1
|
Brann MR, Hansknecht SP, Muir M, Sibener SJ. Acetone-Water Interactions in Crystalline and Amorphous Ice Environments. J Phys Chem A 2022; 126:2729-2738. [PMID: 35452240 DOI: 10.1021/acs.jpca.2c01437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present research that systematically examines acetone interacting with various D2O ices of terrestrial and astrophysical interest using time-resolved, in situ reflection absorption infrared spectroscopy (RAIRS). We examine acetone deposited on top of different D2O ice films: high-density, nonporous amorphous (np-ASW), and crystalline (CI) films as well as porous amorphous (p-ASW) with various pore morphologies. Analysis of RAIR spectra changes after acetone exposure, and we find that more hydrogen bonding occurs between acetone and p-ASW ices as compared to acetone and np-ASW or CI ices. Hydrogen bonding quantification occurred by two independent RAIR spectral changes: a greater relative intensity of the 1703 cm-1 feature at low acetone coverage as part of a 14 cm-1 shift in the C═O region and an ∼30% integrated dangling bond area reduction after acetone exposure. Interestingly, when changing the water structure to be more porous (deposited at 70° compared to 30°), there is a further reduction in the amount of hydrogen bonding that occurs. This suggests that there is a lack of access to surface sites with dangling bonds in the pores as initial layers of acetone block the pores and acetone is unable to diffuse within the structure at low temperatures. In general, these results offer a clearer picture of the mechanisms that can occur when small organic hydrocarbons interact with various icy interfaces; a quantitative understanding of these interactions is essential for the accurate modeling of many astrophysical processes occurring on the surface of icy dust particles.
Collapse
Affiliation(s)
- Michelle R Brann
- The James Franck Institute and Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Stephen P Hansknecht
- The James Franck Institute and Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Mark Muir
- The James Franck Institute and Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - S J Sibener
- The James Franck Institute and Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Brann M, Hansknecht SP, Ma X, Sibener SJ. Differential Condensation of Methane Isotopologues Leading to Isotopic Enrichment under Non-equilibrium Gas-Surface Collision Conditions. J Phys Chem A 2021; 125:9405-9413. [PMID: 34658236 PMCID: PMC8558857 DOI: 10.1021/acs.jpca.1c07826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/05/2021] [Indexed: 11/30/2022]
Abstract
We examine the initial differential sticking probability of CH4 and CD4 on CH4 and CD4 ices under nonequilibrium flow conditions using a combination of experimental methods and numerical simulations. The experimental methods include time-resolved in situ reflection-absorption infrared spectroscopy (RAIRS) for monitoring on-surface gaseous condensation and complementary King and Wells mass spectrometry techniques for monitoring sticking probabilities that provide confirmatory results via a second independent measurement method. Seeded supersonic beams are employed so that the entrained CH4 and CD4 have the same incident velocity but different kinetic energies and momenta. We found that as the incident velocity of CH4 and CD4 increases, the sticking probabilities for both molecules on a CH4 condensed film decrease systematically, but that preferential sticking and condensation occur for CD4. These observations differ when condensed CD4 is used as the target interface, indicating that the film's phonon and rovibrational densities of states, and collisional energy transfer cross sections, have a role in differential energy accommodation between isotopically substituted incident species. Lastly, we employed a mixed incident supersonic beam composed of both CH4 and CD4 in a 3:1 ratio and measured the condensate composition as well as the sticking probability. When doing so, we see the same effect in the condensed mixed film, supporting an isotopic enrichment of the heavier isotope. We propose that enhanced multi-phonon interactions and inelastic cross sections between the incident CD4 projectile and the CH4 film allow for more efficacious gas-surface energy transfer. VENUS code MD simulations show the same sticking probability differences between isotopologues as observed in the gas-surface scattering experiments. Ongoing analyses of these trajectories will provide additional insights into energy and momentum transfer between the incident species and the interface. These results offer a new route for isotope enrichment via preferential condensation of heavier isotopes and isotopologues during gas-surface collisions under specifically selected substrate, gas-mixture, and incident velocity conditions. They also yield valuable insights into gaseous condensation under non-equilibrium conditions such as occur in aircraft flight in low-temperature environments. Moreover, these results can help to explain the increased abundance of deuterium in solar system planets and can be incorporated into astrophysical models of interstellar icy dust grain surface processes.
Collapse
Affiliation(s)
- Michelle
R. Brann
- The James Franck Institute
and Department of Chemistry, The University
of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United
States
| | - Stephen P. Hansknecht
- The James Franck Institute
and Department of Chemistry, The University
of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United
States
| | - Xinyou Ma
- The James Franck Institute
and Department of Chemistry, The University
of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United
States
| | - S. J. Sibener
- The James Franck Institute
and Department of Chemistry, The University
of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, United
States
| |
Collapse
|
3
|
Gibson KD, Sibener SJ. A new method of isotope enrichment and separation: preferential embedding of heavier isotopes of Xe into amorphous solid water. Phys Chem Chem Phys 2021; 23:7902-7907. [PMID: 33346751 DOI: 10.1039/d0cp05019a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we examine a new method for isotope separation involving the embedding of atoms and molecules into ice. This method is based upon isotope dependent embedding, i.e. capture, in a cryogenic matrix which exhibits excellent single-pass enrichment as demonstrated successfully for selected isotopes of Xe. This is a totally new method that holds significant promise as a quite general method for enrichment and purification. It is based upon exploiting the energetic and momentum barriers that need to be overcome in order to embed a given isotope or isotopologue into the capture matrix, initially amorphous ice. From our previous experiments, we know that there is a strong dependence of the embedding probability with incident momentum. Using supersonic molecular beam techniques, we generated Xe atomic beams of controlled velocities, relatively narrow velocity distributions due to supersonic expansion, and with all of the entrained isotopes having identical velocities arising from the seeded molecular beam expansion. As we had postulated, the heavier isotope becomes preferentially absorbed, i.e., embedded, in the ice matrix. Herein we demonstrate the efficacy of this method by comparing the capture of 134Xe and 136Xe to the reference isotope, 129Xe. Enrichment of the heavier isotopes in the capture matrix was 1.2 for 134Xe and 1.3 for 136Xe greater than that expected for natural abundance. Note that enriched isotopic fractions can be collected from either the condensate or the reflected fraction depending on interest in either the heavier or lighter isotope, respectively. Cycling of these single-step enrichment events for all methods can lead to significantly higher levels of purification, and routes to scale-up can be realistically envisioned. This method holds significant promise to be quite general in applicability, including both atomic isotopes or molecular isotopologues across a wide range of particle masses spanning, essentially, the periodic table. This topic has profound implications and significant potential impact for a wide-variety of isotope-based technologies in the physical and biological sciences, medicine, advanced energy and energetic systems, including isotopically-purified materials that exhibit high-performance electronic and thermal characteristics, as well as isotopically purified spin-free materials for use in quantum information science platforms.
Collapse
Affiliation(s)
- K D Gibson
- The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
4
|
Smoll EJ, Purcell SM, D'Andrea L, Slattery JM, Bruce DW, Costen ML, McKendrick KG, Minton TK. Probing Conformational Heterogeneity at the Ionic Liquid-Vacuum Interface by Reactive-Atom Scattering. J Phys Chem Lett 2019; 10:156-163. [PMID: 30537842 DOI: 10.1021/acs.jpclett.8b02920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The atomic-level description of liquid interfaces has lagged behind that of solid crystalline surfaces because existing experimental techniques have been limited in their capability to report molecular structure in a fluctuating liquid interfacial layer. We have moved toward a more detailed experimental description of the gas-liquid interface by studying the F-atom scattering dynamics on a common ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. When given contrast by deuterium labeling, the yield and dynamical behavior of reactively scattered HF isotopologues can resolve distinct signatures from the cation butyl, methyl, and ring groups, which help to quantify the relative populations of cation conformations at the liquid-vacuum interface. These results demonstrate the importance of molecular organization in driving site-specific reactions at the extreme outer regions of the gas-liquid interface.
Collapse
Affiliation(s)
- Eric J Smoll
- Department of Chemistry and Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Simon M Purcell
- Institute of Chemical Sciences, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh EH14 4AS , U.K
| | - Lucia D'Andrea
- Department of Chemistry , University of York , Heslington , York YO10 5DD , U.K
| | - John M Slattery
- Department of Chemistry , University of York , Heslington , York YO10 5DD , U.K
| | - Duncan W Bruce
- Department of Chemistry , University of York , Heslington , York YO10 5DD , U.K
| | - Matthew L Costen
- Institute of Chemical Sciences, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh EH14 4AS , U.K
| | - Kenneth G McKendrick
- Institute of Chemical Sciences, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh EH14 4AS , U.K
| | - Timothy K Minton
- Department of Chemistry and Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| |
Collapse
|
5
|
Langlois GG, Li W, Gibson KD, Sibener SJ. Capture of Hyperthermal CO2 by Amorphous Water Ice via Molecular Embedding. J Phys Chem A 2015; 119:12238-44. [PMID: 26275022 DOI: 10.1021/acs.jpca.5b06287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present the first study detailing the capture and aggregation of hyperthermal CO2 molecules by amorphous solid water (ASW) under ultra-high vacuum conditions at 125 K, near the amorphous/crystalline transition. Using time-resolved in situ reflection-absorption infrared spectroscopy (RAIRS), CO2 molecules with translational energies above 3.0 eV are observed to directly embed underneath the vacuum-solid interface to become absorbed within the ice films despite an inability to adsorb at 125 K; this behavior is not observed for crystalline films. Upon embedding, the mobility of CO2 within 125 K amorphous ice and the strength of its intermolecular interactions result in its segregation into clusters within the ice films. Tracing the kinetics of CO2 embedding events under different energetic conditions allows for elucidation of the underlying dynamics, and we draw comparison with other projectiles we have studied to promote generalized conclusions in regard to empirical prediction of a projectile's embedding probability. Through application of a classical model of the entrance barrier for projectiles colliding with amorphous ice, we provide direct evidence for a unified connection between embedding probability and projectile momentum; an account of all embedding data measured by our group traces a unified barrier model. This work highlights the interplay between translational energy and momentum accommodation during collisions with ice in high speed gas flows.
Collapse
Affiliation(s)
- Grant G Langlois
- The James Franck Institute and Department of Chemistry, The University of Chicago , 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Wenxin Li
- The James Franck Institute and Department of Chemistry, The University of Chicago , 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - K D Gibson
- The James Franck Institute and Department of Chemistry, The University of Chicago , 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - S J Sibener
- The James Franck Institute and Department of Chemistry, The University of Chicago , 929 E. 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Gibson KD, Langlois GG, Li W, Killelea DR, Sibener SJ. Molecular interactions with ice: molecular embedding, adsorption, detection, and release. J Chem Phys 2014; 141:18C514. [PMID: 25399179 DOI: 10.1063/1.4895970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The interaction of atomic and molecular species with water and ice is of fundamental importance for chemistry. In a previous series of publications, we demonstrated that translational energy activates the embedding of Xe and Kr atoms in the near surface region of ice surfaces. In this paper, we show that inert molecular species may be absorbed in a similar fashion. We also revisit Xe embedding, and further probe the nature of the absorption into the selvedge. CF4 molecules with high translational energies (≥3 eV) were observed to embed in amorphous solid water. Just as with Xe, the initial adsorption rate is strongly activated by translational energy, but the CF4 embedding probability is much less than for Xe. In addition, a larger molecule, SF6, did not embed at the same translational energies that both CF4 and Xe embedded. The embedding rate for a given energy thus goes in the order Xe > CF4 > SF6. We do not have as much data for Kr, but it appears to have a rate that is between that of Xe and CF4. Tentatively, this order suggests that for Xe and CF4, which have similar van der Waals radii, the momentum is the key factor in determining whether the incident atom or molecule can penetrate deeply enough below the surface to embed. The more massive SF6 molecule also has a larger van der Waals radius, which appears to prevent it from stably embedding in the selvedge. We also determined that the maximum depth of embedding is less than the equivalent of four layers of hexagonal ice, while some of the atoms just below the ice surface can escape before ice desorption begins. These results show that energetic ballistic embedding in ice is a general phenomenon, and represents a significant new channel by which incident species can be trapped under conditions where they would otherwise not be bound stably as surface adsorbates. These findings have implications for many fields including environmental science, trace gas collection and release, and the chemical composition of astrophysical icy bodies in space.
Collapse
Affiliation(s)
- K D Gibson
- The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA
| | - Grant G Langlois
- The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA
| | - Wenxin Li
- The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA
| | - Daniel R Killelea
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Ave., Chicago, Illinois 60660, USA
| | - S J Sibener
- The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
7
|
Killelea DR, Gibson KD, Yuan H, Becker JS, Sibener SJ. Dynamics of the sputtering of water from ice films by collisions with energetic xenon atoms. J Chem Phys 2012; 136:144705. [DOI: 10.1063/1.3699041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|