1
|
Sharma VK, Gupta J, Srinivasan H, Hitaishi P, Ghosh SK, Mitra S. Quantifying Ionic Liquid Affinity and Its Effect on Phospholipid Membrane Structure and Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:11547-11562. [PMID: 40308170 DOI: 10.1021/acs.langmuir.5c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Understanding the interactions between ionic liquids (ILs) and biomembranes is pivotal for uncovering the origins of IL-induced biological activities and their potential applications in pharmaceuticals. In this study, we investigate the influence of imidazolium-based ILs on the viscoelasticity, dynamics, and phase behavior of two model membrane systems: (i) lipid monolayers and (ii) unilamellar vesicles, both composed of dipalmitoylphosphatidylcholine (DPPC). Two different ILs with varying alkyl chain lengths, namely, 1-decyl-3-methylimidazolium bromide (DMIM[Br]) and 1-hexyl-3-methylimidazolium bromide (HMIM[Br]) are used to investigate the role of alkyl chain lengths. Our findings demonstrate that both ILs induce significant disorder in lipid membranes by altering the area per lipid molecule, thereby modulating their viscoelastic properties. ILs with a longer alkyl chain show stronger interactions with membranes, causing a more pronounced disorder. Fourier transform infrared spectroscopy indicates that IL incorporation shifts the membrane's main phase transition to lower temperatures and introduces gauche defects, signifying increased structural disorder. This effect is amplified by longer alkyl chains and higher IL concentrations. Quasielastic neutron scattering studies highlight that ILs markedly enhance the lateral diffusion of lipids within the membrane leaflet, with the extent of enhancement determined by the membrane's physical state, IL concentration, and alkyl chain length. The most pronounced acceleration in lateral diffusion occurs in the ordered membrane phase with higher concentrations of the longer-chain IL. Molecular dynamics simulations corroborate these experimental findings, showing that longer-chain ILs extensively disrupt lipid organization, introduce more gauche defects, increase the area per lipid, and consequently enhance lateral diffusion. This increase in the lipid fluidity and permeability provides a mechanistic basis for the observed higher toxicity associated with longer-chain ILs. These results offer critical insights into the molecular-level interactions of ILs with lipid membranes, advancing our understanding of their toxicological and pharmaceutical implications.
Collapse
Affiliation(s)
- Veerendra K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Jyoti Gupta
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Harish Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Prashant Hitaishi
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Greater Noida, Uttar Pradesh 201314, India
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Greater Noida, Uttar Pradesh 201314, India
| | - Subhankur Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
2
|
Jaglan N, Sharma G, Hitaishi P, Giri RP, Hayen N, Murphy BM, Ghosh SK. Assembling Xanthan Gum at the Air-Water Interface and Disentangling It with Ionic Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8535-8544. [PMID: 40152411 DOI: 10.1021/acs.langmuir.4c04743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Xanthan gum is a biopolymer used in a wide range of products in the food and cosmetic industries. As ionic liquids (ILs) have emerged as antimicrobial molecules, they can be used as preservatives for this polymer. Hence, it is important to understand the interaction of ionic liquids with Xanthan gum. In this investigation, polymer self-assembly at the air-water interface has been studied in the presence of ionic liquids floating at the air-water interface. From the surface pressure-area isotherm, it is shown that the electrostatic interaction drives the polymer to the interface, resulting in a viscoelastic film. In-plane dilation rheology has determined the storage and loss moduli of the film, which are found to depend on the concentration of the polymer dissolved in the water subphase. Additionally, a synchrotron-based X-ray reflectivity study has produced the electron density profile across the interface, depicting the structure of the film and suggesting that the negatively charged side groups of Xanthan gum attach to the positively charged headgroup of ionic liquids. This assembly drives the polymer to disentangle, which has been further verified in an aqueous solution of the polymer showing a non-newtonian shear-thinning behavior. The storage and loss moduli curves show two crossover frequencies, manifesting an elastic plateau width that decreases in the presence of IL in the solution. This, in turn, is a signature of the disentangling effect of the IL.
Collapse
Affiliation(s)
- Nancy Jaglan
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Gunjan Sharma
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Prashant Hitaishi
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Rajendra P Giri
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstraße 19, Kiel 24118, Germany
| | - Nicolas Hayen
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstraße 19, Kiel 24118, Germany
| | - Bridget M Murphy
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstraße 19, Kiel 24118, Germany
- Ruprecht Haensel Laboratory, Deutsche Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg 22607, Germany
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
3
|
Sousa GS, Martins BA, Mendes de Almeida Junior A, Queiroz RC, Tada DB, Camacho SA, Oliveira Jr. ON, Aoki PHB. Determining Molecular-Level Interactions of Carboxyl-Functionalized Nanodiamonds with Bacterial Membrane Models as the Basis for Antimicrobial Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6186-6196. [PMID: 40023781 PMCID: PMC11912534 DOI: 10.1021/acs.langmuir.4c05173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Carbon-based nanostructures, such as carboxylated nanodiamonds (NDCOOHs), are promising to combat resistant bacterial strains by targeting their protective membranes. Understanding their interactions with bacterial membranes is therefore important for elucidating the mechanisms underlying NDCOOHs antimicrobial activity. In this study, we investigated the incorporation of NDCOOHs into lipid Langmuir monolayers mimicking cytoplasmic membranes of Escherichia coli and Staphylococcus aureus, model systems for Gram-negative and Gram-positive bacteria, respectively. Using polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), we observed significant interactions between NDCOOHs and the polar head groups of the E. coli lipid monolayer, driven by electrostatic attraction to ammonium groups and repulsion from phosphate and carbonyl ester groups, limiting deeper penetration into the lipid chains. In contrast, S. aureus monolayers exhibited more pronounced changes in their hydrocarbon chains, indicating deeper NDCOOHs penetration. NDCOOHs incorporation increased the surface area of the E. coli monolayer by approximately 4% and reduced that of S. aureus by about 8%, changes likely attributed to lipid oxidation induced by superoxide and/or hydroxyl radicals generated by NDCOOHs. These findings highlight the distinct interactions of NDCOOHs with Gram-positive and Gram-negative lipid membranes, offering valuable insights for their development as targeted antimicrobial agents.
Collapse
Affiliation(s)
- Giovanna
Eller Silva Sousa
- School
of Sciences, Humanities and Languages, São
Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| | - Bruna Alves Martins
- School
of Sciences, Humanities and Languages, São
Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| | | | - Rafaela Campos Queiroz
- Institute
of Science and Technology, Federal University
of São Paulo (UNIFESP), São José dos Campos, SP 12231-280, Brazil
| | - Dayane Batista Tada
- Institute
of Science and Technology, Federal University
of São Paulo (UNIFESP), São José dos Campos, SP 12231-280, Brazil
| | - Sabrina Aléssio Camacho
- School
of Sciences, Humanities and Languages, São
Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| | - Osvaldo N. Oliveira Jr.
- São
Carlos Institute of Physics, University
of Sao Paulo (USP), São
Carlos, SP 13566-590, Brazil
| | - Pedro Henrique Benites Aoki
- School
of Sciences, Humanities and Languages, São
Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| |
Collapse
|
4
|
Seth A, Mandal P, Hitaishi P, Giri RP, Murphy BM, Ghosh SK. Assembly of graphene oxide vs. reduced graphene oxide in a phospholipid monolayer at air-water interfaces. Phys Chem Chem Phys 2025; 27:1884-1900. [PMID: 39744966 DOI: 10.1039/d4cp02706j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Graphene and its derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), have propelled advancements in biosensor research owing to their unique physicochemical and electronic characteristics. To ensure their safe and effective utilization in biological environments, it is crucial to understand how these graphene-based nanomaterials (GNMs) interact with a biological milieu. The present study depicts GNM-induced structural changes in a self-assembled phospholipid monolayer formed at an air-water interface that can be considered to represent one of the leaflets of a cellular membrane. Surface pressure-area isotherm and electrostatic surface potential measurements, along with advanced X-ray scattering techniques, have been utilized in this study. Experimental findings demonstrate a strong interaction between negatively charged GO flakes and a positively charged monolayer, primarily dictated by electrostatic forces. These GO flakes assemble horizontally beneath the head groups of the monolayer. In contrast, rGO flakes permeate the zwitterionic lipid layer through dominant hydrophobic interaction. This organization of GNMs alters the in-plane elasticity of the lipid film, exhibiting a drop in the electrostatic potential of the surface according to the extent of oxygen-containing groups. These results provide a solid groundwork for designing devices and sensors aimed at augmenting the biomedical applications of GNMs.
Collapse
Affiliation(s)
- Ajit Seth
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| | - Priya Mandal
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| | - Prashant Hitaishi
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| | - Rajendra P Giri
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität Zu Kiel, 24098 Kiel, Germany
| | - Bridget M Murphy
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität Zu Kiel, 24098 Kiel, Germany
- Ruprecht-Haensel Laboratory, Kiel University, Kiel D-24118, Germany
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
5
|
Ghorbani M, Dehghan G, Allahverdi A. Insight into the effect of ibuprofen on the permeability of the membrane: a molecular dynamic simulation study. J Biomol Struct Dyn 2025; 43:560-570. [PMID: 37982256 DOI: 10.1080/07391102.2023.2283151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Studying interactions between drugs and cell membranes is of great interest to designing novel drugs, optimizing drug delivery, and discerning drug mechanism action. In this study, we investigated the physical properties of the bilayer membrane model of POPC upon interaction with ibuprofen (IBU) using molecular dynamics simulations. The area per lipid (APL) was calculated to describe the effect of ibuprofen on the packing properties of the lipid bilayer. The APL was 0.58 nm2 and 0.63 nm2 for the membrane in low and high IBU respectively, and 0.57 nm2 for the membrane without IBU. Our finding showed that the mean square deviation (MSD) increased with increased ibuprofen content. In addition, the order parameter for the hydrocarbon chain of lipids increased with increased ibuprofen content. There was an increment in the transfer free energy after the head group region while it was maximum in the hydrophobic core for hydrogen peroxide (H2O2) (∼6.2 kcal.mol-1) and H2O (∼3.4 kcal.mol-1) which then decreased to respective values of (∼4.6 kcal.mol-1), and (∼2.3 kcal.mol-1) at the center of the bilayer in the presence of IBU. It seems that in the presence of ibuprofen, the free energy profile of the permeability of water and H2O2 significantly decreased. These findings show that ibuprofen significantly influences the physical properties of the bilayer by decreasing the packing and intermolecular interaction in the hydrocarbon chain region and increasing the water permeability of the bilayer. These results may provide insights into the local cytotoxic side effects of ibuprofen and its underlying molecular mechanisms.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Raghav S, Hitaishi P, Giri RP, Mukherjee A, Sharma VK, Ghosh SK. Selective assembly and insertion of ubiquicidin antimicrobial peptide in lipid monolayers. J Mater Chem B 2024; 12:11731-11745. [PMID: 39434705 DOI: 10.1039/d4tb01487a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Antimicrobial-resistant bacteria pose a significant threat to humans, prompting extensive research into developing new antimicrobial peptides (AMPs). The biomembrane is the first barrier of a biological cell, hence, comprehending the interaction and self-assembly of AMPs in and around such membranes is of great importance. In the present study, several biophysical techniques have been applied to explore the self-assembly of ubiquicidin (29-41), an archetypical AMP, in and around the phospholipid monolayers formed at air-water interface. Such a monolayer mimics one of the leaflets of a lipid bilayer. The surface pressure-area isotherm exhibits the strongest interaction with a negatively charged lipid, 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DPPG). The weakest affinity was towards the zwitterionic lipid, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Another zwitterionic lipid, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), shows an intermediate affinity. This affinity was quantified by analyzing alterations in the effective mean molecular area of the lipid, the in-plane compressional modulus of the assembly, and the electrostatic potential induced by the presence of peptides. The precise organization of the peptide around the lipid monolayer at a sub-nanometre length scale was revealed using synchrotron-based X-ray reflectivity measurements from the air-water interface. Information about the selective interaction of the peptide with lipids and their varied orientation at the lipid-water interface could be useful in understanding the selectivity of AMP in developing new antibiotics.
Collapse
Affiliation(s)
- Sonam Raghav
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| | - Prashant Hitaishi
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| | - Rajendra P Giri
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität Zu Kiel, 24098 Kiel, Germany
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India.
| | - Veerendra K Sharma
- Homi Bhabha National Institute, Mumbai, 400094, India.
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
7
|
Coronado S, Herrera J, Pino MG, Martín S, Ballesteros-Rueda L, Cea P. Advancements in Engineering Planar Model Cell Membranes: Current Techniques, Applications, and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1489. [PMID: 39330645 PMCID: PMC11434481 DOI: 10.3390/nano14181489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
Cell membranes are crucial elements in living organisms, serving as protective barriers and providing structural support for cells. They regulate numerous exchange and communication processes between cells and their environment, including interactions with other cells, tissues, ions, xenobiotics, and drugs. However, the complexity and heterogeneity of cell membranes-comprising two asymmetric layers with varying compositions across different cell types and states (e.g., healthy vs. diseased)-along with the challenges of manipulating real cell membranes represent significant obstacles for in vivo studies. To address these challenges, researchers have developed various methodologies to create model cell membranes or membrane fragments, including mono- or bilayers organized in planar systems. These models facilitate fundamental studies on membrane component interactions as well as the interactions of membrane components with external agents, such as drugs, nanoparticles (NPs), or biomarkers. The applications of model cell membranes have extended beyond basic research, encompassing areas such as biosensing and nanoparticle camouflage to evade immune detection. In this review, we highlight advancements in the engineering of planar model cell membranes, focusing on the nanoarchitectonic tools used for their fabrication. We also discuss approaches for incorporating challenging materials, such as proteins and enzymes, into these models. Finally, we present our view on future perspectives in the field of planar model cell membranes.
Collapse
Affiliation(s)
- Sara Coronado
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681911, Colombia
| | - Johan Herrera
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681911, Colombia
| | - María Graciela Pino
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Santiago Martín
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Luz Ballesteros-Rueda
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681911, Colombia
| | - Pilar Cea
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
8
|
Kaushik D, Hitaishi P, Kumar A, Sen D, Kamil SM, Ghosh SK. Modulating a model membrane of sphingomyelin by a tricyclic antidepressant drug. Chem Phys Lipids 2024; 263:105419. [PMID: 38964567 DOI: 10.1016/j.chemphyslip.2024.105419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/15/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Tricyclic medicine such as amitriptyline (AMT) hydrochloride, initially developed to treat depression, is also used to treat neuropathic pain, anxiety disorder, and migraines. The mechanism of functioning of this type of drugs is ambiguous. Understanding the mechanism is important for designing new drug molecules with higher pharmacological efficiency. Hence, in the present study, biophysical approaches have been taken to shed light on their interactions with a model cellular membrane of brain sphingomyelin in the form of monolayer and multi-lamellar vesicles. The surface pressure-area isotherm infers the partitioning of a drug molecule into the lipid monolayer at the air water interface, providing a higher surface area per molecule and reducing the in-plane elasticity. Further, the surface electrostatic potential of the lipid monolayer is found to increase due to the insertion of drug molecule. The interfacial rheology revealed a reduction of the in-plane viscoelasticity of the lipid film, which, depends on the adsorption of the drug molecule onto the film. Small-angle X-ray scattering (SAXS) measurements on multilamellar vesicles (MLVs) have revealed that the AMT molecules partition into the hydrophobic core of the lipid membrane, modifying the organization of lipids in the membrane. The modified physical state of less rigid membrane and the transformed electrostatics of the membrane could influence its interaction with synaptic vesicles and neurotransmitters making higher availability of the neurotransmitters in the synaptic cleft.
Collapse
Affiliation(s)
- Devansh Kaushik
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, Uttar Pradesh 201214, India
| | - Prashant Hitaishi
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, Uttar Pradesh 201214, India
| | - Ashwani Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Debasis Sen
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Syed M Kamil
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, Uttar Pradesh 201214, India
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, Uttar Pradesh 201214, India.
| |
Collapse
|
9
|
Rubira RJG, Correia RR, Batista VRG, Pazin WM, González FG, Otero JC, Teixeira GR, Job AE. Assessing the negative impact of chlorantraniliprole, isoxaflutole, and simazine pesticides on phospholipid membrane models and tilapia gill tissues. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123904. [PMID: 38565392 DOI: 10.1016/j.envpol.2024.123904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/07/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
The indiscriminate and, very often, incorrect use of pesticides in Brazil, as well as in other countries, results in severe levels of environmental pollution and intoxication of human life. Herein, we studied plasma membrane models (monolayer and bilayer) of the phospholipid Dioleoyl-sn-glycerol-3-phosphocholine (DOPC) using Langmuir films, and large (LUVs) and giant (GUVs) unilamellar vesicles, to determine the effect of the pesticides chlorantraniliprole (CLTP), isoxaflutole (ISF), and simazine (SMZ), used in sugarcane. CLTP affects the lipid organization of the bioinspired models of DOPC π-A isotherms, while ISF and SMZ pesticides significantly affect the LUVs and GUVs. Furthermore, the in vivo study of the gill tissue in fish in the presence of pesticides (2.0 × 10-10 mol/L for CLTP, 8.3 × 10-9 mol/L for ISF, and SMZ at 9.9 × 10-9 mol/L) was performed using optical and fluorescence images. This investigation was motivated by the gill lipid membranes, which are vital for regulating transporter activity through transmembrane proteins, crucial for maintaining ionic balance in fish gills. In this way, the presence of phospholipids in gills offers a model for understanding their effects on fish health. Histological results show that exposure to CLTP, ISF, and SMZ may interfere with vital gill functions, leading to respiratory disorders and osmoregulation dysfunction. The results indicate that exposure to pesticides caused severe morphological alterations in fish, which could be correlated with their impact on the bioinspired membrane models. Moreover, the effect does not depend on the exposure period (24h and 96h), showing that animals exposed to pesticides for a short period suffer irreparable damage to gill tissue. In summary, we can conclude that the harm caused by pesticides, both in membrane models and in fish gills, occurs due to contamination of the aquatic system with pesticides. Therefore, water quality is vital for the preservation of ecosystems.
Collapse
Affiliation(s)
- Rafael J G Rubira
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, 19060-900, Brazil.
| | - Rafael R Correia
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Victor R G Batista
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Wallance M Pazin
- São Paulo State University (Unesp), School of Sciences, Bauru, SP, 17033-360, Brazil
| | - Francisco G González
- Department of Physical Chemistry, Faculty of Science, University of Málaga (UMA), Málaga, 29071, Spain
| | - Juan C Otero
- Department of Physical Chemistry, Faculty of Science, University of Málaga (UMA), Málaga, 29071, Spain
| | - Giovana R Teixeira
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, 19060-900, Brazil; Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Aldo E Job
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, 19060-900, Brazil
| |
Collapse
|
10
|
Nakahara H, Hiranita T, Shibata O. A Sigma 1 Receptor Agonist Alters Fluidity and Stability of Lipid Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6484-6492. [PMID: 38470245 PMCID: PMC11554242 DOI: 10.1021/acs.langmuir.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Interactions between the sigma1 receptor agonist PRE-084 and various lipid monolayers, including dipalmitoylphosphatidylcholine (DPPC), DPP-ethanolamine (DPPE), DPP-glycerol (DPPG), DPP-serine (DPPS), palmitoylsphingomyelin (PSM), and cholesterol (Ch), were investigated to elucidate the effects of PRE-084 on membrane fluidity and stability. Their interactions with sigma1 receptor agonists have potential implications for neuroprotection, antidepressant, analgesic, and cognitive enhancement effects. In this study, we observed that the presence of PRE-084 in the subphase led to increased fluidity in DPPC and DPPE monolayers, whereas decreasing fluidity was observed in DPPG, DPPS, and PSM monolayers. The interaction of PRE-084 with Ch monolayers was found to be distinct from its interaction with other lipids. Fluorescence microscopy images revealed changes in the size and shape of liquid-condensed domains in the presence of PRE-084, supporting the notion of altered membrane fluidity. Our findings provide new insights into the interaction of PRE-084 with lipid monolayers and its potential implications for biological and membrane science.
Collapse
Affiliation(s)
- Hiromichi Nakahara
- Department of Industrial Pharmacy, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Takato Hiranita
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
- Addiction Research, Treatment & Training Center of Excellence, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Osamu Shibata
- Department of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan
| |
Collapse
|
11
|
Moya Betancourt SN, Cámara CI, Juarez AV, Riva JS. Magnetically controlled insertion of magnetic nanoparticles into membrane model. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184293. [PMID: 38311015 DOI: 10.1016/j.bbamem.2024.184293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Polysaccharide-coated magnetic nanoparticles (MNPs) have been reported to show potential applications in many biomedical fields. In this report, we have studied the interactions between magnetite (Fe3O4) MNPs functionalized with polysaccharides (diethylamino-ethyl dextran, DEAE-D or chitosan, CHI) with different membranes models by Langmuir isotherms, incorporation experiments, and brewster angle microscopy (BAM). In this report, zwitterionic 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine (DSPE) and anionic 1,2-distearoyl-sn-glycerol-3-phosphate (DSPA) phospholipid, were used to form membrane models. Incorporation experiments (π-t) as well as the compression isotherms demonstrate positive interactions between MNPs and DSPE or DSPA monolayers. The study assessed the impact of varying initial surface pressure on a preformed phospholipid monolayer to determine the maximum insertion pressure (MIP) and synergy. Our findings indicate that the primary driving force of the coated MNPs incorporation into the monolayer predominantly stems from electrostatic interaction. The drop in the subphase pH from 6.0 to 4.0 led to an enhancement of the MIP value for DSPA phospholipid monolayer. On the other hand, for DSPE, the drop in the pH does not affect the MIP values. Besides, the presence of a magnetic field induces an enhancement of the insertion process of the MNPs into DSPA preformed monolayer, demonstrating that a previous interaction between MNPs and phospholipid preformed monolayer needs to take place to enhance the incorporation process. This work opens novel perspectives for the research of the influence of magnetic fields on the incorporation of MNPs into model membranes.
Collapse
Affiliation(s)
- Sara N Moya Betancourt
- INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Candelaria I Cámara
- INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Ana V Juarez
- INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Julieta S Riva
- INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| |
Collapse
|
12
|
Sharma G, Seth A, Giri RP, Hayen N, Murphy BM, Ghosh SK. Ionic Liquid-Induced Assembly of DNA at Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16079-16089. [PMID: 37922422 DOI: 10.1021/acs.langmuir.3c02212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
DNA nanotechnology is the future of many products in the pharmaceutical and cosmetic industries. Self-assembly of this negatively charged biopolymer at surfaces and interfaces is an essential step to elaborate its field of applications. In this study, the ionic liquid (IL) monolayer-assisted self-assembly of DNA macromolecules at the air-water interface has been closely monitored by employing various quantitative techniques, namely, surface pressure-area (π-A) isotherms, surface potential, interfacial rheology, and X-ray reflectivity (XRR). The π-A isotherms reveal that the IL 1,3-didecyl 3-methyl imidazolium chloride induces DNA self-assembly at the interface, leading to a thick viscoelastic film. The interfacial rheology exhibits a notable rise in the viscoelastic modulus as the surface pressure increases. The values of storage and loss moduli measured as a function of strain frequency suggest a relaxation frequency that depends on the length of the macromolecule. The XRR measurements indicate a considerable increase in DNA layer thickness at the elevated surface pressures depending on the number of base pairs of the DNA. The results are considered in terms of the electrostatic and hydrophobic interactions, allowing a quantitative conclusion about the arrangement of DNA strands underneath the monolayer of the ILs at the air-water interface.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh, 201314, India
| | - Ajit Seth
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh, 201314, India
| | - Rajendra P Giri
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität Zu Kiel, 24098 Kiel, Germany
| | - Nicolas Hayen
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität Zu Kiel, 24098 Kiel, Germany
| | - Bridget M Murphy
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität Zu Kiel, 24098 Kiel, Germany
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh, 201314, India
| |
Collapse
|
13
|
Ghorbani M, Dehghan G, Allahverdi A. Concentration-dependent mechanism of the binding behavior of ibuprofen to the cell membrane: A molecular dynamic simulation study. J Mol Graph Model 2023; 124:108581. [PMID: 37536233 DOI: 10.1016/j.jmgm.2023.108581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Ibuprofen is a commonly used drug for treating headaches, pain, and fever. The lipid bilayer is the primary and most important interface for drugs to interact with biological systems. However, the molecular interactions between ibuprofen and the cell membrane are not well understood. Our findings suggest that the interactions between ibuprofen and the bilayer involve multiple steps and depend on the concentration of the drug. At low concentrations of ibuprofen, it can bind to the surface of the lipid bilayer. The electrostatic and vdW energies of IBU-lipid at 0 ns of the simulation were -22.5 ± 3.2 and -5.9 ± 1.2 kj.mol-1 Fig. 2. In the following, the vdW energy of the IBU-lipid was increased by around -134.6 ± 3.7 kj.mol-1 whereas the electrostatic energy of the IBU-lipid was significantly decreased. This binding is facilitated by electrostatic and vdW interactions between ibuprofen and the head group of lipids. In the second step, ibuprofen is inserted into the lipid bilayer and positioned at the interface between the bilayer and the aqueous phase. In high concentrations of ibuprofen, it moved to the central region of the lipid bilayer. At this concentration, the physical and structural properties of the cell membrane change significantly. Results from the radial distribution function analysis indicate that at low concentrations, ibuprofen molecules are situated close to the head groups of phosphate groups. However, at high concentrations of ibuprofen, these molecules move to the inner side of the lipid bilayer. In addition, our findings indicate that at low concentrations of ibuprofen, these molecules did not significantly alter the physical properties of the cell membrane. In contrast, at high concentrations of ibuprofen, the physical parameters of the hydrocarbon tails, such as thickness, fluidity, and order, changed dramatically. APL parameter for POPC membrane increased slightly to 0.60 and 0.63 nm2 in the presence of low and high concentrations of ibuprofen molecules. The three-step interaction between ibuprofen and the lipid bilayer involves several events, such as the movement of ibuprofen molecules towards the central region of the lipid bilayer and the deformation and alteration of the structural and stability properties of the cell membrane. These effects are observed only at high concentrations of ibuprofen. It appears that the side effects of ibuprofen overdose are related to changes in the properties of the cell membrane and, subsequently, the function of membrane-anchored target proteins.
Collapse
Affiliation(s)
| | | | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences Tarbiat Modares University, Jalal Ale Ahmad Highway, P.O. Box: 14115-111, Tehran, Iran.
| |
Collapse
|
14
|
Kobal MB, Camacho SA, Moreira LG, Toledo KA, Tada DB, Aoki PHB. Unveiling the mechanisms underlying photothermal efficiency of gold shell-isolated nanoparticles (AuSHINs) on ductal mammary carcinoma cells (BT-474). Biophys Chem 2023; 300:107077. [PMID: 37515949 DOI: 10.1016/j.bpc.2023.107077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Gold nanoparticles are valuable photothermal agents owing to their efficient photothermal conversion, photobleaching resistance, and potential surface functionalization. Herein, we combined bioinspired membranes with in vitro assays to elicit the molecular mechanisms of gold shell-isolated nanoparticles (AuSHINs) on ductal mammary carcinoma cells (BT-474). Langmuir and Langmuir-Schaefer (LS) films were handled to build biomembranes from BT-474 lipid extract. AuSHINs incorporation led to surface pressure-area (π-A) isotherms expansion, increasing membrane flexibility. Fourier-transform infrared spectroscopy (FTIR) of LS multilayers revealed electrostatic AuSHINs interaction with head portions of BT-474 lipid extract, causing lipid chain disorganization. Limited AuSHINs insertion into monolayer contributed to hydroperoxidation of the unsaturated lipids upon irradiation, consistently with the surface area increments of ca. 2.0%. In fact, membrane disruption of irradiated BT-474 cells containing AuSHINs was confirmed by confocal microscopy and LDH leakage, with greater damage at 2.2 × 1013 AuSHINs/mL. Furthermore, the decrease in nuclei dimensions indicates cell death through photoinduced damage.
Collapse
Affiliation(s)
- M B Kobal
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - S A Camacho
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil; University of São Paulo (USP), São Carlos Institute of Physics (IFSC), São Carlos, SP 13566-590, Brazil
| | - L G Moreira
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - K A Toledo
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil; São Paulo State University (UNESP), Institute of Biosciences, Letters and Exact Sciences, São José do Rio Preto, SP 15054-000, Brazil
| | - D B Tada
- Federal University of São Paulo (UNIFESP), Institute of Science and Technology, São José dos Campos, SP 12231-280, Brazil
| | - P H B Aoki
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil.
| |
Collapse
|
15
|
Flores-Sánchez R, Bigorra-Mir M, Gámez F, Lopes-Costa T, Argudo P, Martín-Romero M, Camacho L, Pedrosa J. Interaction between acetylsalicylic acid and a cationic amphiphile model: An experimental approach using surface techniques. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
16
|
Pivetta TP, Jochelavicius K, Wrobel EC, Balogh DT, Oliveira ON, Ribeiro PA, Raposo M. Incorporation of acridine orange and methylene blue in Langmuir monolayers mimicking releasing nanostructures. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184156. [PMID: 37031871 DOI: 10.1016/j.bbamem.2023.184156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 04/11/2023]
Abstract
The efficiency of methylene blue (MB) and acridine orange (AO) for photodynamic therapy (PDT) is increased if encapsulated in liposomes. In this paper we determine the molecular-level interactions between MB or AO and mixed monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG) and cholesterol (CHOL) using surface pressure isotherms and polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). To increase liposome stability, the effects from adding the surfactants Span® 80 and sodium cholate were also studied. Both MB and AO induce an expansion in the mixed monolayer, but this expansion is less significant in the presence of either Span® 80 or sodium cholate. The action of AO and MB occurred via coupling with phosphate groups of DPPC or DPPG. However, the levels of chain ordering and hydration of carbonyl and phosphate in headgroups depended on the photosensitizer and on the presence of Span® 80 or sodium cholate. From the PM-IRRAS spectra, we inferred that incorporation of MB and AO increased hydration of the monolayer headgroup, except for the case of the monolayer containing sodium cholate. This variability in behaviour offers an opportunity to tune the incorporation of AO and MB into liposomes which could be exploited in the release necessary for PDT.
Collapse
Affiliation(s)
- Thais P Pivetta
- CEFITEC, Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Karen Jochelavicius
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil
| | - Ellen C Wrobel
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil
| | - Debora T Balogh
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil
| | - Osvaldo N Oliveira
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil
| | - Paulo A Ribeiro
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Maria Raposo
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
17
|
Zaborowska M, Dobrowolski MA, Matyszewska D. Revealing the structure and mechanisms of action of a synthetic opioid with model biological membranes at the air-water interface. Colloids Surf B Biointerfaces 2023; 226:113289. [PMID: 37028230 DOI: 10.1016/j.colsurfb.2023.113289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/04/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Synthetic opioids such as piperazine derivative called MT-45 interact with opioid receptors in a manner similar to morphine leading to euphoria, a sense of relaxation and pain relief and are commonly used as substituents of natural opioids. In this study we show the changes in the surface properties of nasal mucosa and intestinal epithelial model cell membranes formed at the air - water interface using Langmuir technique upon the exposure to MT-45. Both membranes constitute the first barrier to absorb this substance into the human body. The presence of the piperazine derivative affects the organization of both DPPC and ternary DMPC:DMPE:DMPS monolayers treated as simple models of nasal mucosa and intestinal cell membranes, respectively. This novel psychoactive substance (NPS) leads to the fluidization of the model layers, which may indicate their increased permeability. MT-45 has a greater influence on the ternary monolayers characteristic of the intestinal epithelial cells than nasal mucosa. It might be attributed to the increased attractive interactions between the components of the ternary layer, which in turn increase the interactions with a synthetic opioid. Additionally, the crystal structures of MT-45 determined by single-crystal and powder X-ray diffraction methods allowed us to both provide useful data for facilitating the identification of synthetic opioids as well as to attribute the effect of MT-45 to the ionic interactions between protonated nitrogen atoms and negatively charged parts of the polar heads of the lipids.
Collapse
|
18
|
Interaction between Pharmaceutical Drugs and Polymer-Coated Fe 3O 4 Magnetic Nanoparticles with Langmuir Monolayers as Cellular Membrane Models. Pharmaceutics 2023; 15:pharmaceutics15020311. [PMID: 36839633 PMCID: PMC9961141 DOI: 10.3390/pharmaceutics15020311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Surface modification of magnetic nanoparticles (MNPs) has been reported to play a significant role in determining their interactions with cell membranes. In this research, the interactions between polymer functionalized (chitosan, CHI or diethylamino-ethyl dextran, DEAE-D) Fe3O4 MNPs, pharmaceutical drugs and model cell membranes were investigated by Langmuir isotherms and adsorption measurements. In this study, 1,2-distearoyl-sn-glycerol-3-phosphate (DSPA) phospholipid monolayers were used as cell membrane models. Insertion experiments demonstrate that diclofenac (DCFN) is not absorbed at the air-water interface, whereas triflupromazine (TFPZ) has a MIP (maximum insertion pressure) of 35 m Nm-1. The insertion of composites MNPs:TFPZ or DCFN has larger MIP values, indicating that the MNPs are adsorbed on the monolayer with the drugs. An Fe3O4@CHI:DCFN composite presented an MIP of 39 m Nm-1 and Fe3O4@DEAE-D:DCFN presented an impressive MIP of 67 mNm-1. In the case of TFPZ, the enhancement in the MIP values is also evident, being 42 mNm-1 for Fe3O4@CHI:TFPZ and 40 mNm-1 for Fe3O4@DEAE-D:DCFN composite. All MNPs:drugs composites have MIP values greater than commonly accepted membrane pressure values, indicating that MNPs:drugs can penetrate a cellular membrane. The fact that the composite MNPs:drugs present greater MIP values than separated compounds indicates that polymer-coated MNPs can act as good drug delivery systems.
Collapse
|
19
|
Bačinić A, Frka S, Mlakar M. A study of cobalt (II) complexes involved in marine biogeochemical processes: Co(II)-1,10-Phenanthroline and Co(II)-1,10-Phenanthroline-L-α-Phosphatidylcholine. Bioelectrochemistry 2022; 144:108009. [PMID: 34902665 DOI: 10.1016/j.bioelechem.2021.108009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022]
Abstract
The cell membrane is structured so that the surface layer is composed of lipid molecules with selective permeability for micronutrients and organic ligands. Binding of Co (II) to natural lipid phosphatidylcholine (PC) has been studied to identify a possible mechanism of Co (II) entry through the cell membrane of the biota in detail, by voltammetry followed by checking the system at the air-water boundary, by Langmuir method. Binding of cobalt (II) ions to the PC molecules was enabled by the Co(II)-1,10-Phenanthroline (Phen) complex formation as an intermediate. Co(II)-Phen-PC complex reduction was recorded in the pH range from 5 to 9.5. The reduction was identified as a two-electron irreversible reaction at about -1.5 V, with the reactant adsorption followed dissociation (EC mechanism). The Co(II)-Phen-PC complex electrode surface concentration (Γ) was calculated to be (1.45 ± 0.12) × 10-10 mol.cm-2. Conditional stability constants log KCo(II)Phen2PC = 23.02 ± 0.26 and log KCo(II)Phen2PC2 = 29.31 ± 0.17 (Ic = 0.55) were calculated by CLE/ACSV method. Pressure-area (π-A) isotherms obtained at water-air interface by Langmuir monolayer technique indicated penetration of Co(II)-Phen into the PC monolayer, supporting electrochemical results. The equilibrium constants of the Co (II)-PC system (1:1) at the air-water interface was calculated to be K1 = 2.4 × 10-2 m3 mol-1, while for Co(II)-Phen-PC K2 = 4.86 × 1010 m2 mol-1.
Collapse
Affiliation(s)
- Anđela Bačinić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička street 54, P.O. Box 180, 10000 Zagreb, Croatia
| | - Sanja Frka
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička street 54, P.O. Box 180, 10000 Zagreb, Croatia
| | - Marina Mlakar
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička street 54, P.O. Box 180, 10000 Zagreb, Croatia.
| |
Collapse
|
20
|
Sofińska K, Lupa D, Chachaj-Brekiesz A, Czaja M, Kobierski J, Seweryn S, Skirlińska-Nosek K, Szymonski M, Wilkosz N, Wnętrzak A, Lipiec E. Revealing local molecular distribution, orientation, phase separation, and formation of domains in artificial lipid layers: Towards comprehensive characterization of biological membranes. Adv Colloid Interface Sci 2022; 301:102614. [PMID: 35190313 DOI: 10.1016/j.cis.2022.102614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023]
Abstract
Lipids, together with molecules such as DNA and proteins, are one of the most relevant systems responsible for the existence of life. Selected lipids are able to assembly into various organized structures, such as lipid membranes. The unique properties of lipid membranes determine their complex functions, not only to separate biological environments, but also to participate in regulatory functions, absorption of nutrients, cell-cell communication, endocytosis, cell signaling, and many others. Despite numerous scientific efforts, still little is known about the reason underlying the variability within lipid membranes, and its biochemical significance. In this review, we discuss the structural complexity of lipid membranes, as well as the importance to simplify studied systems in order to understand phenomena occurring in natural, complex membranes. Such systems require a model interface to be analyzed. Therefore, here we focused on analytical studies of artificial systems at various interfaces. The molecular structure of lipid membranes, specifically the nanometric thickens of molecular bilayer, limits in a major extent the choice of highly sensitive methods suitable to study such structures. Therefore, we focused on methods that combine high sensitivity, and/or chemical selectivity, and/or nanometric spatial resolution, such as atomic force microscopy, nanospectroscopy (tip-enhanced Raman spectroscopy, infrared nanospectroscopy), phase modulation infrared reflection-absorption spectroscopy, sum-frequency generation spectroscopy. We summarized experimental and theoretical approaches providing information about molecular structure and composition, lipid spatial distribution (phase separation), organization (domain shape, molecular orientation) of lipid membranes, and real-time visualization of the influence of various molecules (proteins, drugs) on their integrity. An integral part of this review discusses the latest achievements in the field of lipid layer-based biosensors.
Collapse
|
21
|
Mandal P, Giri RP, Murphy BM, Ghosh SK. Self-Assembly of Graphene Oxide Nanoflakes in a Lipid Monolayer at the Air-Water Interface. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57023-57035. [PMID: 34817153 DOI: 10.1021/acsami.1c19004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The graphene family, especially graphene oxide (GO), has captured increasing prospects in the biomedical field due to its excellent physicochemical properties. Understanding the health and environmental impact of GO is of great importance for guiding future applications. Although their interactions with living organisms are omnipresent, the exact molecular mechanism is yet to be established. The cellular membrane is the first barrier for a foreign molecule to interact before entering into the cell. In the present study, a model system consisting of a lipid monolayer at the air-water interface represents one of the leaflets of this membrane. Surface pressure-area isotherms and advanced synchrotron X-ray scattering techniques have been employed to comprehend the interaction by varying the electrostatics of the membrane. The results depict a strong GO interaction with positively charged phospholipids, weak interaction with zwitterionic lipids, and interestingly negligible interaction with negatively charged lipids. GO flakes induce significant changes in the out-of-plane organization of a positively charged lipid monolayer with a minor influence on in-plane assembly of lipid chains. This interaction is packing-specific, and the influence of GO is much stronger at lower surface pressure. Even though for zwitterionic phospholipids, the GO flakes may partly insert into the lipid chains, the X-ray scattering results indicate that the flakes preferentially lie horizontally underneath the positively charged lipid monolayer. This in-depth structural description may pave new perspectives for the scientific community for the development of GO-based biosensors and biomedical materials.
Collapse
Affiliation(s)
- Priya Mandal
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G.B. Nagar, Uttar Pradesh 201314, India
| | - Rajendra P Giri
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität Zu Kiel, 24098 Kiel, Germany
| | - Bridget M Murphy
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität Zu Kiel, 24098 Kiel, Germany
- Ruprecht Haensel Laboratory, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G.B. Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
22
|
Wood M, Morales M, Miller E, Braziel S, Giancaspro J, Scollan P, Rosario J, Gayapa A, Krmic M, Lee S. Ibuprofen and the Phosphatidylcholine Bilayer: Membrane Water Permeability in the Presence and Absence of Cholesterol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4468-4480. [PMID: 33826350 DOI: 10.1021/acs.langmuir.0c03638] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The interactions between drugs and cell membranes can modulate the structural and physical properties of membranes. The resultant perturbations of the membrane integrity may affect the conformation of the proteins inserted within the membrane, disturbing the membrane-hosted biological functions. In this study, the droplet interface bilayer (DIB), a model cell membrane, is used to examine the effects of ibuprofen, a nonsteroidal anti-inflammatory drug (NSAID), on transbilayer water permeability, which is a fundamental membrane biophysical property. Our results indicate that the presence of neutral ibuprofen (pH 3) increases the water permeability of the lipid membranes composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). When cholesterol is present with the DOPC, however, the water permeability is not influenced by addition of ibuprofen, regardless of the cholesterol content in DOPC. Given the fact that cholesterol is generally considered to impact packing in the hydrocarbon chain regions, our findings suggest that a potential competition between opposing effects of ibuprofen molecules and cholesterol on the hydrocarbon core environment of the phospholipid assembly may influence the overall water transport phenomena. Results from confocal Raman microspectroscopy and interfacial tensiometry show that ibuprofen molecules induce substantial structural and dynamic changes in the DOPC lipid bilayer. These results, demonstrating that the presence of ibuprofen increases the water permeability of pure DOPC but not that of DOPC-cholesterol mixtures, provide insight into the differential effect of a representative NSAID on heterogeneous biological membranes, depending upon the local composition and structure, results which will signal increased understanding of the gastrointestinal damage and toxicity induced by these molecules.
Collapse
Affiliation(s)
- Megan Wood
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Michael Morales
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Elizabeth Miller
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Samuel Braziel
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Joseph Giancaspro
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Patrick Scollan
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Juan Rosario
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Alyssa Gayapa
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Michael Krmic
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Sunghee Lee
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| |
Collapse
|
23
|
Maximino MD, Silva CY, Cavalcante DGSM, Martin CS, Job AE, Oliveira ON, Aléssio P. Consequences of the exposure to bisphenol A in cell membrane models at the molecular level and hamster ovary cells viability. Colloids Surf B Biointerfaces 2021; 203:111762. [PMID: 33887667 DOI: 10.1016/j.colsurfb.2021.111762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/26/2022]
Abstract
The inadequate disposal and the difficulty in its removal from water treatment systems have made the endocrine disruptor bisphenol A (BPA) a significant hazard for humans and animals. The molecular-level mechanisms of BPA action are not known in detail, which calls for systematic investigations using cell membrane models. This paper shows that BPA affects Langmuir monolayers and giant unilamellar vesicles (GUVs) of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) used as membrane models, in a concentration-dependent manner and with effects that depend on BPA aggregation. BPA increases DPPC monolayer fluidity in surface pressure isotherms upon interacting with the headgroups through hydrogen bonding, according to polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). In DPPC GUVs, BPA induced wrinkling and distortion in the spherical shape of the vesicles, but this was only observed for fresh solutions where it is not aggregated. BPA also decreased the viability of hamster ovary cells (CHO) in in vitro experiments. In contrast, aged, aggregated BPA solutions did not affect the GUVs and even increased CHO viability. These results may be rationalized in terms of size-dependent effects of BPA, which may be relevant for its endocrine-disrupting effects.
Collapse
Affiliation(s)
- Mateus D Maximino
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP, 19060-080, Brazil.
| | - Carla Y Silva
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP, 19060-080, Brazil
| | - Dalita G S M Cavalcante
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP, 19060-080, Brazil
| | - Cibely S Martin
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP, 19060-080, Brazil
| | - Aldo E Job
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP, 19060-080, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil
| | - Priscila Aléssio
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP, 19060-080, Brazil
| |
Collapse
|
24
|
Pereira MS, Maximino MD, Martin CS, Aoki PHB, Oliveira ON, Alessio P. Lipid-matrix effects on tyrosinase immobilization in Langmuir and Langmuir-Blodgett films. AN ACAD BRAS CIENC 2021; 93:e20200019. [PMID: 33787687 DOI: 10.1590/0001-3765202120200019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/17/2020] [Indexed: 11/22/2022] Open
Abstract
The immobilization of the enzyme tyrosinase (Tyr) in lipid matrices can be explored to produce biosensors for detecting polyphenols, which is relevant for the food industry. Herein, we shall demonstrate the importance of the lipid composition to immobilize the enzyme tyrosinase in Langmuir-Blodgett (LB) films. Tyr could be incorporated into Langmuir monolayers of arachidic acid (AA), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DPPG), having as the main effect an expansion in the monolayers. Results from polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) pointed to electrostatic interactions between the charged residues of Try and the lipid headgroups, in addition to changes in the order of lipid chains. The interaction between Tyr and DPPC in Langmuir monolayers can be correlated with the superior performance of DPPC/Tyr LB films used as biosensors to detect catechol by cyclic voltammetry. The molecular-level interactions assessed via PM-IRRAS are therefore believed to drive an immobilization process for Tyr in the lipid LB matrix and may serve as a general criterion to identify matrices that preserve enzyme activity.
Collapse
Affiliation(s)
- Matheus S Pereira
- Universidade Estadual Paulista/UNESP, Faculdade de Ciências e Tecnologia, Departamento de Física, Rua Roberto Símonsen, 305, Centro Educacional, Caixa Postal 467, 19060-900 Presidente Prudente, SP, Brazil
| | - Mateus D Maximino
- Universidade Estadual Paulista/UNESP, Faculdade de Ciências e Tecnologia, Departamento de Física, Rua Roberto Símonsen, 305, Centro Educacional, Caixa Postal 467, 19060-900 Presidente Prudente, SP, Brazil
| | - Cibely S Martin
- Universidade Estadual Paulista/UNESP, Faculdade de Ciências e Tecnologia, Departamento de Física, Rua Roberto Símonsen, 305, Centro Educacional, Caixa Postal 467, 19060-900 Presidente Prudente, SP, Brazil
| | - Pedro H B Aoki
- Universidade Estadual Paulista/UNESP, Faculdade de Ciências e Letras, Departamento de Biotecnologia, Av. Dom Antônio, 2100, Parque Universitário, Caixa Postal 65, 19806-900 Assis, SP, Brazil
| | - Osvaldo N Oliveira
- Universidade de São Paulo/USP, Instituto de Física de São Carlos, Av. Trabalhador São Carlense, 400, Parque Arnold Schimidt, Caixa Postal 369, 13566-590 São Carlos, SP, Brazil
| | - Priscila Alessio
- Universidade Estadual Paulista/UNESP, Faculdade de Ciências e Tecnologia, Departamento de Física, Rua Roberto Símonsen, 305, Centro Educacional, Caixa Postal 467, 19060-900 Presidente Prudente, SP, Brazil
| |
Collapse
|
25
|
Moreira LG, Almeida AM, Camacho SA, Estevão BM, Oliveira ON, Aoki PHB. Chain Cleavage of Bioinspired Bacterial Membranes Photoinduced by Eosin Decyl Ester. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9578-9585. [PMID: 32672975 DOI: 10.1021/acs.langmuir.0c01600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photodynamic therapy (PDT) is promising for bacterial inactivation since cellular internalization of photosensitizers (PS) is not crucial for the treatment effectiveness. Photoinduced damage in the lipid envelope may already induce microbial inactivation, which requires PS capable of easily penetrating into the membrane. Herein, we report on the insertion of the PS eosin decyl ester (EosDec) into Langmuir films of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG), and cardiolipin (CLP) used as mimetic systems of bacterial membranes. Surface pressure isotherms and polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) indicated that the hydrophobic nature of EosDec favored deeper penetration in all the phospholipid monolayers. The incorporation of EosDec led to monolayer expansion, especially in the anionic DOPG and CLP owing to repulsive electrostatic interactions, and induced disorder in the lipid chains. Light irradiation of DOPE, DOPG, and CLP monolayers containing EosDec increased the rate of material loss to the subphase, which is attributed to cleavage of lipid chains triggered by contact-dependent reactions between excited states of EosDec and lipid unsaturations. The latter is key for membrane permeabilization and efficiency in microbial inactivation.
Collapse
Affiliation(s)
- Lucas G Moreira
- School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| | - Alexandre M Almeida
- School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| | - Sabrina A Camacho
- School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis, SP 19806-900, Brazil
- IFSC, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil
| | - Bianca M Estevão
- IFSC, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil
- Department of Chemistry, State University of Maringá (UEM), Maringá, PR 87020-900, Brazil
| | - Osvaldo N Oliveira
- IFSC, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil
| | - Pedro H B Aoki
- School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| |
Collapse
|
26
|
Ruiz GCM, Pazin WM, do Carmo Morato LF, Oliveira ON, Constantino CJL. Correlating mono- and bilayers of lipids to investigate the pronounced effects of steroid hormone 17α-ethynylestradiol on membrane models of DPPC/cholesterol. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
The prion fragment PrP106-127 adopts a secondary structure typical of aggregated fibrils in langmuir monolayers of brain lipid extract. Chem Phys Lipids 2020; 230:104930. [DOI: 10.1016/j.chemphyslip.2020.104930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/24/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023]
|
28
|
Uehara TM, Cancino-Bernardi J, Miranda PB, Zucolotto V. Investigating the interactions of corona-free SWCNTs and cell membrane models using sum-frequency generation. SOFT MATTER 2020; 16:5711-5717. [PMID: 32525195 DOI: 10.1039/d0sm00256a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The understanding of the interactions between biomolecules and nanomaterials is of great importance in many areas of nanomedicine and bioapplications. Numerous studies in this area have been performed. However, toxicological aspects involving the interaction between phospholipids and carbon nanotubes (CNTs) remain undefined, especially for those cases in which a protein corona is not formed around the nanomaterial (corona-free nanomaterials). This study focuses on the interaction of Langmuir films of dipalmitoylphosphatidylglycerol (DPPG) and dipalmitoylphosphatidylcholine (DPPC) with corona-free, single-walled CNTs. Surface pressure-area isotherms and sum-frequency generation (SFG) vibrational spectroscopy, a non-linear optical technique used to study surfaces and interfaces, were used to investigate the lipid tail orientation and conformation, aiming to understand the interactions between phospholipids and single walled carbon nanotubes functionalized by carboxylic acid (SWCNTs-COOH) at the air-water interface under low ionic strength conditions. Data from isotherms and SFG spectra revealed that the SWCNT adsorption at the air-water interface is induced by the presence of both lipids, although at a lesser extent for DPPG due to its anionic head group, which could result in repulsion of SWCNTs-COOH that also bear a negative charge. Furthermore, lipid monolayers remained conformationally ordered, indicating insertion of SWCNTs into the lipid monolayer. Our results corroborate previous works and simulations in the literature, but made it possible to perform an in-depth investigation of the interaction of these nanomaterials with components of phospholipid membranes.
Collapse
Affiliation(s)
- Thiers Massami Uehara
- Nanomedicine and Nanotoxicology Group, University of São Paulo, CP 369, São Carlos, São Paulo 13560-970, Brazil.
| | - Juliana Cancino-Bernardi
- Nanomedicine and Nanotoxicology Group, University of São Paulo, CP 369, São Carlos, São Paulo 13560-970, Brazil.
| | - Paulo Barbeitas Miranda
- Polymer Group "Prof. Bernhard Gross", Physics Institute of São Carlos, University of São Paulo, CP 369, São Carlos, São Paulo 13560-970, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, University of São Paulo, CP 369, São Carlos, São Paulo 13560-970, Brazil.
| |
Collapse
|
29
|
Ortiz-Collazos S, Picciani PH, Oliveira ON, Pimentel AS, Edler KJ. Influence of levofloxacin and clarithromycin on the structure of DPPC monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182994. [DOI: 10.1016/j.bbamem.2019.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
|
30
|
Pires F, Geraldo VP, Antunes A, Marletta A, Oliveira ON, Raposo M. Effect of blue light irradiation on the stability of phospholipid molecules in the presence of epigallocatechin-3-gallate. Colloids Surf B Biointerfaces 2019; 177:50-57. [DOI: 10.1016/j.colsurfb.2019.01.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/05/2019] [Accepted: 01/22/2019] [Indexed: 11/29/2022]
|
31
|
Pereira LS, Camacho SA, Malfatti-Gasperini AA, Jochelavicius K, Nobre TM, Oliveira ON, Aoki PH. Evidence of photoinduced lipid hydroperoxidation in Langmuir monolayers containing Eosin Y. Colloids Surf B Biointerfaces 2018; 171:682-689. [DOI: 10.1016/j.colsurfb.2018.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/20/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023]
|
32
|
Thermodynamic Characterization of Mixed Monolayers of a Novel Oxazolidine Derivative and Phospholipids. J Membr Biol 2018; 251:723-733. [PMID: 30283978 DOI: 10.1007/s00232-018-0049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
Abstract
Oxazolidine derivatives (OxD) are five ring-membered compounds that contain at least one oxygen and nitrogen in their molecular structure. OxD are known due to several therapeutic activities such as anticancer and antibiotic properties. In this paper, we performed a thermodynamic analysis of the mixed films composed by dipalmitoylphosphatidylglycerol (DPPG), dipalmitoylphosphoethanolamine (DPPE), dipalmitoyl phosphatidylcholine (DPPC) or L-α phosphatidylcholine (PC) with a novel oxazolidine derivate (OxD). Relevant thermodynamic parameters such as excess areas (ΔAE), excess free energies (ΔG), and Gibbs free energy of mixing (AGmix) were derived from the surface pressure data. The topographical analysis was performed using atomic force microscopy. Based on the calculated values of the thermodynamic parameters, we observed that the miscibility of the mixed films was directly dependent on their composition. DPPG/OxD and DPPE/OxD systems present the best-mixed character at low pressures at OxD molar fraction equivalent to 0.25.
Collapse
|
33
|
Sun S, Sendecki AM, Pullanchery S, Huang D, Yang T, Cremer PS. Multistep Interactions between Ibuprofen and Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10782-10792. [PMID: 30148644 DOI: 10.1021/acs.langmuir.8b01878] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ibuprofen (IBU) interacts with phosphatidylcholine membranes in three distinct steps as a function of concentration. In a first step (<10 μM), IBU electrostatically adsorbs to the lipid headgroups and gradually decreases the interfacial potential. This first step helps to facilitate the second step (10-300 μM), in which hydrophobic insertion of the drug occurs. The second step disrupts the packing of the lipid acyl chains and expands the area per lipid. In a final step, above 300 μM IBU, the lipid membrane begins to solubilize, resulting in a detergent-like effect. The results described herein were obtained by a combination of fluorescence binding assays, vibrational sum frequency spectroscopy, and Langmuir monolayer compression experiments. By introducing trimethylammonium-propane, phosphatidylglycerol, and phosphatidylethanolamine lipids as well as cholesterol, we demonstrated that both the chemistry of the lipid headgroups and the packing of lipid acyl chains can substantially influence the interactions between IBU and the membranes. Moreover, different membrane chemistries can alter particular steps in the binding interaction.
Collapse
Affiliation(s)
- Simou Sun
- Department of Chemistry , Penn State University , University Park , State College , Pennsylvania 16802 , United States
| | - Anne M Sendecki
- Department of Chemistry , Penn State University , University Park , State College , Pennsylvania 16802 , United States
| | - Saranya Pullanchery
- Department of Chemistry , Penn State University , University Park , State College , Pennsylvania 16802 , United States
| | - Da Huang
- Department of Chemistry , Penn State University , University Park , State College , Pennsylvania 16802 , United States
| | - Tinglu Yang
- Department of Chemistry , Penn State University , University Park , State College , Pennsylvania 16802 , United States
| | - Paul S Cremer
- Department of Chemistry , Penn State University , University Park , State College , Pennsylvania 16802 , United States
- Department of Biochemistry and Molecular Biology , Penn State University , State College , Pennsylvania 16802 , United States
| |
Collapse
|
34
|
Association of ibuprofen at the polar/apolar interface of lipid membranes. Arch Biochem Biophys 2018; 654:77-84. [DOI: 10.1016/j.abb.2018.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022]
|
35
|
Matyszewska D, Napora E, Żelechowska K, Biernat JF, Bilewicz R. Synthesis, characterization, and interactions of single-walled carbon nanotubes modified with doxorubicin with Langmuir-Blodgett biomimetic membranes. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2018; 20:143. [PMID: 29780275 PMCID: PMC5949139 DOI: 10.1007/s11051-018-4239-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
The synthesis, characterization, and the influence of single-walled carbon nanotubes (SWCNTs) modified with an anticancer drug doxorubicin (DOx) on the properties of model biological membrane as well as the comparison of the two modes of modification has been presented. The drug was covalently attached to the nanotubes either preferentially on the sides or at the ends of the nanotubes by the formation of hydrazone bond. The efficiency of the modification was proved by the results of FTIR, Raman, and thermogravimetric analysis. In order to characterize the influence of SWCNT-DOx conjugates on model biological membranes, Langmuir technique has been employed. The mixed monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE) and SWCNT-DOx with different weight ratio have been prepared. It has been shown that changes in the isotherm characteristics depend on the SWCNTs content. While smaller amounts of SWCNTs do not exert significant differences, the introduction of the prevailing content of the nanotubes increases area per molecule and decreases the maximum value of compression modulus, leading to more fluid monolayer. However, upon increasing the surface pressure, the aggregation of carbon nanotubes within the thiolipid matrix has been observed. Mixed layers of DPPTE/SWCNT-DOx were also transferred onto gold electrodes by means of LB method. Cyclic voltammetry showed that SWCNT-DOx conjugates remain adsorbed at the electrode surface and are stable in time. Additionally, higher values of peak current and DOx surface concentration obtained for side modification prove that side modification allows for more efficient conjugation of the drug to carbon nanotubes. Graphical abstractᅟ.
Collapse
Affiliation(s)
- Dorota Matyszewska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Ewelina Napora
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| | - Kamila Żelechowska
- Faculty of Applied Physics and Mathematics, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Jan F. Biernat
- Chemical Faculty, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
36
|
Mendonça CMN, Balogh DT, Barbosa SC, Sintra TE, Ventura SPM, Martins LFG, Morgado P, Filipe EJM, Coutinho JAP, Oliveira ON, Barros-Timmons A. Understanding the interactions of imidazolium-based ionic liquids with cell membrane models. Phys Chem Chem Phys 2018; 20:29764-29777. [DOI: 10.1039/c8cp05035j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
IL–phospholipid interactions were studied using Langmuir monolayers and molecular simulations.
Collapse
Affiliation(s)
- Carlos M. N. Mendonça
- CICECO-Aveiro Institute of Materials – Department of Chemistry
- University of Aveiro
- Campus de Santiago
- Aveiro
- Portugal
| | | | | | - Tânia E. Sintra
- CICECO-Aveiro Institute of Materials – Department of Chemistry
- University of Aveiro
- Campus de Santiago
- Aveiro
- Portugal
| | - Sónia P. M. Ventura
- CICECO-Aveiro Institute of Materials – Department of Chemistry
- University of Aveiro
- Campus de Santiago
- Aveiro
- Portugal
| | - Luís F. G. Martins
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Pedro Morgado
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Eduardo J. M. Filipe
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - João A. P. Coutinho
- CICECO-Aveiro Institute of Materials – Department of Chemistry
- University of Aveiro
- Campus de Santiago
- Aveiro
- Portugal
| | | | - Ana Barros-Timmons
- CICECO-Aveiro Institute of Materials – Department of Chemistry
- University of Aveiro
- Campus de Santiago
- Aveiro
- Portugal
| |
Collapse
|
37
|
Lins PMP, Marangoni VS, Uehara TM, Miranda PB, Zucolotto V, Cancino-Bernardi J. Differences in the Aspect Ratio of Gold Nanorods that Induce Defects in Cell Membrane Models. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14286-14294. [PMID: 29166021 DOI: 10.1021/acs.langmuir.7b03051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding the interactions between biomolecules and nanomaterials is of great importance for many areas of nanomedicine and bioapplications. Although studies in this area have been performed, the interactions between cell membranes and nanoparticles are not fully understood. Here, we investigate the interactions that occur between the Langmuir monolayers of dipalmitoylphosphatidyl glycerol (DPPG) and dipalmitoylphosphatidyl choline (DPPC) with gold nanorods (NR)-with three aspect ratios-and gold nanoparticles. Our results showed that the aspect ratio of the NRs influenced the interactions with both monolayers, which suggest that the physical morphology and electrostatic forces govern the interactions in the DPPG-NR system, whereas the van der Waals interactions are predominant in the DPPC-NR systems. Size influences the expansion isotherms in both systems, but the lipid tails remain conformationally ordered upon expansion, which suggests phase separation between the lipids and nanomaterials at the interface. The coexistence of lipid and NP regions affects the elasticity of the monolayer. When there is coexistence between two phases, the elasticity does not reflect the lipid packaging state but depends on the elasticity of the NP islands. Therefore, the results corroborate that nanomaterials influence the packing and the phase behavior of the mimetic cell membranes. For this reason, developing a methodology to understand the membrane-nanomaterial interactions is of great importance.
Collapse
Affiliation(s)
- Paula M P Lins
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo , CP 369, CEP 13560-970 São Carlos, São Paulo, Brazil
| | - Valéria S Marangoni
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo , CP 369, CEP 13560-970 São Carlos, São Paulo, Brazil
| | - Thiers M Uehara
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo , CP 369, CEP 13560-970 São Carlos, São Paulo, Brazil
| | - Paulo B Miranda
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo , CP 369, CEP 13560-970 São Carlos, São Paulo, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo , CP 369, CEP 13560-970 São Carlos, São Paulo, Brazil
| | - Juliana Cancino-Bernardi
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo , CP 369, CEP 13560-970 São Carlos, São Paulo, Brazil
| |
Collapse
|
38
|
Sandrino B, de Oliveira JFA, Nobre TM, Appelt P, Gupta A, de Araujo MP, Rotello VM, Oliveira ON. Challenges in Application of Langmuir Monolayer Studies To Determine the Mechanisms of Bactericidal Activity of Ruthenium Complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14167-14174. [PMID: 29151353 DOI: 10.1021/acs.langmuir.7b02247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effects induced by antibiotics on the bacterial membrane may be correlated with their bactericidal activity, and such molecular-level interactions can be probed with Langmuir monolayers representing the cell membrane. In this study, we investigated the interaction between [Ru(mcbtz)2(PPh3)2] (RuBTZ, mcbtz = 2-mercaptobenzothiazoline) and [Ru(mctz)2(PPh3)2] (RuCTZ, mctz = 2-mercaptothiazoline) with Langmuir monolayers of a lipid extract of Escherichia coli, an extract of lipopolysaccharides (LPSs), and a zwitterionic phospholipid, dioleoylphosphatidyl choline (DOPC). RuBTZ and RuCTZ had little effects on DOPC, which is consistent with their negligible toxicity toward mammalian cells that may be approximated by a zwitterionic monolayer. Also little were their effects on LPSs. In contrast, RuBTZ and RuCTZ induced expansion in the surface pressure isotherms and decreased the compressional modulus of the E. coli lipid extract. While the more hydrophobic RuBTZ seemed to affect the hydrophobic tails of the E. coli extract monolayer to a larger extent, according to polarization modulation infrared reflection absorption spectroscopy results, evidence of a stronger RuBTZ interaction could not be confirmed unequivocally. Therefore, the interaction with the E. coli cell membrane cannot be directly correlated with the observed higher bactericidal activity of RuBTZ, in comparison to that of RuCTZ. This appears to be a case in which Langmuir monolayer studies do not suffice to determine the mechanisms responsible for the bactericidal activity.
Collapse
Affiliation(s)
- B Sandrino
- São Carlos Institute of Physics, University of São Paulo , CP 369, 13560-970 São Carlos, São Paulo, Brazil
| | - J F A de Oliveira
- National Laboratory of Synchrotron Light (LNLS) , CP 6192, 13083-970 Campinas, São Paulo, Brazil
- Institute of Chemistry, State University of Campinas (Unicamp) , CP 6154, 13083-970 Campinas, São Paulo, Brazil
| | - T M Nobre
- São Carlos Institute of Physics, University of São Paulo , CP 369, 13560-970 São Carlos, São Paulo, Brazil
| | - P Appelt
- Department of Chemistry, Federal University of Paraná , CP 19081, 81531-980 Curitiba, Paraná, Brazil
| | - A Gupta
- Department of Chemistry, University of Massachusetts Amherst , 01003 Amherst, Massachusetts, United States
| | - M P de Araujo
- Department of Chemistry, Federal University of Paraná , CP 19081, 81531-980 Curitiba, Paraná, Brazil
| | - V M Rotello
- Department of Chemistry, University of Massachusetts Amherst , 01003 Amherst, Massachusetts, United States
| | - O N Oliveira
- São Carlos Institute of Physics, University of São Paulo , CP 369, 13560-970 São Carlos, São Paulo, Brazil
| |
Collapse
|
39
|
Mlakar M, Cuculić V, Frka S, Gašparović B. Copper-phospholipid interaction at cell membrane model hydrophobic surfaces. Bioelectrochemistry 2017; 120:10-17. [PMID: 29149664 DOI: 10.1016/j.bioelechem.2017.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 11/28/2022]
Abstract
Detailed investigation of Cu (II) binding with natural lipid phosphatidylglycerol (PG) in aqueous solution was carried out by voltammetric measurements at the mercury drop electrode, complemented by monolayer studies in a Langmuir trough and electrophoretic measurements, all used as models for hydrophobic cell membranes. Penetration of copper ions into the PG layer was facilitated by the formation of hydrophilic Cu-Phenanthroline (Phen) complex in the subphase, followed by the mixed ligand Cu-Phen-PG complex formation at the hydrophobic interface. Electrophoretic measurements indicated a comparatively low abundance of the formed mixed ligand complex within the PG vesicles, resulting it the zeta potential change of +0.83mV, while monolayer studies confirmed their co-existence at the interface. The Cu-Phen-PG complex was identified in the pH range from 6 to 9. The stoichiometry of the complex ([PhenCuOHPG]), as well as its stability and kinetics of formation, were determined at the mercury drop electrode. Cu-Phen-PG reduces quasireversibly at about -0.7V vs. Ag/AgCl including reactant adsorption, followed by irreversible mixed complex dissociation, indicating a two-electron transfer - chemical reaction (EC mechanism). Consequently, the surface concentration (γ) of the adsorbed [PhenCuOHPG] complex at the hydrophobic electrode surface was calculated to be (3.35±0.67)×10-11molcm-2. Information on the mechanism of Cu (II) - lipid complex formation is a significant contribution to the understanding of complex processes at natural cell membranes.
Collapse
Affiliation(s)
- Marina Mlakar
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Vlado Cuculić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Sanja Frka
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Blaženka Gašparović
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
40
|
Layer-by-layer assembled photocatalysts for environmental remediation and solar energy conversion. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Klug J, Masone D, Del Pópolo MG. Molecular-level insight into the binding of arginine to a zwitterionic Langmuir monolayer. RSC Adv 2017. [DOI: 10.1039/c7ra05359b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Arginine molecules bind to a DPPC monolayer, altering the interfacial electrostatic potential and the lateral mobility of the lipids, while having little effect on the compression isotherm of the monolayer.
Collapse
Affiliation(s)
- Joaquín Klug
- CONICET & Facultad de Ciencias Exactas y Naturales
- Universidad Nacional de Cuyo
- Mendoza
- Argentina
- Atomistic Simulation Centre
| | - Diego Masone
- CONICET & Facultad de Ciencias Exactas y Naturales
- Universidad Nacional de Cuyo
- Mendoza
- Argentina
| | - Mario G. Del Pópolo
- CONICET & Facultad de Ciencias Exactas y Naturales
- Universidad Nacional de Cuyo
- Mendoza
- Argentina
- Atomistic Simulation Centre
| |
Collapse
|
42
|
Aoki PHB, Morato LFC, Pavinatto FJ, Nobre TM, Constantino CJL, Oliveira ON. Molecular-Level Modifications Induced by Photo-Oxidation of Lipid Monolayers Interacting with Erythrosin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3766-3773. [PMID: 27017835 DOI: 10.1021/acs.langmuir.6b00693] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Incorporation into cell membranes is key for the action of photosensitizers in photomedicine treatments, with hydroperoxidation as the prominent pathway of lipid oxidation. In this paper, we use Langmuir monolayers of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) as cell membrane models to investigate adsorption of the photosensitizer erythrosin and its effect on photoinduced lipid oxidation. From surface pressure isotherms and polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) data, erythrosin was found to adsorb mainly via electrostatic interaction with the choline in the head groups of both DOPC and DPPC. It caused larger monolayer expansion in DOPC, with possible penetration into the hydrophobic unsaturated chains, while penetration into the DPPC saturated chains was insignificant. Easier penetration is due to the less packed DOPC monolayer, in comparison to the more compact DPPC according to the monolayer compressibility data. Most importantly, light irradiation at 530 nm made the erythrosin-containing DOPC monolayer become less unstable, with a relative surface area increase of ca. 19%, in agreement with previous findings for bioadhesive giant vesicles. The relative area increase is consistent with hydroperoxidation, supporting the erythrosin penetration into the lipid chains, which favors singlet oxygen generation close to double bonds, an important requirement for photodynamic efficiency.
Collapse
Affiliation(s)
- Pedro H B Aoki
- IFSC, São Carlos Institute of Physics, University of São Paulo (USP) , São Carlos, SP, Brazil 13566-590
- DCB, Faculdade de Ciências e Letras, UNESP Univ Estadual Paulista , Assis, SP, Brazil 19806-900
| | - Luis F C Morato
- DF, Faculdade de Ciências e Tecnologia, UNESP Univ Estadual Paulista , Presidente Prudente, SP, Brazil 19060-900
| | - Felippe J Pavinatto
- IFSC, São Carlos Institute of Physics, University of São Paulo (USP) , São Carlos, SP, Brazil 13566-590
| | - Thatyane M Nobre
- IFSC, São Carlos Institute of Physics, University of São Paulo (USP) , São Carlos, SP, Brazil 13566-590
| | - Carlos J L Constantino
- DF, Faculdade de Ciências e Tecnologia, UNESP Univ Estadual Paulista , Presidente Prudente, SP, Brazil 19060-900
| | - Osvaldo N Oliveira
- IFSC, São Carlos Institute of Physics, University of São Paulo (USP) , São Carlos, SP, Brazil 13566-590
| |
Collapse
|
43
|
Interaction of polyhedral oligomeric silsesquioxane containing epoxycyclohexyl groups with cholesterol at the air/water interface. Colloids Surf B Biointerfaces 2016; 140:135-141. [DOI: 10.1016/j.colsurfb.2015.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 11/23/2022]
|
44
|
Sandrino B, Wrobel E, Nobre T, Caseli L, Lazaro S, Júnior A, Garcia J, Oliveira O, Wohnrath K. Interaction between active ruthenium complex [RuCl3(dppb)(VPy)] and phospholipid Langmuir monolayers: Effects on membrane electrical properties. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
45
|
Matyszewska D, Bilewicz R, Su Z, Abbasi F, Leitch JJ, Lipkowski J. PM-IRRAS Studies of DMPC Bilayers Supported on Au(111) Electrodes Modified with Hydrophilic Monolayers of Thioglucose. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1791-1798. [PMID: 26829620 DOI: 10.1021/acs.langmuir.5b04052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A phospholipid bilayer composed of 1,2-dimyristoyl-d54-sn-glycero-3-phosphocholine (d54-DMPC) was deposited onto the Au(111) electrode modified with a self-assembled monolayer of 1-thio-β-d-glucose (β-Tg) via the Langmuir-Blodgett and Langmuir-Schaefer (LB-LS) techniques. Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) measurements were used to characterize structural and orientational changes in this model biological membrane on a hydrophilic surface modified gold electrode. The results of the spectroscopic measurements showed that the tilt angle of acyl chains obtained for deuterated DMPC bilayers supported on the β-Tg-modified gold is significantly lower than that reported previously for DMPC bilayers deposited directly on Au(111) electrodes. Moreover, tilt angles of ∼18° were obtained for d54-DMPC bilayers on β-Tg self-assembled monolayers (SAMs) at positive potentials, which are similar to the values calculated for h-DMPC deposited on bare gold in the desorbed state and to those observed for a stack of hydrated DMPC bilayers. This data confirms that the β-thioglucose SAM promotes the formation of a water cushion that separates the phospholipid bilayer from the metal surface. As a result, the DMPC polar heads are not in direct contact with the electrode and can adopt a zigzag configuration, which strengthens the chain-chain interactions and allows for an overall decrease in the tilt of the acyl chains. These novel supported model membranes may be especially useful in studies pertaining to the incorporation of peptides and proteins into phospholipid bilayers.
Collapse
Affiliation(s)
- Dorota Matyszewska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw , Żwirki i Wigury 101, 02089 Warsaw, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw , ul. Pasteura 1, 02093 Warsaw, Poland
| | - ZhangFei Su
- Department of Chemistry, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | - Fatemah Abbasi
- Department of Chemistry, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | - J Jay Leitch
- Department of Chemistry, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | - Jacek Lipkowski
- Department of Chemistry, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
46
|
Hao C, Liu Q, Li Q, Zhang J, Sun R. Thermodynamic and structural studies of DMPC and DSPC with DOTAP mixed monolayers at the air–water interface. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2015. [DOI: 10.1134/s0036024415120079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Matyszewska D, Brzezińska K, Juhaniewicz J, Bilewicz R. pH dependence of daunorubicin interactions with model DMPC:Cholesterol membranes. Colloids Surf B Biointerfaces 2015. [DOI: 10.1016/j.colsurfb.2015.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Ariza-Carmona L, Martín-Romero MT, Giner-Casares JJ, Camacho L. Direct observation by using Brewster angle microscopy of the diacetylene polimerization in mixed Langmuir film. J Colloid Interface Sci 2015; 459:53-62. [PMID: 26263495 DOI: 10.1016/j.jcis.2015.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/27/2015] [Accepted: 08/03/2015] [Indexed: 11/18/2022]
Abstract
Mixed Langmuir monolayers of 10,12-Pentacosadiynoic acid (DA) and amphiphilic hemicyanine (HSP) have been fabricated at the air-water interface. The mixed monolayer has been proved to be completely homogeneous. The DA molecules are arranged in a single monolayer within the mixed Langmuir monolayer, as opposed to the typical trilayer architecture for the pure DA film. Brewster angle microscopy has been used to reveal the mesoscopic structure of the mixed Langmuir monolayer. Flower shape domains with internal anisotropy due the ordered alignment of hemicyanine groups have been observed. Given the absorption features of the hemicyanine groups at the wavelength used in the BAM experiments, the enhancement of reflection provoked by the absorption process leads to the observed anisotropy. The ordering of such groups is promoted by their strong self-aggregation tendency. Under UV irradiation at the air-water interface, polydiacetylene (PDA) has been fabricated. In spite a significant increase in the domains reflectivity has been observed owing to the modification in the mentioned enhanced reflection, the texture of the domains remains equal. The PDA polymer chain therefore grows in the same direction in which the HSP molecules are aligned. This study is expected to enrich the understanding and design of fabrication of PDA at interfaces.
Collapse
Affiliation(s)
- Luisa Ariza-Carmona
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba E-14014, Spain
| | - María T Martín-Romero
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba E-14014, Spain
| | - Juan J Giner-Casares
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba E-14014, Spain; Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia - San Sebastián, Spain.
| | - Luis Camacho
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba E-14014, Spain.
| |
Collapse
|
49
|
Alsop RJ, Armstrong CL, Maqbool A, Toppozini L, Dies H, Rheinstädter MC. Cholesterol expels ibuprofen from the hydrophobic membrane core and stabilizes lamellar phases in lipid membranes containing ibuprofen. SOFT MATTER 2015; 11:4756-4767. [PMID: 25915907 DOI: 10.1039/c5sm00597c] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
There is increasing evidence that common drugs, such as aspirin and ibuprofen, interact with lipid membranes. Ibuprofen is one of the most common over the counter drugs in the world, and is used for relief of pain and fever. It interacts with the cyclooxygenase pathway leading to inhibition of prostaglandin synthesis. From X-ray diffraction of highly oriented model membranes containing between 0 and 20 mol% ibuprofen, 20 mol% cholesterol, and dimyristoylphosphatidylcholine (DMPC), we present evidence for a non-specific interaction between ibuprofen and cholesterol in lipid bilayers. At a low ibuprofen concentrations of 2 mol%, three different populations of ibuprofen molecules were found: two in the lipid head group region and one in the hydrophobic membrane core. At higher ibuprofen concentrations of 10 and 20 mol%, the lamellar bilayer structure is disrupted and a lamellar to cubic phase transition was observed. In the presence of 20 mol% cholesterol, ibuprofen (at 5 mol%) was found to be expelled from the membrane core and reside solely in the head group region of the bilayers. 20 mol% cholesterol was found to stabilize lamellar membrane structure and the formation of a cubic phase at 10 and 20 mol% ibuprofen was suppressed. The results demonstrate that ibuprofen interacts with lipid membranes and that the interaction is strongly dependent on the presence of cholesterol.
Collapse
Affiliation(s)
- Richard J Alsop
- Department of Physics and Astronomy, McMaster University, ABB-241, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada.
| | | | | | | | | | | |
Collapse
|
50
|
Matyszewska D, Bilewicz R. Interactions of daunorubicin with Langmuir–Blodgett thiolipid monolayers. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.01.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|