- Faculty
of Engineering and Quantity Surveying, INTI
International University, Persiaran Perdana BBN, Putra Nilai, Nilai, Negeri Sembilan71800, Malaysia
| | - Hanh Thi Thu Tran
- Laboratory
of Computational Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 268 Ly Thuong
Kiet Street, District 10, Ho Chi Minh City70000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City70000, Vietnam
| |
Collapse
|
4
|
Tanaka T, Hamanaka Y, Kato T, Uchida K. Simultaneous Detection of Mixed-Gas Components by Ionic-Gel Sensors with Multiple Electrodes. ACS Sens 2022; 7:716-721. [PMID: 35296135 DOI: 10.1021/acssensors.1c02721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The sensing of gas components in a mixed gas is required for breath-based health monitoring and diagnosis. In this work, we report the simultaneous detection of mixed-gas components using a sensor consisting of [EMIM][BF4]-based ionic gel with four electrodes made of Au, Pt, Rh, and Cr. The voltage between any given pair of electrodes depends on the gas molecules absorbed in the ionic gel and the elements the electrodes are made of. When the voltage signals between all pairs of electrodes were used, H2, NH3, and C2H5OH concentrations were simultaneously estimated by a neural-network-based inference. From molecular dynamics simulations, the origin of the voltage signal was attributed to the catalytically generated adsorbates on the electrodes.
Collapse
Affiliation(s)
- Takahisa Tanaka
- Department of Materials Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yusuke Hamanaka
- Department of Materials Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taro Kato
- Department of Materials Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ken Uchida
- Department of Materials Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
5
|
Dix ST, Linic S. In-operando surface-sensitive probing of electrochemical reactions on nanoparticle electrocatalysts: Spectroscopic characterization of reaction intermediates and elementary steps of oxygen reduction reaction on Pt. J Catal 2021. [DOI: 10.1016/j.jcat.2021.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Wang YH, Wang XT, Ze H, Zhang XG, Radjenovic PM, Zhang YJ, Dong JC, Tian ZQ, Li JF. Spectroscopic Verification of Adsorbed Hydroxy Intermediates in the Bifunctional Mechanism of the Hydrogen Oxidation Reaction. Angew Chem Int Ed Engl 2021; 60:5708-5711. [PMID: 33325603 DOI: 10.1002/anie.202015571] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Indexed: 12/28/2022]
Abstract
Elucidating hydrogen oxidation reaction (HOR) mechanisms in alkaline conditions is vital for understanding and improving the efficiency of anion-exchange-membrane fuel cells. However, uncertainty remains around the alkaline HOR mechanism owing to a lack of direct in situ evidence of intermediates. In this study, in situ electrochemical surface-enhanced Raman spectroscopy (SERS) and DFT were used to study HOR processes on PtNi alloy and Pt surfaces, respectively. Spectroscopic evidence indicates that adsorbed hydroxy species (OHad ) were directly involved in HOR processes in alkaline conditions on the PtNi alloy surface. However, OHad species were not observed on the Pt surface during the HOR. We show that Ni doping promoted hydroxy adsorption on the platinum-alloy catalytic surface, improving the HOR activity. DFT calculations also suggest that the free energy was decreased by hydroxy adsorption. Consequently, tuning OH adsorption by designing bifunctional catalysts is an efficient method for promoting HOR activity.
Collapse
Affiliation(s)
- Yao-Hui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen, 361005, China
| | - Xiao-Ting Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen, 361005, China
| | - Huajie Ze
- State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen, 361005, China
| | - Xia-Guang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen, 361005, China.,Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Petar M Radjenovic
- State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen, 361005, China
| | - Yue-Jiao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen, 361005, China
| | - Jin-Chao Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen, 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen, 361005, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen, 361005, China.,College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| |
Collapse
|
7
|
Wang Y, Wang X, Ze H, Zhang X, Radjenovic PM, Zhang Y, Dong J, Tian Z, Li J. Spectroscopic Verification of Adsorbed Hydroxy Intermediates in the Bifunctional Mechanism of the Hydrogen Oxidation Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yao‐Hui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM College of Chemistry and Chemical Engineering College of Energy Xiamen University Xiamen 361005 China
| | - Xiao‐Ting Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM College of Chemistry and Chemical Engineering College of Energy Xiamen University Xiamen 361005 China
| | - Huajie Ze
- State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM College of Chemistry and Chemical Engineering College of Energy Xiamen University Xiamen 361005 China
| | - Xia‐Guang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM College of Chemistry and Chemical Engineering College of Energy Xiamen University Xiamen 361005 China
- Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Petar M. Radjenovic
- State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM College of Chemistry and Chemical Engineering College of Energy Xiamen University Xiamen 361005 China
| | - Yue‐Jiao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM College of Chemistry and Chemical Engineering College of Energy Xiamen University Xiamen 361005 China
| | - Jin‐Chao Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM College of Chemistry and Chemical Engineering College of Energy Xiamen University Xiamen 361005 China
| | - Zhong‐Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM College of Chemistry and Chemical Engineering College of Energy Xiamen University Xiamen 361005 China
| | - Jian‐Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM College of Chemistry and Chemical Engineering College of Energy Xiamen University Xiamen 361005 China
- College of Optical and Electronic Technology China Jiliang University Hangzhou 310018 China
| |
Collapse
|
8
|
Botello LE, Feliu JM, Climent V. Activation Energy of Hydrogen Adsorption on Pt(111) in Alkaline Media: An Impedance Spectroscopy Study at Variable Temperatures. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42911-42917. [PMID: 32830952 DOI: 10.1021/acsami.0c13158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The hydrogen evolution reaction is one of the most studied processes in electrochemistry, and platinum is by far the best catalyst for this reaction. Despite the importance of this reaction on platinum, detailed and accurate kinetic measurements of the steps that lead to the main reaction are still lacking, particularly because of the fast rate of the reaction. Hydrogen adsorption on Pt(111) has been taken as a benchmark system in a large number of computational studies, but reliable experimental data to compare with the computational studies is very scarce. To gain further knowledge on this matter, a temperature study of the hydrogen adsorption reaction has been carried out to obtain kinetic information for this process on Pt(111) in alkaline solution. This was achieved by measuring electrochemical impedance spectra and cyclic voltammograms in the range of 278 ≤ T ≤ 318 (K) to obtain the corresponding surface coverage by adsorbed species and the faradaic charge transfer resistance. From this data, the standard rate constant has been extracted with a kinetic model assuming a Frumkin-type isotherm, resulting in values of 2.60 × 10-7 ≤ k0 ≤ 1.68 × 10-6 (s-1). The Arrehnius plot gives an activation energy of 32 kJ mol-1. Comparisons are made with values calculated by computational methods and reported values for the overall HER, giving a reference frame to support future studies on hydrogen catalysis.
Collapse
Affiliation(s)
- Luis E Botello
- Instituto Universitario de Electroquimica, Universidad de Alicante, Carretera San Vicente del Raspeig s/n, E-03690 San Vicente del Raspeig, Alicante, Spain
| | - Juan M Feliu
- Instituto Universitario de Electroquimica, Universidad de Alicante, Carretera San Vicente del Raspeig s/n, E-03690 San Vicente del Raspeig, Alicante, Spain
| | - Victor Climent
- Instituto Universitario de Electroquimica, Universidad de Alicante, Carretera San Vicente del Raspeig s/n, E-03690 San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
9
|
Zhu S, Qin X, Yao Y, Shao M. pH-Dependent Hydrogen and Water Binding Energies on Platinum Surfaces as Directly Probed through Surface-Enhanced Infrared Absorption Spectroscopy. J Am Chem Soc 2020; 142:8748-8754. [DOI: 10.1021/jacs.0c01104] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xueping Qin
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yao Yao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Energy Institute, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, China
| |
Collapse
|
10
|
Thi Thu Hanh T, Minh Phi N, Van Hoa N. Hydrogen adsorption on two-dimensional germanene and its structural defects: an ab initio investigation. Phys Chem Chem Phys 2020; 22:7210-7217. [PMID: 32207502 DOI: 10.1039/d0cp00016g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, the adsorption of hydrogen on pristine germanene was studied using ab initio calculations. By performing a converged density functional theory calculation, we have found the nearly degenerate nature of hydrogen at the top sites HT1 and HT2, among which HT1 is the most stable site. The adsorption of a hydrogen atom on germanene led to local structural changes in germanene. To the best of our knowledge, this is the first study on the investigation of the localized surface curvature and zero-point energy of hydrogen for 2D germanene. Moreover, we demonstrated the properties of germanene defects via the four obtained defects: the Stone-Wales (55-77), divacancy (77-555-6), divacancy (555-7), and pentagon-heptagon linear (5-7) defect. The lowest formation energy of the pentagon-heptagon linear defect is shown for the first time in this study.
Collapse
Affiliation(s)
- Tran Thi Thu Hanh
- Comp. Phys. Lab, Ho Chi Minh City University of Technology, VNU-HCM, 268 Ly Thuong Kiet St., Dist. 10, Ho Chi Minh City, Vietnam.
| | - Nguyen Minh Phi
- Comp. Phys. Lab, Ho Chi Minh City University of Technology, VNU-HCM, 268 Ly Thuong Kiet St., Dist. 10, Ho Chi Minh City, Vietnam.
| | - Nguyen Van Hoa
- Comp. Phys. Lab, Ho Chi Minh City University of Technology, VNU-HCM, 268 Ly Thuong Kiet St., Dist. 10, Ho Chi Minh City, Vietnam.
| |
Collapse
|
11
|
|
12
|
Bai B, Bai H, Cao HJ, Gao ZH, Zuo ZJ, Huang W. Insight into the mechanism of methanol assistance with syngas conversion over partially hydroxylated γ-Al 2O 3(110D) surface in slurry bed. Phys Chem Chem Phys 2018; 20:12845-12857. [PMID: 29700517 DOI: 10.1039/c8cp02000k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Despite numerous studies devoted to the various properties of γ-Al2O3, the explorations of its catalytic activity remain scarce. In this study, density functional theory calculations are performed to study the elementary adsorption and reaction mechanisms for syngas conversion on partially hydroxylated γ-Al2O3(110D) surface in liquid paraffin. It is found that the partially hydroxylated γ-Al2O3(110D) surface with the hydroxyl coverage of 8.9 OH nm-2 is formed by two dissociative adsorptions of H2O on the dry γ-Al2O3(110D) surface. The hydroxyl coverage conditions play a key role in determining the dominant reaction mechanism on account of the existence of strong hydrogen bonds. The preferential pathway for syngas conversion with assistance of methanol over the partially hydroxylated γ-Al2O3(110D) surface in liquid paraffin has been proven to be CH3OH → CH3O + H → CH3 + OH, CH3 + CO → CH3CO. C2H5OH is then formed by successive hydrogenation via the pathway CH3CO + 3H → CH3CHO + 2H → CH3CH2O + H → C2H5OH. Here, CH3CHO formation by CH3CO hydrogenation is not inhibited. Actually, with the assistance of partially hydroxylated γ-Al2O3, CH3CHO has been synthesized with high selectivity in our previous experiment by the reaction of methanol and syngas, which provides favorable evidence for our results. The rate-limiting step is the formation of CH3O from CH3OH dehydrogenation with an activation barrier of 122.2 kJ mol-1. Moreover, the reaction barrier of CO insertion into the adsorbed CH3 group is at least 89.4 kJ mol-1, lower than those of CH4, C2H6, and CH3OCH3 formations. ADCH charge and ESP analyses indicate that the typical (Al, O) Lewis acid-base pair may have a significant effect upon the initial C-C chain formation. Thus, the present study provides a new approach for the rational tailoring and designing of new catalysts with superior reactivity involved in syngas conversion.
Collapse
Affiliation(s)
- Bing Bai
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | | | | | | | | | | |
Collapse
|
13
|
Gao XY, Jiao WH, Zuo ZJ, Gao ZH, Huang W. DME synthesis from methanol over hydrated γ-Al2O3(110) surface in slurry bed using continuum and atomistic models. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2017. [DOI: 10.1142/s0219633617500298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The possible paths of dimethyl ether (DME) synthesis from methanol over hydrated [Formula: see text]-Al2O3(110) in vacuum and liquid paraffin have been investigated by using density functional theory (DFT). Over hydrated [Formula: see text]-Al2O3(110), the three possible paths of methanol dehydration to DME have been investigated by the DFT method in vacuum and liquid paraffin. DME synthesis from methanol is carried out along the same pathway 2CH3OH(g) [Formula: see text] 2* [Formula: see text] 2CH3OH* [Formula: see text] 2CH3O* [Formula: see text] 2H* [Formula: see text] CH3OCH3* [Formula: see text] H2O* in vacuum and liquid paraffin, and the step of highest energy barrier is the reaction of 2CH3O* [Formula: see text] CH3OCH3* [Formula: see text] O*. The energy barrier of the step in liquid paraffin is higher than that in vacuum by 0.33[Formula: see text]eV. The surface acid strength in liquid paraffin decreases over [Formula: see text]-Al2O3(110) surface comparing with vacuum, showing that stronger surface acid strength benefits to DME synthesis. Our result is in consistent with the experiment results.
Collapse
Affiliation(s)
- Xiao-Yu Gao
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030006, Shanxi, P. R. China
| | - Wei-Hong Jiao
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030006, Shanxi, P. R. China
| | - Zhi-Jun Zuo
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030006, Shanxi, P. R. China
| | - Zhi-Hua Gao
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030006, Shanxi, P. R. China
| | - Wei Huang
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030006, Shanxi, P. R. China
| |
Collapse
|
14
|
Jinnouchi R, Kodama K, Morimoto Y. DFT calculations on H, OH and O adsorbate formations on Pt(111) and Pt(332) electrodes. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2013.09.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Jinnouchi R, Hatanaka T, Morimoto Y, Osawa M. Stark effect on vibration frequencies of sulfate on Pt(111) electrode. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.12.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Effect of surface hydroxyls on DME and methanol adsorption over γ-Al2O3 (hkl) surfaces and solvent effects: a density functional theory study. J Mol Model 2012; 18:5107-11. [DOI: 10.1007/s00894-012-1495-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
|
17
|
Jinnouchi R, Hatanaka T, Morimoto Y, Osawa M. First principles study of sulfuric acid anion adsorption on a Pt(111) electrode. Phys Chem Chem Phys 2012; 14:3208-18. [DOI: 10.1039/c2cp23172g] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
18
|
|
19
|
Liu W, Zhao YH, Li Y, Lavernia EJ, Jiang Q. A reversible switch for hydrogen adsorption and desorption: electric fields. Phys Chem Chem Phys 2009; 11:9233-40. [DOI: 10.1039/b907591g] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|